ABSTRACT

The invention provides a composition useful to prepare high titer influenza viruses, e.g., in the absence of helper virus, which includes a sequence from a high titer influenza virus isolate.

32 Claims, 4 Drawing Sheets
OTHER PUBLICATIONS

* cited by examiner
A. RNP Transfection Method

Protein purification

NP + P

RNP

RNP transfection

Helper virus infection

\(\text{vRNA} \)

B. RNA Pol I Method

in vitro transcription

\(\text{cDNA} \)

Pol I promoter

Pol I Terminator

Plasmid transfection

\(\text{vRNA} \)

Fig. 1
Fig. 2
Plasmids expressing influenza vRNA

Plasmids expressing influenza viral proteins

Fig. 3
H5N1-PR8

A/PR/8/34 (H1N1)

$10^{10} \text{EID}_{50}/\text{ml}$

HA titer: 1:3,200

$10^{10} \text{EID}_{50}/\text{ml}$

HA titer: 1:8,000
HIGH TITER RECOMBINANT INFLUENZA VIRUSES FOR VACCINES AND GENE THERAPY

CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit under 35 U.S.C. §119(e) of the filing date of U.S. application Ser. No. 60/473, 798, filed May 28, 2003, the disclosure of which is incorporated by reference herein.

STATEMENT OF GOVERNMENT RIGHTS

This invention was made with a grant from the Government of the United States of America (grant AI-47446 from the National Institute of Allergy and Infectious Diseases Public Health Service). The Government may have certain rights in the invention.

BACKGROUND OF THE INVENTION

Negative-sense RNA viruses are classified into seven families (Rhabdoviridae, Paramyxoviridae, Filoviridae, Bornaviridae, Orthomyxoviridae, Bunyaviridae, and Arenaviridae) which include common human pathogens, such as respiratory syncytial virus, influenza virus, measles virus, and Ebola virus, as well as animal viruses with major economic impact on the poultry and cattle industries (e.g., Newcastle disease virus and Rinderpest virus). The first four families are characterized by nonsegmented genomes, while the latter three have genomes comprised of six-to-eight, three, or two negative-sense RNA segments, respectively. The common feature of negative-sense RNA viruses is the negative polarity of their RNA genome; i.e., the viral RNA (vRNA) is complementary to mRNA and therefore is not infectious by itself. In order to initiate viral transcription and replication, the vRNA has to be transcribed into a plus-sense mRNA or cRNA, respectively, by the viral polymerase complex and the nucleoprotein; for influenza A viruses, the viral polymerase complex is comprised of the three polymerase proteins PB2, PB1, and PA. During viral replication, cRNA serves as a template for the synthesis of new vRNA molecules. For all negative-stranded RNA viruses, non-coding regions at both the 5' and 3' termini of the vRNA and cRNA are critical for transcription and replication of the viral genome. Unlike cellular or viral mRNA transcripts, both cRNA and vRNA are neither capped nor polyadenylated at the 5' and/or 3' ends.

The basic functions of many viral proteins have been elucidated biochemically and/or in the context of viral infection. However, reverse genetics systems have dramatically increased our knowledge of negative-stranded segmented and non-segmented RNA viruses with respect to their viral replication and pathogenicity, as well as to the development of live attenuated virus vaccines. Reverse genetics, as the term is defined in molecular virology, is the generation of negative-stranded RNA viruses entirely from cloned cDNAs (Fodor et al., 1999; Neumann and Kawaoka, 1999). RNA polymerase I, a nucleolar enzyme, synthesizes ribosomal RNA which, like influenza virus RNA, does not contain 5' cap or 3' polyA structures. The RNA polymerase I transcription of a construct containing an influenza viral cDNA, flanked by RNA polymerase I promoter and terminator sequences, resulted in influenza vRNA synthesis (Fodor et al., 1999; Neumann and Kawaoka, 1999; Neumann and Kawaoka, 2001; Pekosz et al., 1999). The system was highly efficient, producing more than 10^9 infectious virus particles per ml of supernatant of plasmid-transfected cells 48 hours post-transfection.

