Through Technologies

New Patents

Prioritized Data Mapping to Recover High Usefulness Data for Improved Wireless Communications

UW-Madison researchers have developed a wireless communication system with a physical transmitter that transmits symbols mapped to multiple bits under an encoding system that allows data in an incorrectly received symbol to be salvaged. This encoding system exploits predictable expectations in error rates of different bit positions of symbols to promote transmission of high usefulness data. By placing the high usefulness data preferentially in bit positions that have fewer errors, the likelihood that high usefulness data can be recovered even after symbol errors occur is increased. The system recovers data by harvesting a portion of the bits of erroneous symbols rather than discarding the bits.

The entire system consists of a transmitter, a prioritizer, an encoder and an interleaver. The wireless transmitter transmits the symbols. The prioritizer divides received multibit data units into categories of relatively high and low usefulness, and creates mixed multibit data units made up of high and low usefulness bits. The encoder maps the mixed multibit data units to symbols and provides the symbols to the transmitter for transmission. The interleaver and encoder work together to map high usefulness bits to positions within the symbols having lower data error rates.
(Feb 3, 2015) P100120US02

Sensitive Assay for Detecting Botulinum Neurotoxin, Neutralizing Antibodies or Inhibitors

UW-Madison researchers have developed a sensitive and specific method of detecting the presence or activity of botulinum neurotoxin, neutralizing antibodies to the toxin or inhibitors of botulinum toxin.  This method may provide a viable alternative to the mouse bioassay. 

To detect neutralizing antibodies or other inhibitors of botulinum toxin, the method involves exposing cultured neuronal cells to the toxin and a test sample.  The cells are incubated to allow active toxin to cleave an endogenous substrate.  Then the cells are harvested and probed to determine how much substrate was cleaved.  The more neutralizing antibodies or other inhibitors there are, the less cleavage is observed as compared to the control. 

To detect the presence of active neurotoxin, the cultured cells are exposed to a test sample and control samples with known amounts of toxin.  The amount of substrate cleavage can be evaluated to determine how much botulinum neurotoxin is present in the test sample as compared to the control samples.
(Jan 27, 2015) P07412US

Robust Biological and Chemical Detection Method and Microfluidic Device with Liquid Crystal Sensing Element

UW-Madison researchers have now developed an improved method for autonomously generating stabilized liquid crystal thin films and two microfluidic devices that employ the technique for detecting trace amounts of biological agents and chemical compounds.  The handheld microfluidic devices each contain a microchannel defined by grooved polymer materials sandwiched between glass substrates.  Priming the device involves filling the microchannel with liquid crystal material, which fills specific nickel-plated structures in the channel, and flushing the liquid crystals outside the container with the laminar flow of an aqueous solution.  This method allows for automatic formation and rapid regeneration of the stable aqueous/liquid crystal interface. 

In the presence of a target compound the orientation of the liquid crystals changes, altering optical properties of the liquid crystals through a phenomenon known as optical birefringence.  After the analyte has been introduced into the channel, a white light is passed through a first polarizing lens, the microfluidic device, and a second orthogonally oriented polarized lens.  The intensity of the light, determined by the degree of optical birefringence, is detected by a microscope to confirm the presence or absence of the specific target in the aqueous solution.

The microfluidic biological and chemical detection device with a liquid crystal sensing element allows for automatic formation of the sensing interface through its design and operation.  The device design also provides better control of the interaction between the aqueous target containing solution and liquid crystal region.  By providing a robust device and method, as well as reducing the need for advanced technical training, the improved detection apparatus will greatly enhance in-field applicability of biological and chemical sensor technologies.
(Jan 6, 2015) P09136US

Linear Programming for Practical, Real-Time Error Correction and Decoding

UW–Madison researchers have developed a decoder for LDPC codes, and other similar coding systems, that can be proven to converge and may be parallelized for high-speed processing.

The method provides an error correction circuit including a buffer memory for holding a received string of bits derived from a transmitted (or stored) string. A parity rule memory holds a set of parity rules for the transmitted string, with each rule describing a predefined intended relationship between a subset of the bits as originally transmitted. The buffer and parity rule memories communicate with an optimizer, which generates a corrected string of bits using a linear programming (LP) process.
(Dec 30, 2014) P120149US01

Improved Micellar Delivery System for Hydrophobic or Fluorophilic Drugs

UW-Madison researchers have created highly stable and biocompatible micelles for the delivery of hydrophobic or fluorinated therapeutic agents. These micelles are self-assembled from semi-fluorinated copolymers consisting of discrete hydrophilic, fluorophilic and hydrophobic domains. Specifically, the copolymers may include blocks of polyethylene glycol, fluorocarbon and phospholipid.

