Technologies

New Inventions

New System for Producing Fungal Secondary Metabolites

UW–Madison researchers have developed a new system for producing fungal secondary metabolites using test plasmids and a genetically modified strain of Aspergillus nidulans (TPMW2.3). The strain begins producing secondary metabolites when a gene promoter in the plasmid is triggered by culture conditions. This allows researchers to induce or repress production.
(Feb 16, 2016) P150029US02

Poly(UG) Polymerase: A Useful New RNA Tool

UW–Madison researchers have identified a poly(UG) polymerase in a roundworm called Caenorhabditis elegans. The newly discovered enzyme adds repeating UG sequences to the ends of RNA. This activity could be useful as a research tool in vitro, e.g., providing a new way to synthesize cDNA of RNAs of unknown sequence.

The gene in C. elegans that encodes the enzyme is called RDE-3. Although its sequence was already known, its polymerase activity was not.
(Nov 17, 2015) P140268US02

Treating Hemophilia B with Modified Protein

A UW–Madison researcher has developed new Factor IX mutants for treating blood coagulation conditions, including hemophilia B, hemorrhagic disorder and thrombosis. The modified proteins contain combined mutations in the heparin and antithrombin binding sites that prolong half-life and stability.

The new mutants show improved in vivo activity and more sustained therapeutic effect than naturally occurring Factor IX. They could potentially be administered intravenously, orally or by another route.
(Oct 30, 2015) P150063US02

Peptides to Treat Alzheimer’s Disease

UW–Madison researchers have developed a new strategy to design peptides that could be turned into therapeutics to treat or halt the progression of Alzheimer’s disease. The cyclized (ring-shaped) peptides are derived from transthyretin (TTR), a protein found in cerebrospinal fluid that is known to bind to Aβ and inhibit its toxicity in vitro and in vivo. The new peptides mimic both the sequence and the hairpin structure of transthyretin’s Aβ binding domain.
(Oct 15, 2015) P140391US02

Treating Iron Overload with Block Copolymers

UW–Madison researchers have developed new block copolymers for forming micelles that can respond to the oxidation state of their environment and chelate iron (II) and (III) ions. At suitable concentrations the copolymers can form micelles to prolong circulation in the blood and bind to non-transferrin bound iron. The micelles then break up in cells in the presence of oxidizing agents such as hydrogen peroxide and are cleared from the body by the liver or kidney route.

The copolymers include a polyhydroxamic acid-containing block and a polyferrocenyl block. They can be prepared by standard peptide synthesis or polymerization methods.
(Oct 6, 2015) P140395US02

Modified Yeast with Enhanced Tolerance for GVL Biomass Solvent

UW–Madison researchers have developed a genetically modified strain of Saccharomyces cerevisiae that is more resistant to GVL toxicity and grows more than 1.5 times faster than wild yeast in the presence of GVL.

The researchers deleted two genes (Pad1p and Fdc1p) in the yeast that play a role in mediating GVL tolerance. The new strain is the first ethanol-producing yeast specifically tailored for GVL-based techniques.
(Sep 9, 2015) P140430US02

Temperature Gradient Handling System for Surface Plasmon Resonance (SPR) Measurements

Researchers in the Department of Chemistry and Biochemistry at the University of Wisconsin-La Crosse have developed a surface plasmon resonance (SPR) based method for measuring, in a single experiment, the temperature dependence of binding kinetics for biomolecular interactions. The method is based on a novel sample handling system that generates a spatial temperature gradient across an SPR sensor and is label free.
(Aug 17, 2015) T150042US01

Combined Capacitor/Inductor with Improved Performance

UW–Madison researchers have now mitigated the problem of parasitic inductance. Their new design features a loop-back terminal structure that minimizes the net magnetic field induced by the capacitor current. In other words, the capacitor leads are routed back up through the middle of the core to cancel the increased inductance seen at the capacitor terminals.
(Aug 14, 2015) P150389US01

Sustainable Process to Remediate Liquid Waste Streams

UW–Madison researchers have developed an environmentally sound and cost-effective system to remediate effluent streams containing organometallic/inorganometallic contaminants. Metals are recovered in the process and the treated water can be recycled for industrial applications.

The system includes units for electro-oxidation, electro-deposition and electro-adsorption. These units work sequentially to (1) break the strong chemical bonds in the waste stream, (2) recover the heavy metal ions and (3) remediate the organic/inorganic material.

A primary advantage of the new system is the redesigned electro-deposition unit, which houses a concentrating cathode and helps in the recovery of metals present even in very low concentrations in a reusable form.
(Aug 6, 2015) P140335US02

High Accuracy Angle Measuring Device for Industrial, Medical, Scientific or Recreational Use

A UW-Stout researcher has developed a high-accuracy angle measurement system that addresses the problems inherent to commercially available systems. In this novel device, a high accuracy rotary optical encoder is controlled by a microprocessor. The encoder consists of rotating optical disks and sensors that are precisely formed and placed to read angles with 0.001 arc second sensitivity (average) and better than ±0.1 arc second accuracy (single readings), which is comparable to the accuracy of the high-end commercial encoders currently on the market. This accuracy is maintained with strategies that combat the mechanical sources of error that are known disadvantages of other devices. The system can also be adjusted to compensate for any asymmetrical shifts that may occur. Mechanical sources of error and noise are further minimized by precision placement of disks and sensors, as well as low-friction reference points that keep components centered and level during rotation. In addition, multiple sensor heads eliminate major readout errors and remove the need for recalibration. All of these features and benefits are contained within a design that is both compact and portable. Beyond high accuracy and portability, the cost of this new angle measurement system is substantially lower than a high-end commercial system because it is easily constructed from readily available industrial grade components, bringing the production cost to roughly $2,000. Strikingly, this cost is comparable to the advertised price of other rotary position encoders that are less than one tenth as accurate. Its high accuracy, low cost, and portability make this new angle measurement system a strong option for use in virtually any of the current applications for absolute rotary encoders.
(Aug 6, 2015) T130018US01