Through Technologies

Explore WARF Inventions and Patents

WARF Technologies

WARF’s portfolio of more than 1,600 patented technologies covers a wide range of categories, including analytical instrumentation, pharmaceuticals, food products, agriculture, research tools, medical devices, pluripotent stem cells, clean technology, information technology and semiconductors.

Information summaries, which describe each technology and its applications, benefits, inventors and patent status, can be downloaded, printed and shared by clicking on the technology category links to the left on this page.

Visit our subscription center to sign up for our monthly email updates and learn when new WARF technologies become available for licensing.

New Inventions

Sustainable Process to Remediate Liquid Waste Streams

UW–Madison researchers have developed an environmentally sound and cost-effective system to remediate effluent streams containing organometallic/inorganometallic contaminants. Metals are recovered in the process and the treated water can be recycled for industrial applications.

The system includes units for electro-oxidation, electro-deposition and electro-adsorption. These units work sequentially to (1) break the strong chemical bonds in the waste stream, (2) recover the heavy metal ions and (3) remediate the organic/inorganic material.

A primary advantage of the new system is the redesigned electro-deposition unit, which houses a concentrating cathode and helps in the recovery of metals present even in very low concentrations in a reusable form.
P140335US02

Synthesizing Natural Products to Treat High Blood Cholesterol

UW–Madison researchers have developed an efficient method to synthesize indole compounds, specifically polysubstituted dimeric indoles. These compounds have potential health benefits because they are able to reduce the amount of PCSK9 in cells. PCSK9 is an enzyme known to play a major role in controlling the concentration of LDL cholesterol in the bloodstream.

Some of the compounds have been tested in vitro for their ability to increase the secretion of a potent blood sugar hormone in the body called glucagon-like peptide 1 (GLP-1). Others have the ability to selectively inhibit the secretion of interleukin-17 (IL-17), which is essential in many autoimmune diseases including arthritis, multiple sclerosis, psoriasis and inflammatory bowel disease.

The synthesis process involves a cascade reaction with transition metal catalysts. The resulting compounds can be further functionalized to yield more substituted indoles.
P150023US03

New Broad-Spectrum Antibiotics

A UW–Madison researcher and collaborators have identified an antibiotic compound effective against many drug-resistant, Gram-negative and Gram-positive bacteria. The compound (5-nonyloxytryptamine) and its analogs are small molecule inhibitors that interfere with the bacterial membrane and prevent replication.

The compound has been reported as an anticancer drug but was not previously shown to have antimicrobial properties. It was identified by searching for compounds that cause E. coli bacteria to lack a copy of the chromosome following cell division.
P140321US02

Generic Drug to Treat and Prevent Macular Degenerative Diseases

UW–Madison researchers have identified a new treatment option for a number of macular degenerative diseases including AMD, Stargardt’s disease and juvenile macular dystrophy.

The researchers found that a class of compounds called acid sphingomyelinase inhibitors can be used to fight retinal disorders associated with abnormal accumulations of lipofuscin (a cellular waste product), cholesterol or increased inflammation. One such inhibitor, generic name desipramine, is currently sold on the market as an antidepressant. Other acid sphingomyelinase inhibitors also may be suitable.
P140282US02

More Potent UGM Inhibitors for Treating Tuberculosis and Other Microbial Infections

UW–Madison researchers and collaborators have identified a potent set of UGM inhibitors that may help fight tuberculosis and other diseases caused by microbial infections. The compounds contain a bicyclic triazolo thiadiazine core with diversified aromatic substituents. They were identified by virtually screening a database of nearly five million commercially available compounds.

The molecules inhibit the growth of microorganisms that depend on UGM to incorporate Galf residues. They also diminish the virulence of pathogenic microorganisms, such as M. tuberculosis, M. smegmatis and Klebsiella pneumonia, that rely on UGM.
P140379US02
View More

New Patents

An Enhanced Method of Embedding Thin Film Sensors

A UW-Madison researcher has developed an improved method to embed microsensors into a wide array of metallic and ceramic materials of various dimensions through a unique combination of standard microfabrication and diffusion bonding techniques.

The thin film sensor is produced using photolithography, lift-off etching and other microfabrication techniques. Then the microsensor is positioned between a base part and a cover piece that can be joined together by diffusion bonding. This process takes place in a protective atmosphere or vacuum. The surface of the cover piece is polished before bonding to avoid damaging the thin films and to reduce local pressures during bonding. The bonding surfaces may contain an interlayer to improve bond quality and/or reduce required bonding temperature, particularly when bonding ceramic to ceramic and ceramic to metal.

After bonding, the finished structure acts as a single functional component with the ability for the bonded area to possess a mechanical strength equal or close to the base material. Subsequently, sensors consisting of a stack of thin films are fabricated on the bonded material, layer by layer, in a clean-room environment by standard thin film deposition and patterning techniques. This approach is capable of joining both small and large components composed of similar or dissimilar material combinations of various alloys and ceramics, thus expanding the applications for embedding sensors.
P07193US

Precision Densitometer for Radiosensitive Film

UW–Madison researchers have developed a radiosensitive film densitometer that reduces light scattering and heat problems often encountered during scanning.

The device provides ‘point-to-point’ scanning in which the laser source and detector are moved in tandem over the film. The detector measures the light that is transmitted through the film at different locations and provides a signal at each location. A set of density values based on these signals then is output.

The film is supported in a holder only at its edges to remove scattering and interference caused by the glass support bed. Highly repeatable 25 micrometer resolution density measurements may be obtained.
P120265US01

New Rheometer and Method for Efficiently Measuring Yield Stress in Biomass

UW–Madison researchers have developed a device and a method for measuring rheological properties of fluid that will effectively determine the yield stress of biomass materials. These measurements do not alter the material sample prior to measurement, allowing for more accurate data results and characterization.

The device comprises a cavity for receiving the fluid, an auger connected with an axial shaft, and a load cell sensor connected to the auger. The sensor measures the force on the auger from the fluid as the auger moves up and down. A linkage interconnected to the sensor translates motion to the auger.
P110311US01
View More