Technologies

Explore WARF Inventions and Patents

WARF Technologies

WARF’s portfolio of more than 1,600 patented technologies covers a wide range of categories, including analytical instrumentation, pharmaceuticals, food products, agriculture, research tools, medical devices, pluripotent stem cells, clean technology, information technology and semiconductors.

Information summaries, which describe each technology and its applications, benefits, inventors and patent status, can be downloaded, printed and shared by clicking on the technology category links to the left on this page.

Visit our subscription center to sign up for our monthly email updates and learn when new WARF technologies become available for licensing.

New Inventions

New and More Potent UGM Inhibitors for Treating Tuberculosis, Other Microbial Infections

UW–Madison researchers have developed a new set of UGM inhibitors to fight tuberculosis and other diseases caused by microbial infections. The compounds feature an N-acylsulfonamide motif and are more potent in vitro than inhibitors previously identified by the researchers.
P160093US01

HealthPet Auto-Feeder

Developed out of the University of Wisconsin-Platteville, the HealthPet Auto-Feeder is a wet-food pet feeder that automatically feeds cats and dogs by storing and delivering up to 15 heat-packed food pouches in 2-ounce serving containers allowing for multiple feedings per day. Additional pouches can be added with further modification to increase the quantity that can be dispensed. Food containers are stored vertically in revolving cylinders on top of the feeder and released with an electric timer that allows pet owners to program feeding times throughout the day. A conveniently located storage container has been designed so that it can be removed with ease for disposal of empty containers. The device has been designed so that it is completely motorized, user friendly and can be adapted for use with a mobile app for remote control.
T150013US02

Novel Antimicrobial Food Packaging with Enhanced Safety

  • A UW-Stout researcher has developed a practical and cost effective method for surface modification of commonly used plastics using UV induced photo-grafting. Preliminary studies have demonstrated that this method is capable of generating a plastic product with strong covalent linkages to an antifungal compound. Proof of concept studies have focused on the use of low density polyethylene (LDPE), which is conventionally used for cling wrap, and the antifungal, natamycin, which is a natural substance generally recognized as safe (GRAS) by the US Food and Drug Administration and designated as a natural preservative by the European Union.
  • In initial studies during storage at 3 degrees Celsius for 1-2 weeks, the natamycin-bound LDPE plastic inhibited growth of the fungus Penicillium chrysogenum by 60% in agar and by 100% in cantaloupe, and similar outcomes were observed for yeast Saccharomyces cerevisiae. These results demonstrate the clear efficacy of the antifungal grafted plastic, making it a compelling candidate for a product that prevents spoilage while also avoiding migration of preservatives to food. Similar strategies could be used to develop other polyolefin plastics grafted with other antifungal compounds, and they could be applied beyond food, in areas including but not limited to textiles as well as healthcare.
T160012US01

New System for Producing Fungal Secondary Metabolites

UW–Madison researchers have developed a new system for producing fungal secondary metabolites using test plasmids and a genetically modified strain of Aspergillus nidulans (TPMW2.3). The strain begins producing secondary metabolites when a gene promoter in the plasmid is triggered by culture conditions. This allows researchers to induce or repress production.
P150029US02

Covalently Linked Soft Networks of Gold Nanoparticles

A researcher at UW-Eau Claire has invented a method for efficient fabrication of gold nanoparticle plasmonic waveguides. Nanoparticles are synthesized and purified by known techniques and cast upon an air-water interface. A solution is introduced to the nanoparticles and upon evaporation the nanoparticles form a crosslinked coherent network. The crosslinking imparts a mechanical strength to the film, permitting further manipulation including transfer to solid substrates and surface chemical modification. Incorporation of photoreactive crosslinkers renders the process reversible.
T130010US02
View More

New Patents

Devices and Methods for Immobilizing Liquid Crystal Droplets onto a Chemically Functionalized Substrate Surface

UW–Madison researchers have developed devices and methods for immobilizing micrometer-sized liquid domains such as liquid crystal or isotropic oil droplets on a variety of chemically-functionalized surfaces. A multifunctional polymer, which may be a polyamine, is adsorbed at the surface interface of the liquid crystal droplets. Then the droplets are immobilized by covalent bonding, electrostatic interactions or other interactions between the adsorbed polymer and the functionalized substrate surface. The immobilized droplets can be used, for example, in liquid crystal droplet-based sensing devices or devices engineered to possess optical band gaps.
P100260US02

Optical System for Correction of Tissue-Induced Aberration

A UW-Madison researcher has developed a new mono-chromatic method of correcting for the optical distortion caused by intervening tissue. Variations in the optical properties of the tissue lead to aberrations in the wavefront of the beam of light from the microscope system. This method is based on a reflective correction of the wavefront error. A computer-generated reflection hologram is projected in real time via a micro-mirror array, which adjusts the phase of the light to produce the exact opposite of the wavefront errors expected from the sample. The two cancel each other out, producing images corrected for aberrations.
P07259US

Automated Evaluation of Ultrasonic Elasticity Images

UW-Madison researchers have developed a novel quantitative method for automatically evaluating the quality of images used in ultrasonic elasticity imaging. The method uses an empirical equation to combine different types of image quality measurements into a single quantitative descriptor of overall performance. For an operator manually deforming tissue, it may be used to provide a real-time corrective signal to improve the quality of the data acquired. It may also be used to automatically select images for averaging or animation.
P04300US
View More