Technologies

New Inventions

Monomeric Fluorescent Protein-Ligand Complexes with Strong Fluorescence in the Far-Red Region

Research from the University of Wisconsin-Washington County in collaboration with the Institute for Stem Cell Biology and Regenerative Medicine in India, has resulted in the development of monomeric variants of the naturally occurring Sandercyanin Fluorescent Protein (SFP) using site-directed mutagenesis. This work has stemmed from earlier research focused on development of the tetrameric form of SFP, a biliverdin-binding lipocalin protein originally isolated from the mucus of the blue walleye fish, Sander vitreus. Monomeric variants of SFP (mSFPs) have been found to possess the same non-covalent, bili-binding characteristics of the tetramer but are one-quarter the size (~18.6kDa) and do not oligomerize. They are therefore anticipated to be more useful in a host of biotechnology applications. Like the tetrameric form, the mSFPs have a large stokes shift (375nm/675nm) and fluoresce in the far-red or near infrared region, which is advantageous for a wide range of applications including investigation of protein-protein interactions, spatial and temporal gene expression, assessing cell biology distribution and mobility, studying protein activity and protein interactions in vivo, as well as cancer research, immunology, and stem cell research and sub-cellular localization. In addition, the newly developed mSFP’s far-red fluorescence is particularly advantageous for in vivo, deep-tissue imaging.
(Dec 20, 2016) T150029WO01

Retinoic Acid: A New Treatment for Sleep Apnea and Hypopnea

UW–Madison researchers have developed a new method for treating sleep apnea and hypopnea with retinoic acid.

A patient can be given a retinoid or retinoic acid receptor agonist such as all-trans RA (ATRA), 13-cis RA (isotretinoin) or 9-cis RA (alitretinoin). These compounds target the mechanisms that cause sleep apnea in two ways. First, they increase the respiratory drive (urge to breathe). Additionally, they reduce the apneic threshold (the level of CO2 necessary for the induction of breath) to normal levels.
(Oct 13, 2016) P150330US02

Improved System for Stroke Therapy and Rehabilitation

UW-Madison researchers have developed an improved system for stroke therapy and rehabilitation.  This system collects movement intention signals from the brain in real-time via EEG and initiates functional electrical stimulation (FES) of the appropriate muscle(s) to assist the neurons in regrowing their connections from the brain to the muscles along the correct pathways.  Additional general sensory stimulation may be added to this therapy to further encourage proper neuron regrowth. 
(Oct 10, 2016) P09245US02

Building Framing System with Innovative Snap-in Track for Residential and Commercial Construction

An inventor who is an alumnus of UW-Fond du Lac has developed a building framing system for fast and easy construction of interior non-load-bearing walls. The unique design of the system allows a series of studs to be temporarily secured without fasteners, until sheetrock or other face material can be applied. The system does not need to be secured against sidewalls, and can accommodate both wood and metal studs, which can easily be removed and adjusted as needed. The system is flexible and can secure studs that vary in length by up to ½”. This technology offers a user-friendly tool for experienced construction professionals or for home improvement projects such as do-it-yourself basement finishing.
(Sep 28, 2016) T160038US01

Treatment of Fragile X Syndrome Using Nutlin-3

UW–Madison researchers have discovered that Nutlin-3, a candidate antitumor drug, and its derivatives may be useful for treating patients with FXS or other intellectual disability. This is the first time that Nutlin-3 has been shown to inhibit adult neural stem cell proliferation and rescue cognitive deficits in a FXS mouse model.

Nutlin-3 is a small molecule MDM2-p53 pathway inhibitor developed in 2004. The researchers use <10x dosage for FXS compared to the dosage used for cancer treatment.
(Sep 23, 2016) P150380US02

Boron- and Nitride-Containing Catalysts for Oxidative Dehydrogenation of Small Alkanes and Oxidative Coupling of Methane

UW–Madison researchers have developed improved ODH catalysts for converting short chain alkanes to desired olefins (e.g., propane to propene and ethene) with unprecedented selectivity (>90 percent).

The new catalysts contain boron and/or nitride and minimize unwanted byproducts including CO and CO2. They contain no precious metals, reduce the required temperature of the reaction and remain active for extended periods of time with no need for costly regenerative treatment.

In addition to driving ODH reactions, the new catalysts can be used to produce ethane or ethene via oxidative coupling of methane (OCM).
(Sep 9, 2016) P150387US02

Analogs of Diptoindonesin G for Breast Cancer Drug Development

UW–Madison researchers have synthesized analogs of Dip G that have shown a greater ability than the parent molecule to decrease ERα expression and stabilize ERβ in cultured breast cancer cells. The compounds are active for ameliorating, attenuating and halting the growth/metastasis of breast cancers.
(Sep 2, 2016) P170010US01

New Synthetic Ligand Strongly Inhibits RhlR Quorum Sensing Receptor

UW–Madison researchers have identified a non-natural small molecule (an acylated thiolactone) that may be the most potent RhlR inhibitor known (IC50= 31 µM in P. aeruginosa). Compared to the native ligand, the new compound can block receptor activity by 50 percent at less than fourfold higher concentration.
(Aug 17, 2016) P170029US01

Temperature Gradient Handling System for Surface Plasmon Resonance (SPR) Measurements

Researchers in the Department of Chemistry and Biochemistry at the University of Wisconsin-La Crosse have developed a surface plasmon resonance (SPR) based method for measuring, in a single experiment, the temperature dependence of binding kinetics for biomolecular interactions. The method is based on a novel sample handling system that generates a spatial temperature gradient across an SPR sensor and is label free.
(Aug 17, 2016) T150042US03

High Accuracy Angle Measuring Device for Industrial, Medical, Scientific or Recreational Use

A UW-Stout researcher has developed a high-accuracy angle measurement system that addresses the problems inherent to commercially available systems. In this novel device, a high accuracy rotary optical encoder is controlled by a microprocessor. The encoder consists of rotating optical disks and sensors that are precisely formed and placed to read angles with 0.001 arc second sensitivity (average) and better than ±0.1 arc second accuracy (single readings), which is comparable to the accuracy of the high-end commercial encoders currently on the market. This accuracy is maintained with strategies that combat the mechanical sources of error that are known disadvantages of other devices. The system can also be adjusted to compensate for any asymmetrical shifts that may occur. Mechanical sources of error and noise are further minimized by precision placement of disks and sensors, as well as low-friction reference points that keep components centered and level during rotation. In addition, multiple sensor heads eliminate major readout errors and remove the need for recalibration. All of these features and benefits are contained within a design that is both compact and portable. Beyond high accuracy and portability, the cost of this new angle measurement system is substantially lower than a high-end commercial system because it is easily constructed from readily available industrial grade components, bringing the production cost to roughly $2,000. Strikingly, this cost is comparable to the advertised price of other rotary position encoders that are less than one tenth as accurate. Its high accuracy, low cost, and portability make this new angle measurement system a strong option for use in virtually any of the current applications for absolute rotary encoders.
(Aug 8, 2016) T130018US02