Technologies

Explore WARF Inventions and Patents

WARF Technologies

WARF’s portfolio of more than 1,700 technologies covers a wide range of categories, including analytical instrumentation, pharmaceuticals, food products, agriculture, research tools, medical devices, pluripotent stem cells, clean technology, information technology and semiconductors.

Information summaries, which describe each technology and its applications, benefits, inventors and patent status, can be downloaded, printed and shared by clicking on the technology category links to the left on this page.

Visit our subscription center to sign up for our monthly email updates and learn when new WARF technologies become available for licensing.

New Inventions

Efficient In Vitro Assay for Antigen-Specific Tolerance

Building on their work, UW–Madison researchers have now developed a T cell-bound cytokine (T-CBC) assay for detecting and quantifying regulatory T cells specific to self-antigens or donor alloantigens. The new method comprises (a) culturing the subject’s T cells for 24 hours in the presence of one or more target antigens and (b) analyzing the cultured T cells for expression of a marker (EBi3; TGFβ/LAP) indicative of antigen-specific immune suppression.
P160186US02

New and More Potent UGM Inhibitors for Treating Tuberculosis, Other Microbial Infections

UW–Madison researchers have developed a new set of UGM inhibitors to fight tuberculosis and other diseases caused by microbial infections. The compounds feature an N-acylsulfonamide motif and are more potent in vitro than inhibitors previously identified by the researchers.
P160093US02

Compound Combination Targets Bacterial Virulence

The researchers have discovered that two lead compounds (E22/M64) can be combined to target multiple QS pathways at the same time (Rhl/Pqs), resulting in enhanced activity against P. aeruginosa and potentially other pathogens. This new cocktail approach is superior because it attenuates virulence factor production across a range of relevant environments where single compounds fail.
P160176US02

Inhibiting Metadherin/SND1 Interaction to Treat Cancer

UW–Madison researchers and collaborators have developed a method to fight tumor growth and metastasis using novel peptides that inhibit interaction between MTDH and a protein called SND1.

The researchers found that MTDH-SND1 protein interaction is important for the expansion and function of prostate tumors as well as luminal and basal breast tumor initiating cells. Their work provides novel peptides that target this protein complex to help control tumor initiation, recurrence and metastasis by combating tumor initiating cells, with minimal impact on normal tissues.
P140424US02

Nylon-3 Polymers to Treat Fungal Infections

UW–Madison researchers have found that nylon-3 polymers developed in their lab display potent antifungal activity against a broad spectrum of common fungal pathogens, with minimal toxicity towards mammalian cells. The polymers have some activity alone, and when used in combination with existing drugs provide synergistic effects against Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus strains, including some resistant strains.

Synergistic combination offers efficacy with significantly reduced amounts of drug and corresponding toxicity, which could potentially expand the relevant patient population.

The polymers were designed to resemble host-defense peptides (HDPs), which are natural molecules that exhibit antimicrobial activities.
P170021US01
View More

New Patents

Algorithm for Selective Enhancement of Speech Signals

UW-Madison researchers have developed an audio signal enhancement system and method for speech processing, recognition and/or enhancement. Unlike traditional systems, this algorithm recognizes that contrast enhancement, when applied to non-pathological or unimpaired regions of the frequency spectrum, can actually impede a listener’s ability to understand the underlying speech. The system’s contrast enhancement algorithm and selective control mechanism provide a method to selectively manipulate or augment portions of an audio signal and allow other portions to be unenhanced or enhanced differently. As a result, this system can be used to preserve the ability of a listener to process the unenhanced or differently-enhanced portions of the audio signal.

The enhancement process is accomplished by dividing an input auditory signal into a plurality of spectral channels, and either performing or not performing enhancement on established subsets of the channels. Then the enhanced and unenhanced signals are combined to form a selectively enhanced output auditory signal.
P100334US01

Flexible Thin-Film Transistors for Mass Production

UW–Madison researchers have developed a new approach for fabricating high performance radiofrequency TFTs. Their method enables mass production and takes advantage of recent improvements in nanoimprinting lithography (NIL) technology.

The new TFTs include a trench cut into the semiconductor layer that separates the source and drain regions. The trench provides the TFTs with a unique current flow path that helps prevent several issues (e.g., short channel effect) that typically arise at this scale. The fabrication process is so fine that the length of the channel region is on the order of submicrons.
P150093US01

Gas-Phase Purification of Peptides Reaps Accuracy in Mass Spectrometry Quantitation

UW–Madison researchers have developed a method to eliminate interference by directly segregating ions of interest from similarly massed and charged non-targets or contaminants that were unintentionally co-isolated between stages of MS/MS.

This is accomplished using samples embedded with isobaric tags. Following initial ionization, an established proton transfer reaction (PTR) is commenced, reducing the charges of ions in the gas phase by introducing even-electron anions. The populations thus diverge according to mass-to-charge ratio, with the precursors of interest able to be selected.

During subsequent analysis of the purged ions, their tags are cleaved, fragmenting into charged particles that generate data readouts. Relative abundance of the purified peptides thus can be derived with significantly improved accuracy.
P110234US02
View More