Through Technologies

New Patents

Multidimensional Imaging with Improved Contrast

UW–Madison researchers have developed a new coherent multidimensional spectroscopy (CMDS) technique that enhances the image contrast by using multiple frequencies that provide 3-D contrast. The method uses three coherent light pulses (intense light beams) with three different frequencies to interact with multiple functionalities within the molecules (e.g., C-H bonds) to create coherent images that are highly characteristic of specific molecules within sample substructures.
(Feb 23, 2016) P140021US02

SuperTag Cache for Energy-Optimized Compression

UW–Madison researchers have developed a compressed cache, called SuperTag, which exploits spatial locality to optimize compression effectiveness and energy use.

SuperTag cache manages cache at three granularities: ‘super blocks,’ single blocks and fractional data segments. Since contiguous blocks have the same tag address, SuperTag increases per-block tag space by tracking super blocks (for example, a group of four aligned contiguous blocks of 64 bytes each). It also breaks each cache block into smaller data segments for storage.

To improve compression ratio, the technique uses a variable-packing scheme allowing variable-size compression blocks without costly compaction. It also co-compresses contiguous blocks, including within the same super block, thereby producing data segments for storage.
(Feb 16, 2016) P130076US01

Dynamic Predictor Improves Machine Control

The researcher now has developed a new dynamic predictor that rapidly and accurately calculates the motion trajectory of a system that is only partially constrained by joint inputs. This dynamic predictor achieves stable and accurate results for stiff systems. To do this, the predictor applies conditions achieving such results at both a first and second joint position at the start and end of a motion time step.

More specifically, the relationship between joints is described as a differential equation to be solved by the predictor. The predictor parameterizes the motion of the unconstrained joints in such a way as to match the conditions the solution needs to satisfy at both the start and end of a motion time step. As this parameterization is expressed by polynomial coefficients, motions of the remaining joints are readily determined by the kinematic predictor.
(Feb 16, 2016) P130307US01

High Titer Recombinant Influenza Viruses for Vaccines

UW-Madison researchers have developed an improved reassortant virus for use in producing high levels of the H5N1 avian influenza strain, as well as seasonal influenza strains. They discovered that using the NA segment from a “harmless” strain that grows well in eggs resulted in significantly greater amounts of infectious virus in eggs or cell lines. The inventors found that using a different isolate of this strain as a source for the other six viral segments also improves yield.
(Feb 9, 2016) P06370US

Coatings That Inhibit Crystallization of Amorphous Drugs to Improve Stability

UW-Madison researchers have developed a method of coating amorphous drugs to inhibit surface crystallization and improve their stability.  An ultra thin polyelectrolyte coating or other biocompatible immobilizing material is applied to the surface of an amorphous solid.  This coating allows amorphous pharmaceuticals to maintain their amorphous state, and therefore their solubility, over extended periods of time. 
(Feb 9, 2016) P07314US

New Amphiphiles for Manipulating Membrane Proteins

UW–Madison researchers have developed improved amphiphiles for solubilizing, isolating and characterizing membrane proteins. They can be prepared from cholic acid, deoxycholic acid and lithocholic acid, which are steroids found in bile.

The new amphiphiles, called CAO, DCAO and LCAO, are effective in challenging biochemical systems, such as extraction of delicate photosynthetic superassemblies from native lipid bilayers.
(Feb 9, 2016) P09028US02

Computer Architecture Enables Simplified Recovery from Speculative Execution Errors without Checkpoints

UW–Madison researchers have developed a simplified processor that can recover from mis-speculation or execution of other erroneous instructions without maintaining or reloading a conventional checkpoint. The processor simply re-executes from the start of a block of instructions that includes the erroneous instructions. This is possible by constructing programs in terms of consecutive idempotent regions, which produce the same results even when executed repeatedly, and limiting speculation to occur in those regions. The ability to recognize (at compile-time) and exploit idempotent regions eliminates much of the circuitry and energy consumption needed to recover from mis-speculation or hardware failure.
(Jan 26, 2016) P110133US01

Preparing HMF from Biomass in Polar Aprotic Solvents

UW–Madison researchers have developed a method to prepare HMF from biomass under mild reaction conditions without the presence of water. The reaction can use any polar aprotic solvent (e.g., tetrahydrofuran). Yields are on par with those obtained using ionic liquids.

The reaction requires mild mineral acids and moderate temperatures (about 200 degrees C). In the process, cellulose decomposes to levoglucosan, which is then dehydrated to HMF. Glucose, levulinic acid and formic acid also are produced as a result of side reactions. HMF and the byproducts can be separated from the solvent using conventional methods like distillation and evaporation.
(Jan 26, 2016) P140138US01

Improving Drug Delivery with Boronic Acids

UW–Madison researchers have developed methods for boronating cargo molecules to mediate their entry into mammalian cells via the glycocalyx. ‘Cargo’ molecules include drugs, proteins, labels, amino acids or any other desired molecule.

Boronation methods include ligating, crosslinking or otherwise bonding phenylboronic acids/oligopeptides to the cargo molecule. It is believed that the boronates undergo complexation with glycans on the cell surface. This facilitates the molecule’s entry into cell endosomes, where the cargo is released by enzyme action.
(Jan 12, 2016) P110315US02