Through Technologies

New Patents

Managing Virtual Memory to Reduce Latency

UW–Madison researchers have developed a hybrid system to manage virtual memory and reduce access latency.

The system allows some data accesses via conventional TLB/page table lookups. Other data accesses use a bypass circuit and calculate a physical address, for example, by adding an offset value to the virtual address, rather than performing a lookup. The bypass circuit is able to detect a subset of virtual addresses and translate them to physical addresses according to a stored offset between pairs.
(Oct 13, 2015) P130081US01

X-Ray Phase Contrast Imaging Using Standard Equipment

A UW–Madison researcher has developed a method for generating X-ray phase contrast images from conventional X-ray attenuation data.

First, calibration factors are obtained using a phantom. The patient or object then is X-rayed to acquire attenuation data at two different energy levels. Images are reconstructed at the different energy levels to produce spatial maps. Based on the calibration factors and spatial maps, a phase contrast image can be produced.
(Oct 13, 2015) P130340US01

New Treatment for Restenosis

UW–Madison researchers have developed an anti-restenosis formula made of insulin and connective tissue growth factor (CTGF). CTGF is a large protein known to help grow and remodel smooth vessel muscle after damage. The combination of CTGF and insulin increases levels of elastic collagen (type III) to promote healthy healing. The composition can be applied as an external wrap at the site of surgery.
(Sep 15, 2015) P120330US02

An Enhanced Method of Embedding Thin Film Sensors

A UW-Madison researcher has developed an improved method to embed microsensors into a wide array of metallic and ceramic materials of various dimensions through a unique combination of standard microfabrication and diffusion bonding techniques.

The thin film sensor is produced using photolithography, lift-off etching and other microfabrication techniques. Then the microsensor is positioned between a base part and a cover piece that can be joined together by diffusion bonding. This process takes place in a protective atmosphere or vacuum. The surface of the cover piece is polished before bonding to avoid damaging the thin films and to reduce local pressures during bonding. The bonding surfaces may contain an interlayer to improve bond quality and/or reduce required bonding temperature, particularly when bonding ceramic to ceramic and ceramic to metal.

After bonding, the finished structure acts as a single functional component with the ability for the bonded area to possess a mechanical strength equal or close to the base material. Subsequently, sensors consisting of a stack of thin films are fabricated on the bonded material, layer by layer, in a clean-room environment by standard thin film deposition and patterning techniques. This approach is capable of joining both small and large components composed of similar or dissimilar material combinations of various alloys and ceramics, thus expanding the applications for embedding sensors.
(Sep 8, 2015) P07193US

Precision Densitometer for Radiosensitive Film

UW–Madison researchers have developed a radiosensitive film densitometer that reduces light scattering and heat problems often encountered during scanning.

The device provides ‘point-to-point’ scanning in which the laser source and detector are moved in tandem over the film. The detector measures the light that is transmitted through the film at different locations and provides a signal at each location. A set of density values based on these signals then is output.

The film is supported in a holder only at its edges to remove scattering and interference caused by the glass support bed. Highly repeatable 25 micrometer resolution density measurements may be obtained.
(Sep 8, 2015) P120265US01

New Rheometer and Method for Efficiently Measuring Yield Stress in Biomass

UW–Madison researchers have developed a device and a method for measuring rheological properties of fluid that will effectively determine the yield stress of biomass materials. These measurements do not alter the material sample prior to measurement, allowing for more accurate data results and characterization.

The device comprises a cavity for receiving the fluid, an auger connected with an axial shaft, and a load cell sensor connected to the auger. The sensor measures the force on the auger from the fluid as the auger moves up and down. A linkage interconnected to the sensor translates motion to the auger.
(Aug 25, 2015) P110311US01

Semiconductor Interconnect Design for Small, Inexpensive, Integrated Current Sensing with Improved Reliability

UW–Madison researchers have developed a design for integrated current sensing that is comprised of semiconductor interconnects with a loop configuration, instead of a straight bar, and point magnetic field detectors specially located to detect current flowing in the interconnect from DC to high frequency (MHz). Giant magnetoresistive (GMR) detectors serve as these point-field detectors.
(Aug 25, 2015) P120254US01

New Surface-Modifying Film for BCP Formation

UW–Madison researchers have developed new surface-modifying layers made of crosslinked copolymer film. More specifically, the film is composed of styrene, (meth)acrylate and crosslinkable epoxy group-functionalized monomers.

Various styrene-containing BCPs can be deposited on top of the film and then subjected to conditions that cause them to self-assemble into vertically oriented domains.
(Aug 25, 2015) P130124US01

Nanoparticles That Target Dendritic Cells

UW-Madison researchers have developed a system for delivering vaccines and other biomolecules to dendritic cells. This system includes carbon nanoparticles that are preferentially taken up by dendritic cells, rather than macrophages.

Antigens, dendritic cell-targeting antibodies and dendritic cell-activating substances may be attached to the nanoparticles. The antigens are capable of inducing a specific T-cell response and can be associated with infectious disease or a tumor. When delivered to dendritic cells, these nanoparticles enhance immune response.

Other biomolecules, including targeting compounds, therapeutic agents and detectable labels, can be attached to the nanoparticles as well. Targeting compounds may be attached to enhance the uptake of the nanoparticles by dendritic cells. To treat autoimmune diseases, a cytotoxic agent could be attached to the nanoparticles to selectively target and kill aberrant dendritic cells. Fluorescent or radioactive labels could be added to make it easier to isolate dendritic cells. 
(Aug 18, 2015) P07026US

Improved Production of Influenza Virus, Including H1N1, for Vaccine Manufacture

UW-Madison researchers have identified a single point mutation in the haemagglutinin (HA) gene of the H1N1 virus that enhances viral titer.  Introducing the mutation into vaccine seed viruses could lead to higher titer production of the viruses, improving vaccine manufacture.
(Aug 18, 2015) P100078US02