Encapsulating hydrophobic and/or fluorophilic compounds with these micelles provides enhanced solubilization, protection and stabilization as compared to conventional drug delivery methods. The fluorophilic block effectively seals the hydrophobic core, making the micelles and therapeutic agents more stable, and can be modified to selectively “tune” the release rate of the encapsulated compound.  
(Dec 2, 2014) P06151US

More Accurate Method for Generating Proton Therapy Treatment Planning Images

UW–Madison researchers have developed a method of preparing a treatment control sequence for proton radiation therapy involving a program and/or an electronic computer that receives patient data. This method greatly improves the accuracy of converting X-ray photon attenuation to proton stopping power from a conventional X-ray CT image by segmenting tissues into different tissue types and then converting each segment using conversion functions that are unique to each tissue type. The derived proton stopping power data is used to produce the treatment control sequence to accurately target the tumor and preserve healthy tissue.
(Nov 25, 2014) P110235US01

Purification of Beta Casein from Milk

UW-Madison researchers have developed a novel, low-cost separation protocol for removing functional beta-casein from milk without adding unwanted by-products. This process allows a significant amount of highly soluble beta-casein to be extracted from milk, while also improving the cheese-making properties of the milk. Beta-casein is separated from other milk serum components using non-ceramic, cross-flow polymeric microfiltration membranes to form a permeate enriched in beta-casein. Milk may be cooled prior to microfiltration to enhance the separation. Beta-casein is then easily purified from this enriched permeate through demineralization. Cheese formed using the milk partially depleted of beta-casein has enhanced meltability and reduced bitterness, while the purified beta-casein exhibits improved yield, purity and solubility; excellent foaming and emulsification properties; and is suitable for use as a food product additive.
(Nov 18, 2014) P05143US

Cranberry Variety Trade Named "Sundance," with Large Berry Size and Favorable Bud Set Traits

UW–Madison researchers have developed a new variety of cranberry with the trade name “Sundance.” This variety was developed through a cross of the “Stevens” cultivar and a seedling selection of “Ben Lear” that offers significantly improved traits over its “Ben Lear” parent. “Sundance” is superior to the predominant cranberry cultivar “Stevens” in fruit size, overall coloration, yield potential and flower bud set. Also, under high crop loads, “Sundance” tolerates high levels of fertilizer to improve yield and flower bud set without causing excessive vine growth. Researchers believe that the improved fruit quality of “Sundance,” specifically larger size and solid cell structure, will result in an improved variety for sweetened dried cranberry production.

Growers interested in this cranberry variety should license the variety from WARF and obtain vines from one of the approved propagators listed below. The license between WARF and the grower must be in place before vines can be obtained.
  • Cranberry Creek Cranberries Inc.
  • Dempze Cranberry Co.
(Nov 18, 2014) P100154US01

Crystallized Vitamin D Analogs “MET-1” and “MET-2”

UW–Madison researchers now have developed a method using either diethyl ether or a mixture of 2-propanol and hexane to crystallize MET-1 and MET-2. This efficient process removes most of the contaminants from the synthetic forms, resulting in a highly pure product.
(Nov 11, 2014) P120098US02

Gravity- and Pressure-Controlled Valve System for Controlling Cerebrospinal Fluid in the Ventricular System

UW–Madison researchers have developed a system that allows drainage of excess CSF and prevents CSF overdrainage. A key insight is that cardiac pulsations can be transmitted inside the shunt tubing, creating a pulsatile pressure wave that propagates down the tubing. When this pressure wave hits a pressure differential valve, it can force the valve open during the systolic phase of the pressure wave, pumping some CSF through the valve with each systolic phase. In this way, CSF can be pumped across a valve as long as the peak pressure within the shunt tubing exceeds the preset pressure differential threshold for that valve, even if the mean pressure is below that same threshold. Overdrainage then occurs. The improved system and valve design prevent slit ventricle syndrome by addressing both gravity siphon effects and cardiac pulsations.

The improved system consists of tubing that leads from the ventricular system into a valve system that has two arms, a forward flow arm and a return flow arm. A one-way low threshold pressure differential valve is located in the forward flow arm. CSF that passes this first valve can either exit the valve system through a one-way higher threshold exit valve that leads into the peritoneal cavity, or it can flow through the return flow arm via a one-way low threshold valve that returns CSF back to the inlet side of the valve system. By choosing appropriate pressure differentials for the three valves, one can bracket the pressures on the inlet side between a set minimum and maximum value. If the ICP rises above the set maximum, then CSF will flow through the inlet valve and out the exit valve. If the ICP drops below the set minimum, then CSF will flow through the return valve and back towards the inlet side of the valve system, thus preventing overdrainage. The high threshold pressure differential exit valve also incorporates a gravity compensation unit that negates the gravity siphoning effect, regardless of the orientation of the patient. Thus, the net effect is to allow for drainage of excess CSF while preventing overdrainage due to either the cardiac pulsation or gravity siphon effect.
(Nov 4, 2014) P110042US01