New Patents

Faster, Better Quality Medical Imaging by Constrained Reconstruction

UW–Madison researchers have developed a modified algorithm for medical image reconstruction that increases reconstruction speed, improves image quality and provides more accurate results. The algorithm constrains images to be consistent with a signal model, which relates image intensity values to free and control parameters such as relaxation time and multiple echo or inversion times, respectively.

The signal model may be analytical or approximate—learned from acquired image data, as is done in the case of time-resolved MRI. The model consistency condition may be enforced using an operator that projects an image estimate onto the space of all functions satisfying the signal model.
(Aug 30, 2016) P120280US01

Low-Profile, Ultrawide Band Antenna

UW–Madison researchers have developed an electrically small ultrawide band antenna that radiates in every direction like a monopole. The unique structure of the antenna relies on the placement and shape of the arms and slot. It is composed of a top-loaded, multifolded planar structure placed vertically on a ground plane. The structure is loaded with a top hat conductor that is short circuited to the ground plane at two locations.
(Aug 30, 2016) P130215US01

Combined Capacitor/Inductor Reduces Circuit Bulk

A UW–Madison researcher has designed a combination capacitor/inductor configured to share energy storage volumes, thereby significantly reducing the bulk of devices. In essence, the capacitor incorporates into its layers a material of high magnetic permeability (e.g., iron or an iron alloy laminated with a nonferrous metal) so that it may fit into the inductor coil in place of the normal core.
(Aug 23, 2016) P140216US01

Bacteria Modified to Secrete Biologically Active Protein for Large-Scale Production

UW–Madison researchers have discovered E. coli mutations that substantially increase the amount of biologically active, recombinant protein secreted from cells.  The mutations disrupt genes in a YebF-mediated protein secretion pathway.  Bacteria modified to contain these mutations are useful for the production of secreted proteins.  They can be used to produce proteins that might otherwise not be expressed due to toxicity or folding errors.  They also can be used to produce secreted complexes of enzymes such as cellulases and xylanases for the manufacture of cellulosic biofuels.
(Aug 9, 2016) P100362US02

Enhanced Traveling Wave Tube

UW–Madison researchers have designed a slow wave structure that can enhance the gain and output power of a TWT.

The modified slow wave structure has ports to receive and output amplified radiofrequency (RF) signals. It is made of two different materials that repeat at periodic intervals, e.g., the first material may be a vacuum and the second material may be a metal plate or wire mesh. The second material has a real part of permittivity that is negative and a real part of permeability that is positive at an operational frequency of the RF signal. An electron beam vacuum tube runs through the center of the slow wave structure.
(Aug 2, 2016) P140188US01

Devices and Methods for Immobilizing Liquid Crystal Droplets onto a Chemically Functionalized Substrate Surface

UW–Madison researchers have developed devices and methods for immobilizing micrometer-sized liquid domains such as liquid crystal or isotropic oil droplets on a variety of chemically-functionalized surfaces. A multifunctional polymer, which may be a polyamine, is adsorbed at the surface interface of the liquid crystal droplets. Then the droplets are immobilized by covalent bonding, electrostatic interactions or other interactions between the adsorbed polymer and the functionalized substrate surface. The immobilized droplets can be used, for example, in liquid crystal droplet-based sensing devices or devices engineered to possess optical band gaps.
(Jul 26, 2016) P100260US02

Optical System for Correction of Tissue-Induced Aberration

A UW-Madison researcher has developed a new mono-chromatic method of correcting for the optical distortion caused by intervening tissue. Variations in the optical properties of the tissue lead to aberrations in the wavefront of the beam of light from the microscope system. This method is based on a reflective correction of the wavefront error. A computer-generated reflection hologram is projected in real time via a micro-mirror array, which adjusts the phase of the light to produce the exact opposite of the wavefront errors expected from the sample. The two cancel each other out, producing images corrected for aberrations.
(Jul 19, 2016) P07259US

Low-Temperature Method for Smoothing the Disordered Edges of Graphene

UW–Madison researchers have discovered a technique that reduces the required temperatures for edge restructuring of graphene. With this technique, the disordered edges of the material can be smoothed and straightened at temperatures below 1000°C. Because this technique effectively repairs the disordered edges, the current method of top-down etching can still be used to create graphene.
(Jul 19, 2016) P110246US01

Gemini Surfactant LLC Membranes from Thiol-Ene Polymerizations

The researchers have now developed a new and highly efficient approach for synthesizing crosslinkable Gemini surfactants that can be turned into membranes featuring the desired gyroid morphology.

In the new method, an LLC structure is formed from a mixture containing the functionalized surfactants, a thiol-ene crosslinking agent and a polar solvent. Upon crosslinking, the lyotropic phase morphology is substantially retained.
(Jul 19, 2016) P150015US01

Automated Evaluation of Ultrasonic Elasticity Images

UW-Madison researchers have developed a novel quantitative method for automatically evaluating the quality of images used in ultrasonic elasticity imaging. The method uses an empirical equation to combine different types of image quality measurements into a single quantitative descriptor of overall performance. For an operator manually deforming tissue, it may be used to provide a real-time corrective signal to improve the quality of the data acquired. It may also be used to automatically select images for averaging or animation.
(Jul 12, 2016) P04300US