What is needed is a method to prepare high titer orthomyxoviruses such as influenza A virus, entirely from cloned cDNAs.

SUMMARY OF THE INVENTION

The invention provides a method to prepare high titer orthomyxoviruses such as influenza A virus, entirely from cloned cDNAs, with recombinant vaccinia virus, which provided T7 RNA polymerase, resulted in the generation of infectious rabies virus. In this T7 polymerase system, the primary transcription of the full length cRNA under control of the T7 RNA polymerase resulted in a non-capped cRNA transcript. However, three guanidine nucleotides, which form the optimal initiation sequence for T7 RNA polymerase, were attached to the 5' end. In order to create an authentic 3' end of the cRNA transcript which is essential for a productive infective cycle, the hepatitis delta ribozyme (HDV Rz) sequence was used for exact autocatalytic cleavage at the 3' end of the cRNA transcript.

Since the initial report by Schnell et al. (1994), reverse genetics systems using similar techniques led to the generation of many non-segmented negative strand RNA viruses (Conzelmann, 1996; Conzelmann, 1998; Conzelmann et al., 1996; Marriott et al., 1999; Munoz et al., 2000; Nagai, 1999; Neumann et al., 2002; Roberts et al., 1998; Rose, 1996). Refined versions of the original rescue procedure included the expression of T7 RNA polymerase from stably transfected cell lines (Radecke et al., 1996) or from protein expression plasmids (Lawson et al., 1995), or heat shock procedures to increase rescue efficiencies (Parks et al., 1999). Based on the T7 polymerase system, Bridgen and Elliott (1996) created Bunyamwera virus (family Bunyaviridae) from cloned cDNAs and demonstrated the feasibility of artificially generating a segmented negative-sense RNA virus by the T7 polymerase system.

In 1999, a plasmid-based reverse genetics technique was generated based on the cellular RNA polymerase I for the generation of segmented influenza A virus entirely from cloned cDNAs (Fodor et al., 1999; Neumann and Kawaoka, 1999). RNA polymerase I, a nuclear enzyme, synthesizes ribosomal RNA which, like influenza virus RNA, does not contain 5' cap or 3' polyA structures. The RNA polymerase I transcription of a construct containing an influenza viral cDNA, flanked by RNA polymerase I promoter and terminator sequences, resulted in influenza vRNA synthesis (Fodor et al., 1999; Neumann and Kawaoka, 1999; Neumann and Kawaoka, 2001; Pekosz et al., 1999). The system was highly efficient, producing more than 10^9 infectious virus particles per ml of supernatant of plasmid-transfected cells 48 hours post-transfection.

What is needed is a method to prepare high titer orthomyxoviruses such as influenza A virus, entirely from cloned cDNAs.
The invention also provides at least one of the following: a vector comprising a promoter operably linked to an influenza virus PB2 cDNA linked to a transcription termination sequence, a vector comprising a promoter operably linked to an influenza virus HA cDNA linked to a transcription termination sequence, a vector comprising a promoter operably linked to an influenza virus NP cDNA linked to a transcription termination sequence, a vector comprising a promoter operably linked to an influenza virus NA cDNA linked to a transcription termination sequence, a vector comprising a promoter operably linked to an influenza virus NS cDNA linked to a transcription termination sequence, wherein at least one vector comprises sequences encoding HA, NA, PB1, PB2, PA, NP, M, NS, or a portion thereof, having substantially the same activity as a corresponding polypeptide encoded by one of SEQ ID NOs:1-8, e.g., a sequence encoding a polypeptide with at least 80% amino acid identity to a polypeptide encoded by one of SEQ ID NOs:1-8. Optionally, two vectors may be employed in place of the vector comprising a promoter operably linked to an influenza virus M cDNA linked to a transcription termination sequence, e.g., a vector comprising a promoter operably linked to an influenza virus M1 cDNA linked to a transcription termination sequence and a vector comprising a promoter operably linked to an influenza virus M2 cDNA linked to a transcription termination sequence.

