Technologies

Explore WARF Inventions and Patents

WARF Technologies

WARF’s portfolio of more than 1,600 patented technologies covers a wide range of categories, including analytical instrumentation, pharmaceuticals, food products, agriculture, research tools, medical devices, pluripotent stem cells, clean technology, information technology and semiconductors.

Information summaries, which describe each technology and its applications, benefits, inventors and patent status, can be downloaded, printed and shared by clicking on the technology category links to the left on this page.

Visit our subscription center to sign up for our monthly email updates and learn when new WARF technologies become available for licensing.

New Inventions

New and More Potent UGM Inhibitors for Treating Tuberculosis, Other Microbial Infections

UW–Madison researchers have developed a new set of UGM inhibitors to fight tuberculosis and other diseases caused by microbial infections. The compounds feature an N-acylsulfonamide motif and are more potent in vitro than inhibitors previously identified by the researchers.
P160093US01

HealthPet Auto-Feeder

Developed out of the University of Wisconsin-Platteville, the HealthPet Auto-Feeder is a wet-food pet feeder that automatically feeds cats and dogs by storing and delivering up to 15 heat-packed food pouches in 2-ounce serving containers allowing for multiple feedings per day. Additional pouches can be added with further modification to increase the quantity that can be dispensed. Food containers are stored vertically in revolving cylinders on top of the feeder and released with an electric timer that allows pet owners to program feeding times throughout the day. A conveniently located storage container has been designed so that it can be removed with ease for disposal of empty containers. The device has been designed so that it is completely motorized, user friendly and can be adapted for use with a mobile app for remote control.
T150013US02

New System for Producing Fungal Secondary Metabolites

UW–Madison researchers have developed a new system for producing fungal secondary metabolites using test plasmids and a genetically modified strain of Aspergillus nidulans (TPMW2.3). The strain begins producing secondary metabolites when a gene promoter in the plasmid is triggered by culture conditions. This allows researchers to induce or repress production.
P150029US02

Covalently Linked Soft Networks of Gold Nanoparticles

A researcher at UW-Eau Claire has invented a method for efficient fabrication of gold nanoparticle plasmonic waveguides. Nanoparticles are synthesized and purified by known techniques and cast upon an air-water interface. A solution is introduced to the nanoparticles and upon evaporation the nanoparticles form a crosslinked coherent network. The crosslinking imparts a mechanical strength to the film, permitting further manipulation including transfer to solid substrates and surface chemical modification. Incorporation of photoreactive crosslinkers renders the process reversible.
T130010US02

Poly(UG) Polymerase: A Useful New RNA Tool

UW–Madison researchers have identified a poly(UG) polymerase in a roundworm called Caenorhabditis elegans. The newly discovered enzyme adds repeating UG sequences to the ends of RNA. This activity could be useful as a research tool in vitro, e.g., providing a new way to synthesize cDNA of RNAs of unknown sequence.

The gene in C. elegans that encodes the enzyme is called RDE-3. Although its sequence was already known, its polymerase activity was not.
P140268US02
View More

New Patents

Automated Evaluation of Ultrasonic Elasticity Images

UW-Madison researchers have developed a novel quantitative method for automatically evaluating the quality of images used in ultrasonic elasticity imaging. The method uses an empirical equation to combine different types of image quality measurements into a single quantitative descriptor of overall performance. For an operator manually deforming tissue, it may be used to provide a real-time corrective signal to improve the quality of the data acquired. It may also be used to automatically select images for averaging or animation.
P04300US

Composite Images for Clearer Ultrasound

UW–Madison researchers have developed an algorithm that combines ultrasonic data from multiple images into a high-resolution image or video.

To combine images taken at different times, each of the images is first subdivided into corresponding regions. These are separately registered in rotation and translation, and then combined into a high-resolution image. The process is repeated to create video.

The method can be extended to combine images obtained at different frequencies. This takes advantage of the fact that higher frequencies provide sharper detail closer to the ultrasound machine while lower frequencies are better with distance. Accordingly, acoustic distance is considered when weighting frequency data and combining images.
P130212US01

Encrypting Intellectual Property Cores

UW–Madison researchers have developed a method for encrypting the functional descriptions of IP cores. The encrypted descriptions allow simulation but still obscure the design and operation of the underlying circuit. This provides more flexible testing capabilities while protecting intellectual property.

First, an encryptor receives a description file of the circuit. The encryptor then outputs a description of the underlying IP core in which the nodes or gates of the circuit are replaced with generic placeholder nodes. These placeholders are given encrypted multivalued truth-tables that permit simulation but effectively disguise their function. For example, multiple alias values may hide the logic of the node, or the truth-table may include erroneous entries. The effect is to render the function of the node symbols practically unintelligible.
P140095US01
View More