Technologies

Explore WARF Inventions and Patents

WARF Technologies

WARF’s portfolio of more than 1,600 patented technologies covers a wide range of categories, including analytical instrumentation, pharmaceuticals, food products, agriculture, research tools, medical devices, pluripotent stem cells, clean technology, information technology and semiconductors.

Information summaries, which describe each technology and its applications, benefits, inventors and patent status, can be downloaded, printed and shared by clicking on the technology category links to the left on this page.

Visit our subscription center to sign up for our monthly email updates and learn when new WARF technologies become available for licensing.

New Inventions

“Green” Catalytic Systems for Solvent-Free Alcohol Oxidations

Research from the University of Wisconsin-La Crosse has led to the discovery and development of a novel suite of catalytic systems for industrially-relevant green oxidations including the oxidative conversion of primary and secondary alcohols to value-added aldehydes and ketones. Similar systems have been developed for the oxidation of olefins to produce important epoxides, and for the oxidation of alkanes to produce alcohols. Specifically the team has developed a series of iron-based catalysts known as ‘helmet’ phthalocyaninaoto complexes of iron(III). Preliminary studies have focused on the use of what is commonly referred to as the ‘diiPc’ iron(III) system. Notably, the team has shown that this system is capable of catalytically oxidizing a diverse array of substrates including five non-benzylic alcohols (1-pentanol, 2-pentanol and cyclohexanol as well as 2,4-dimethyl-3-pentanol and 5-hydroxymethylfurfural) in the absence of added organic solvent. The presence of water as the monodentate axial ligand in the diiPc complex allows for markedly increased solubility in non-aromatic alcohols, making it an ideal catalyst for use with a much wider and more diverse range of substrates under solvent free conditions. It is envisaged that modification of the diiPc and related ligands will be undertaken to impart further enhancements to catalyst solubility in substrates or water, and/or superior stability in substrate alcohols. In addition to the diiPc system, the team have also developed a means of forming derivatized catalysts utilizing what is commonly referred to as a “helmet naphthalocyaninato” iron(III) complex. Specifically, a sulfonated version has been produced that possesses excellent solubility in water due to the added hydrophilic groups. To date, the sulfonated helmet naphthalocyaninato complex has been shown to provide for efficient formation of acetone from isopropanol as well as conversion of 2-pentanol to 2-pentanone using hydrogen peroxide as the primary oxidant. As such we anticipate that the same system would also be effective in the oxidation of 2-butanol to produce methyl ethyl ketone (MEK), an important commodity scale industrial chemical, and in many other commercially important transformations. Furthermore, preliminary studies have shown this molecule can be immobilized on various solid supports including anion-exchange resins, thereby resulting in a heterogeneous catalyst that can be utilized in the development of catalytic transformations that occur under flow conditions. Additionally, we now know that the sulfonated catalyst efficiently catalyzes the oxidation of phenol with hydrogen peroxide to produce para-benzoquinone. This transformation, along with other related reactions, is very important in the treatment of wastewater.
T150040US03

New and More Potent UGM Inhibitors for Treating Tuberculosis, Other Microbial Infections

UW–Madison researchers have developed a new set of UGM inhibitors to fight tuberculosis and other diseases caused by microbial infections. The compounds feature an N-acylsulfonamide motif and are more potent in vitro than inhibitors previously identified by the researchers.
P160093US01

HealthPet Auto-Feeder

Developed out of the University of Wisconsin-Platteville, the HealthPet Auto-Feeder is a wet-food pet feeder that automatically feeds cats and dogs by storing and delivering up to 15 heat-packed food pouches in 2-ounce serving containers allowing for multiple feedings per day. Additional pouches can be added with further modification to increase the quantity that can be dispensed. Food containers are stored vertically in revolving cylinders on top of the feeder and released with an electric timer that allows pet owners to program feeding times throughout the day. A conveniently located storage container has been designed so that it can be removed with ease for disposal of empty containers. The device has been designed so that it is completely motorized, user friendly and can be adapted for use with a mobile app for remote control.
T150013US02

Novel Antimicrobial Food Packaging with Enhanced Safety

  • A UW-Stout researcher has developed a practical and cost effective method for surface modification of commonly used plastics using UV induced photo-grafting. Preliminary studies have demonstrated that this method is capable of generating a plastic product with strong covalent linkages to an antifungal compound. Proof of concept studies have focused on the use of low density polyethylene (LDPE), which is conventionally used for cling wrap, and the antifungal, natamycin, which is a natural substance generally recognized as safe (GRAS) by the US Food and Drug Administration and designated as a natural preservative by the European Union.
  • In initial studies during storage at 3 degrees Celsius for 1-2 weeks, the natamycin-bound LDPE plastic inhibited growth of the fungus Penicillium chrysogenum by 60% in agar and by 100% in cantaloupe, and similar outcomes were observed for yeast Saccharomyces cerevisiae. These results demonstrate the clear efficacy of the antifungal grafted plastic, making it a compelling candidate for a product that prevents spoilage while also avoiding migration of preservatives to food. Similar strategies could be used to develop other polyolefin plastics grafted with other antifungal compounds, and they could be applied beyond food, in areas including but not limited to textiles as well as healthcare.
T160012US01

New System for Producing Fungal Secondary Metabolites

UW–Madison researchers have developed a new system for producing fungal secondary metabolites using test plasmids and a genetically modified strain of Aspergillus nidulans (TPMW2.3). The strain begins producing secondary metabolites when a gene promoter in the plasmid is triggered by culture conditions. This allows researchers to induce or repress production.
P150029US02
View More

New Patents

Faster, Better Quality Medical Imaging by Constrained Reconstruction

UW–Madison researchers have developed a modified algorithm for medical image reconstruction that increases reconstruction speed, improves image quality and provides more accurate results. The algorithm constrains images to be consistent with a signal model, which relates image intensity values to free and control parameters such as relaxation time and multiple echo or inversion times, respectively.

The signal model may be analytical or approximate—learned from acquired image data, as is done in the case of time-resolved MRI. The model consistency condition may be enforced using an operator that projects an image estimate onto the space of all functions satisfying the signal model.
P120280US01

Low-Profile, Ultrawide Band Antenna

UW–Madison researchers have developed an electrically small ultrawide band antenna that radiates in every direction like a monopole. The unique structure of the antenna relies on the placement and shape of the arms and slot. It is composed of a top-loaded, multifolded planar structure placed vertically on a ground plane. The structure is loaded with a top hat conductor that is short circuited to the ground plane at two locations.
P130215US01

Combined Capacitor/Inductor Reduces Circuit Bulk

A UW–Madison researcher has designed a combination capacitor/inductor configured to share energy storage volumes, thereby significantly reducing the bulk of devices. In essence, the capacitor incorporates into its layers a material of high magnetic permeability (e.g., iron or an iron alloy laminated with a nonferrous metal) so that it may fit into the inductor coil in place of the normal core.
P140216US01
View More