The invention provides isolated and purified vectors or plasmids, which express or encode influenza virus proteins, or express or encode influenza virus, both native and recombinant virus. Preferably, the vectors comprise influenza cDNA, e.g., influenza A (e.g., any influenza A gene including any of the 15 HA or 9 NA subtypes), B or C DNA (see Chapters 45 and 46 of Fields Virology (Fields et al. (eds.), Lippincott-Raven Publ., Philadelphia, Pa. (1996), which are specifically incorporated by reference herein), although it is envisioned that the gene(s) of a virus organism may be employed in the vectors or methods of the invention. The cDNA may be in the sense or antisense orientation relative to the promoter. Thus, a vector of the invention may encode an influenza virus protein (sense) or vRNA (antisense). Any suitable promoter or transcription termination sequence may be employed to express a protein or peptide, e.g., a viral protein or peptide, a protein or peptide of a nonviral pathogen, or a therapeutic protein or peptide.

The invention provides a composition comprising a plurality of influenza virus vectors of the invention. In one embodiment of the invention, the composition comprises: a) at least two vectors selected from a vector comprising a promoter operably linked to an influenza virus PA cDNA linked to a transcription termination sequence, a vector comprising a promoter operably linked to an influenza virus PB1 cDNA linked to a transcription termination sequence, a vector comprising a promoter operably linked to an influenza virus PB2 cDNA linked to a transcription termination sequence, a vector comprising a promoter operably linked to an influenza virus HA cDNA linked to a transcription termination sequence, a vector comprising a promoter operably linked to an influenza virus NP cDNA linked to a transcription termination sequence, a vector comprising a promoter operably linked to an influenza virus NA cDNA linked to a transcription termination sequence, a vector comprising a promoter operably linked to an influenza virus NS cDNA linked to a transcription termination sequence, and a vector comprising a promoter operably linked to an influenza virus M cDNA linked to a transcription termination sequence, wherein at least one vector comprises a promoter operably linked to a nucleic acid molecule of the
invention linked to a transcription termination sequence; and b) at least two vectors selected from a vector encoding influenza virus PA, a vector encoding influenza virus PB1, a vector encoding influenza virus PB2, and a vector encoding influenza virus NP. Optionally, the vectors of b) include one or more vectors encoding NP, NS, M, e.g., M1 and M2, HA or NA. Preferably, the vectors encoding viral proteins further comprise a transcription termination sequence.

In another embodiment, the composition comprises: a) at least two vectors selected from a vector comprising a promoter operably linked to an influenza virus PA cDNA linked to a transcription termination sequence, a vector comprising a promoter operably linked to an influenza virus PB1 cDNA linked to a transcription termination sequence, a vector comprising a promoter operably linked to an influenza virus PB2 cDNA linked to a transcription termination sequence, a vector comprising a promoter operably linked to an influenza virus HA cDNA linked to a transcription termination sequence, a vector comprising a promoter operably linked to an influenza virus NP cDNA linked to a transcription termination sequence, a vector comprising a promoter operably linked to an influenza virus NA and NB cDNA linked to a transcription termination sequence, a vector comprising a promoter operably linked to an influenza virus M cDNA linked to a transcription termination sequence, a vector comprising a promoter operably linked to an influenza virus BM2 cDNA operably linked to a transcription sequence, wherein at least one vector comprises a promoter operably linked to a nucleic acid molecule of the invention linked to a transcription termination sequence; and b) at least two vectors selected from a vector encoding influenza virus PA, a vector encoding influenza virus PB1, a vector encoding influenza virus PB2, and a vector encoding influenza virus NP. Optionally, the vectors of b) include one or more vectors encoding NP, NS, M, HA or NA. Preferably, the vectors encoding viral proteins further comprise a transcription termination sequence.

