New Patents

Nanopore Antennas for Ultrahigh Speed DNA Sequencing

Building on their work, the researchers have now developed metallic nanopores for ultrahigh speed molecule sequencing. The new nanopores are electrically conductive and function as antennas, transmitting radiofrequency signals with utmost precision.

Unlike competing technology, the nanopores feature both genetically and electrically engineered components. They can be constructed of DNA attached with metal particles to enhance electromagnetic wave reception. This is achieved by replacing the side chains of the DNA molecule with sulfur groups that in turn link to gold particles. Metalized DNA strands or ‘arms’ can be added to increase antenna size and tune polarization.
(Nov 8, 2016) P140109US01

Strain-Tunable Light Emitting Diodes Using Germanium

UW–Madison researchers have developed new tunable LEDs with germanium PIN heterojunctions. The diodes are made of an undoped (intrinsic) Ge layer between p-type and n-type doped Ge layers. The nano-thin structure can be epitaxially grown and then transferred to a flexible substrate.

Once bonded to the flexible substrate, the whole structure is stretched, causing biaxial tensile strain. Given sufficient strain, the Ge is transformed into a direct-bandgap semiconductor. When voltage is applied, radiation is emitted via electroluminescence. The wavelengths of the emitted radiation can be tuned by adjusting the amount of stretch (i.e., the amount of tensile strain) that is applied.
(Oct 18, 2016) P140041US01

SIgA Protein as Heath Supplement for Animals, Humans

UW–Madison researchers have developed a method for producing large quantities of animal- and human-grade sIgA. The protein is isolated from the intestinal fluid/lining of swine or cows, enriched and purified. The process is similar to how heparin, the common anticoagulant, is produced. The two processes can be paired to save costs.
(Oct 4, 2016) P120329US01

Compound to Protect Against Radiation Exposure

A UW–Madison researcher has developed a new family of aminothiol molecules that could prevent tumor formation or DNA damage due to radiation exposure. The well-studied prototype molecule is called PrC-210. It has been demonstrated to suppress CT scan X-ray-induced DNA damage in human blood cells to background. This would likely also suppress cancers resulting from diagnostic radiation to background. Importantly, the new drug lacks both of the severe side effects (nausea/emesis and hypotension/fainting) that preclude the use of amifostine.

The new molecules’ radioprotective properties arise from the combination of a reactive oxygen species (ROS)-scavenging thiol group and a positively charged alkyl-amine backbone that allows the molecule to “hover” around the negatively-charged DNA backbone in cells where the thiol can then capture ROS before they attack DNA.

A decade of research, multiple peer-reviewed publications, both issued and pending patent claims, and more than $2.5 million in research support has gone into PrC-210 development to date.
(Oct 4, 2016) P120378US03

Vitamin D Compounds for the Treatment of Ocular Hypertension

UW–Madison researchers have developed a method of treating OHT by administering a vitamin D analog.  The vitamin D compound can be applied topically to one or both of an individual’s eyes to reduce IOP.
(Sep 27, 2016) P06288US

Long-Lasting, Non-Narcotic Protein for Treatment of Acute or Chronic Pain

UW–Madison researchers have developed a chimeric protein that may be used to treat acute or chronic pain. The protein consists of a peptide ligand that specifically targets neurons involved in pain processing and a botulinum toxin light chain protein that blocks the release of neurotransmitters that cause pain. The therapeutic could be delivered through the spine to result in long-lasting, stable and reversible regulation of pain.
(Sep 20, 2016) P130093US02

Transgenic Lignin Easier to Break Down for Biofuel

UW–Madison researchers and others have developed methods to genetically alter the structure of plant lignin to be less resistant to chemical (mostly alkaline) degradation.

They have identified and isolated nucleic acids from the Angelica sinensis plant that encode feruloyl-CoA:monolignol transferase. This enzyme produces lignin rich in CAFA and similar chemicals, and thus contains ester bonds that cleave under relatively mild conditions.

Plant cells can be modified to contain the enzyme gene sequence using standard genetic techniques. Whole plants (and their seeds) then can be generated from these cells.
(Sep 13, 2016) P100281US02

Crosslinkable Gemini Dicarboxylate Surfactant LLCs and Their Membranes

UW–Madison researchers have built on their previous work to efficiently synthesize crosslinkable Gemini surfactants that adopt bicontinuous cubic phases, including the gyroid phase. By incorporation of a photoinitiator into the hydrophobic domains of the LLC, the assembly can be crosslinked with retention of the gyroid structure.
(Sep 13, 2016) P120048US02

Powering Devices with Piezoelectric ‘Sponge’

UW–Madison researchers have developed a thin piezoelectric film that converts ambient vibrations into electrical energy and can be directly integrated onto the surface of a device.

The film is made by dispersing metal oxide or other nanoparticles into a solution of a piezoelectrically active polymer like PVDF (polyvinylidene fluoride). The solution is allowed to dry into a sponge-like layer. The nanoparticles then are etched away or otherwise removed. This leaves a finely porous matrix that can be sandwiched between electrodes to create a nanogenerator.
(Sep 13, 2016) P130228US01

Monitoring Tumor Ablation in Real Time

UW–Madison researchers have developed a method that uses radiofrequency signals transmitted from a microwave ablation probe to monitor the boundaries between a tumor, ablation zone and background healthy tissue.

The probe emits and then detects the signals as they echo off the different tissue boundaries. Since the boundary between a tumor and background tissue becomes less distinct as the ablation progresses, clinicians can determine when treatment is complete based on these echoes.
(Sep 13, 2016) P130294US01