Through Technologies

Explore WARF Inventions and Patents

WARF Technologies

WARF’s portfolio of more than 1,600 patented technologies covers a wide range of categories, including analytical instrumentation, pharmaceuticals, food products, agriculture, research tools, medical devices, pluripotent stem cells, clean technology, information technology and semiconductors.

Information summaries, which describe each technology and its applications, benefits, inventors and patent status, can be downloaded, printed and shared by clicking on the technology category links to the left on this page.

Visit our subscription center to sign up for our monthly email updates and learn when new WARF technologies become available for licensing.

New Inventions

Modified Yeast with Enhanced Tolerance for GVL Biomass Solvent

UW–Madison researchers have developed a genetically modified strain of Saccharomyces cerevisiae that is more resistant to GVL toxicity and grows more than 1.5 times faster than wild yeast in the presence of GVL.

The researchers deleted two genes (Pad1p and Fdc1p) in the yeast that play a role in mediating GVL tolerance. The new strain is the first ethanol-producing yeast specifically tailored for GVL-based techniques.

Sustainable Process to Remediate Liquid Waste Streams

UW–Madison researchers have developed an environmentally sound and cost-effective system to remediate effluent streams containing organometallic/inorganometallic contaminants. Metals are recovered in the process and the treated water can be recycled for industrial applications.

The system includes units for electro-oxidation, electro-deposition and electro-adsorption. These units work sequentially to (1) break the strong chemical bonds in the waste stream, (2) recover the heavy metal ions and (3) remediate the organic/inorganic material.

A primary advantage of the new system is the redesigned electro-deposition unit, which houses a concentrating cathode and helps in the recovery of metals present even in very low concentrations in a reusable form.

Synthesizing Natural Products to Treat High Blood Cholesterol

UW–Madison researchers have developed an efficient method to synthesize indole compounds, specifically polysubstituted dimeric indoles. These compounds have potential health benefits because they are able to reduce the amount of PCSK9 in cells. PCSK9 is an enzyme known to play a major role in controlling the concentration of LDL cholesterol in the bloodstream.

Some of the compounds have been tested in vitro for their ability to increase the secretion of a potent blood sugar hormone in the body called glucagon-like peptide 1 (GLP-1). Others have the ability to selectively inhibit the secretion of interleukin-17 (IL-17), which is essential in many autoimmune diseases including arthritis, multiple sclerosis, psoriasis and inflammatory bowel disease.

The synthesis process involves a cascade reaction with transition metal catalysts. The resulting compounds can be further functionalized to yield more substituted indoles.

New Broad-Spectrum Antibiotics

A UW–Madison researcher and collaborators have identified an antibiotic compound effective against many drug-resistant, Gram-negative and Gram-positive bacteria. The compound (5-nonyloxytryptamine) and its analogs are small molecule inhibitors that interfere with the bacterial membrane and prevent replication.

The compound has been reported as an anticancer drug but was not previously shown to have antimicrobial properties. It was identified by searching for compounds that cause E. coli bacteria to lack a copy of the chromosome following cell division.

Generic Drug to Treat and Prevent Macular Degenerative Diseases

UW–Madison researchers have identified a new treatment option for a number of macular degenerative diseases including AMD, Stargardt’s disease and juvenile macular dystrophy.

The researchers found that a class of compounds called acid sphingomyelinase inhibitors can be used to fight retinal disorders associated with abnormal accumulations of lipofuscin (a cellular waste product), cholesterol or increased inflammation. One such inhibitor, generic name desipramine, is currently sold on the market as an antidepressant. Other acid sphingomyelinase inhibitors also may be suitable.
View More

New Patents

Managing Virtual Memory to Reduce Latency

UW–Madison researchers have developed a hybrid system to manage virtual memory and reduce access latency.

The system allows some data accesses via conventional TLB/page table lookups. Other data accesses use a bypass circuit and calculate a physical address, for example, by adding an offset value to the virtual address, rather than performing a lookup. The bypass circuit is able to detect a subset of virtual addresses and translate them to physical addresses according to a stored offset between pairs.

X-Ray Phase Contrast Imaging Using Standard Equipment

A UW–Madison researcher has developed a method for generating X-ray phase contrast images from conventional X-ray attenuation data.

First, calibration factors are obtained using a phantom. The patient or object then is X-rayed to acquire attenuation data at two different energy levels. Images are reconstructed at the different energy levels to produce spatial maps. Based on the calibration factors and spatial maps, a phase contrast image can be produced.

New Treatment for Restenosis

UW–Madison researchers have developed an anti-restenosis formula made of insulin and connective tissue growth factor (CTGF). CTGF is a large protein known to help grow and remodel smooth vessel muscle after damage. The combination of CTGF and insulin increases levels of elastic collagen (type III) to promote healthy healing. The composition can be applied as an external wrap at the site of surgery.
View More