A composition of the invention may also comprise a gene or open reading frame of interest, e.g., a foreign gene encoding an immunogenic peptide or protein useful as a vaccine. Thus, another embodiment of the invention comprises a composition of the invention as described above in which one of the vectors is replaced with, or the composition further comprises, a vector comprising a promoter linked to a desired nucleic acid sequence, e.g., a desired cDNA, linked to 3' influenza virus sequences optionally including 3' influenza virus coding sequences or a portion thereof, linked to a desired nucleic acid sequence, e.g., a desired cDNA, linked to 3' influenza virus sequences optionally including 3' influenza virus coding sequences or a portion thereof, linked to a desired nucleic acid sequence, e.g., a desired cDNA, linked to 3' influenza virus sequences optionally including 3' influenza virus coding sequences or a portion thereof, linked to a transcription termination sequence. Preferably, the desired nucleic acid sequence such as a cDNA is in an antisense orientation. The introduction of such a composition to a host cell permissive for influenza virus replication results in recombinant virus comprising vRNA corresponding to sequences of the vector. The promoter in such a vector for vRNA production may be a RNA polymerase I promoter, a RNA polymerase II promoter, a RNA polymerase III promoter, a T7 promoter, or a T3 promoter, and optionally the vector comprises a transcription termination sequence such as a RNA polymerase I transcription termination sequence, a RNA polymerase II transcription termination sequence, a RNA polymerase III transcription termination sequence, or a ribozyme. In one embodiment, the vector comprising the desired nucleic acid sequence comprises a cDNA of interest. The cDNA of interest, whether in a vector for vRNA or protein production, may encode an immunogenic epitope, such as an epitope useful in a cancer therapy or vaccine, or a peptide or polypeptide useful in gene therapy. When preparing virus, the vector or plasmid comprising the gene or cDNA of interest may substitute for a vector or plasmid for an influenza viral gene or may be in addition to vectors or plasmids for all influenza viral genes.

A plurality of the vectors of the invention may be physically linked or each vector may be present on an individual plasmid or other, e.g., linear, nucleic acid delivery vehicle.

The promoter or transcription termination sequence in a vRNA or virus protein expression vector may be the same or different relative to the promoter or any other vector. Preferably, the vector or plasmid which expresses influenza vRNA comprises a promoter suitable for expression in at least one particular host cell, e.g., avian or mammalian host cells such as canine, feline, equine, bovine, ovine, or primate cells including human cells, or preferably, for expression in more than one host.

In one embodiment, one or more vectors for vRNA production comprise a promoter including, but not limited to, a RNA polymerase I promoter, e.g., a human RNA polymerase I promoter, a RNA polymerase II promoter, a RNA polymerase III promoter, a T7 promoter, or a T3 promoter. Preferred transcription termination sequences for the vRNA vectors include, but are not limited to, a RNA polymerase I transcription termination sequence, a RNA polymerase II transcription termination sequence, a RNA polymerase III transcription termination sequence, or a ribozyme. Ribozymes within the scope of the invention include, but are not limited to, tetrahymena ribozymes, RNase P, hammerhead ribozymes, hairpin ribozymes, hepatitis ribozyme, as well as synthetic ribozymes.

In one embodiment, at least one vector for vRNA comprises a RNA polymerase II promoter linked to a ribozyme sequence linked to viral coding sequences linked to another ribozyme sequences, optionally linked to a RNA polymerase II transcription termination sequence. In one embodiment, at least 2 and preferably more, e.g., 3, 4, 5, 6, 7 or 8, vectors for vRNA production comprise a RNA polymerase II promoter, a first ribozyme sequence, which is 5' to a sequence corresponding to viral sequences including viral coding sequences, which is 5' to a second ribozyme sequence, which is 5' to a transcription termination sequence. Each RNA polymerase II promoter in each vRNA vector may be the same or different as the RNA polymerase II promoter in any other vRNA vector. Similarly, each ribozyme sequence in each vRNA vector may be the same or different as the ribozyme sequences in any other vRNA vector. In one embodiment, the ribozyme sequences in a single vector are not the same.

The invention also provides a method to prepare influenza virus. The method comprises contacting a cell with a plurality of the vectors of the invention, e.g., sequentially or simultaneously, for example, employing a composition of the invention, in an amount effective to yield infectious influenza virus. The invention also includes isolating virus from a cell contacted with the composition. Thus, the invention further provides isolated virus, as well as a host cell contacted with the composition or virus of the invention. In another embodiment, the invention includes contacting the cell with one or more vectors, either vRNA or protein production vectors, prior to other vectors, either vRNA or protein production vectors.

