Technologies

New Inventions

New and More Potent UGM Inhibitors for Treating Tuberculosis, Other Microbial Infections

UW–Madison researchers have developed a new set of UGM inhibitors to fight tuberculosis and other diseases caused by microbial infections. The compounds feature an N-acylsulfonamide motif and are more potent in vitro than inhibitors previously identified by the researchers.
(Mar 11, 2016) P160093US01

HealthPet Auto-Feeder

Developed out of the University of Wisconsin-Platteville, the HealthPet Auto-Feeder is a wet-food pet feeder that automatically feeds cats and dogs by storing and delivering up to 15 heat-packed food pouches in 2-ounce serving containers allowing for multiple feedings per day. Additional pouches can be added with further modification to increase the quantity that can be dispensed. Food containers are stored vertically in revolving cylinders on top of the feeder and released with an electric timer that allows pet owners to program feeding times throughout the day. A conveniently located storage container has been designed so that it can be removed with ease for disposal of empty containers. The device has been designed so that it is completely motorized, user friendly and can be adapted for use with a mobile app for remote control.
(Feb 19, 2016) T150013US02

Novel Antimicrobial Food Packaging with Enhanced Safety

  • A UW-Stout researcher has developed a practical and cost effective method for surface modification of commonly used plastics using UV induced photo-grafting. Preliminary studies have demonstrated that this method is capable of generating a plastic product with strong covalent linkages to an antifungal compound. Proof of concept studies have focused on the use of low density polyethylene (LDPE), which is conventionally used for cling wrap, and the antifungal, natamycin, which is a natural substance generally recognized as safe (GRAS) by the US Food and Drug Administration and designated as a natural preservative by the European Union.
  • In initial studies during storage at 3 degrees Celsius for 1-2 weeks, the natamycin-bound LDPE plastic inhibited growth of the fungus Penicillium chrysogenum by 60% in agar and by 100% in cantaloupe, and similar outcomes were observed for yeast Saccharomyces cerevisiae. These results demonstrate the clear efficacy of the antifungal grafted plastic, making it a compelling candidate for a product that prevents spoilage while also avoiding migration of preservatives to food. Similar strategies could be used to develop other polyolefin plastics grafted with other antifungal compounds, and they could be applied beyond food, in areas including but not limited to textiles as well as healthcare.
(Feb 17, 2016) T160012US01

New System for Producing Fungal Secondary Metabolites

UW–Madison researchers have developed a new system for producing fungal secondary metabolites using test plasmids and a genetically modified strain of Aspergillus nidulans (TPMW2.3). The strain begins producing secondary metabolites when a gene promoter in the plasmid is triggered by culture conditions. This allows researchers to induce or repress production.
(Feb 16, 2016) P150029US02

Covalently Linked Soft Networks of Gold Nanoparticles

A researcher at UW-Eau Claire has invented a method for efficient fabrication of gold nanoparticle plasmonic waveguides. Nanoparticles are synthesized and purified by known techniques and cast upon an air-water interface. A solution is introduced to the nanoparticles and upon evaporation the nanoparticles form a crosslinked coherent network. The crosslinking imparts a mechanical strength to the film, permitting further manipulation including transfer to solid substrates and surface chemical modification. Incorporation of photoreactive crosslinkers renders the process reversible.
(Jan 4, 2016) T130010US02

Poly(UG) Polymerase: A Useful New RNA Tool

UW–Madison researchers have identified a poly(UG) polymerase in a roundworm called Caenorhabditis elegans. The newly discovered enzyme adds repeating UG sequences to the ends of RNA. This activity could be useful as a research tool in vitro, e.g., providing a new way to synthesize cDNA of RNAs of unknown sequence.

The gene in C. elegans that encodes the enzyme is called RDE-3. Although its sequence was already known, its polymerase activity was not.
(Nov 17, 2015) P140268US02

Treating Hemophilia B with Modified Protein

A UW–Madison researcher has developed new Factor IX mutants for treating blood coagulation conditions, including hemophilia B, hemorrhagic disorder and thrombosis. The modified proteins contain combined mutations in the heparin and antithrombin binding sites that prolong half-life and stability.

The new mutants show improved in vivo activity and more sustained therapeutic effect than naturally occurring Factor IX. They could potentially be administered intravenously, orally or by another route.
(Oct 30, 2015) P150063US02

Peptides to Treat Alzheimer’s Disease

UW–Madison researchers have developed a new strategy to design peptides that could be turned into therapeutics to treat or halt the progression of Alzheimer’s disease. The cyclized (ring-shaped) peptides are derived from transthyretin (TTR), a protein found in cerebrospinal fluid that is known to bind to Aβ and inhibit its toxicity in vitro and in vivo. The new peptides mimic both the sequence and the hairpin structure of transthyretin’s Aβ binding domain.
(Oct 15, 2015) P140391US02

Treating Iron Overload with Block Copolymers

UW–Madison researchers have developed new block copolymers for forming micelles that can respond to the oxidation state of their environment and chelate iron (II) and (III) ions. At suitable concentrations the copolymers can form micelles to prolong circulation in the blood and bind to non-transferrin bound iron. The micelles then break up in cells in the presence of oxidizing agents such as hydrogen peroxide and are cleared from the body by the liver or kidney route.

The copolymers include a polyhydroxamic acid-containing block and a polyferrocenyl block. They can be prepared by standard peptide synthesis or polymerization methods.
(Oct 6, 2015) P140395US02

Modified E. coli for Enhanced Production of Pyruvate, Ethanol

UW–Madison researchers have developed a variety of new E. coli strains capable of producing pyruvate up to 95 percent of the maximum theoretical yield from renewable sources under aerobic conditions. This exceeds the highest previously reported yields of 78 percent.

The researchers used a genome-scale metabolic model of E. coli to identify multiple gene deletion targets that couple growth rate with pyruvate production. Further engineering of these new strains enabled them to produce ethanol at near maximum theoretical yields.
(Sep 9, 2015) P140301US02