The method of the invention allows easy manipulation of influenza viruses, e.g., by the introduction of attenuating mutations into the viral genome. Further, because influenza viruses induce strong humoral and cellular immunity, the invention greatly enhances these viruses as vaccine vectors, particularly in view of the availability of natural variants of
the viruses, which may be employed sequentially, allowing repetitive use for gene therapy.

The methods of producing virus described herein, which do not require helper virus infection, are useful in viral mutagenesis studies, and in the production of vaccines (e.g., for AIDS, influenza, hepatitis B, hepatitis C, rhinovirus, filoviruses, malaria, herpes, and foot and mouth disease) and gene therapy vectors (e.g., for cancer, AIDS, adenosine deaminase, muscular dystrophy, ornithine transcarbamylase deficiency and central nervous system tumors). Thus, a virus for use in medical therapy (e.g., for a vaccine or gene therapy) is provided.

The invention also provides a method to immunize an individual against a pathogen, e.g., a bacteria, virus, or parasite, or a malignant tumor. The method comprises administering to the individual an amount of at least one isolated virus of the invention, optionally in combination with an adjuvant, effective to immunize the individual. The virus comprises vRNA comprising a polypeptide encoded by the pathogen or a tumor-specific polypeptide.

Also provided is a method to augment or increase the expression of an endogenous protein in a mammal having an indication or disease characterized by a decreased amount or a lack of the endogenous protein. The method comprises administering to the mammal an amount of an isolated virus of the invention effective to augment or increase the amount of the endogenous protein in the mammal. Preferably, the mammal is a human.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1. Schematic diagram of established reverse genetics systems. In the RNP transfection method (A), purified NP and polymerase proteins are assembled into RNPs with use of in vitro-synthesized vRNA. Cells are transfected with RNPs, followed by helper virus infection. In the RNA polymerase I method (B), a plasmid containing the RNA polymerase I promoter, a cDNA encoding the vRNA to be rescued, and the RNA polymerase I terminators is transfected into cells. Intracellular transcription by RNA polymerase I yields synthetic vRNA, which is packaged into progeny virus particles upon infection with helper virus. With both methods, transfectant viruses (i.e., those containing RNA derived from cloned cDNA), are selected from the helper virus population.

FIG. 2. Schematic diagram of the generation of RNA polymerase I constructs. cDNAs derived from influenza virus were amplified by PCR, digested with BsmBI and cloned into the BsmBI sites of the pH21 vector (E. Hoffmann, M. D. thesis, Justus, Liebig-University, Giessen, Germany), which contains the human RNA polymerase I promoter (P) and the mouse RNA polymerase 1 terminator (T). The thymidine nucleotide upstream of the terminator sequence (dT) represents the 3' end of the influenza viral RNA. Influenza virus sequences are shown in bold face letters. (SEQ ID NOs: 29-40)

FIG. 3. Proposed reverse genetics method for generating segmented negative-sense RNA viruses. Plasmids containing theRNA polymerase I promoter a cDNA for each of the eight viral RNA segments, and the RNA polymerase I terminator are transfected into cells together with protein expression plasmids. Although infectious viruses can be generated with plasmids expressing PA, PB1, PB2, and NP; expression of all remaining structural proteins (shown in brackets) increases the efficiency of virus production depending on the virus generated.

FIG. 4. Titer of various influenza viruses.

DETAILED DESCRIPTION OF THE INVENTION

Definitions

As used herein, the terms "isolated and/or purified" refer to in vitro preparation, isolation and/or purification of a vector, plasmid or virus of the invention, so that it is not associated with in vivo substances, or is substantially purified from in vitro substances. An isolated virus preparation is generally obtained by in vitro culture and propagation and is substantially free from other infectious agents.

As used herein, "substantially free" means below the level of detection for a particular infectious agent using standard detection methods for that agent.

A "recombinant" virus is one which has been manipulated in vitro, e.g., using recombinant DNA techniques, to introduce changes to the viral genome.

As used herein, the term "recombinant nucleic acid" or "recombinant DNA sequence or segment" refers to a nucleic acid, e.g., to DNA, that has been derived or isolated from a source, that may be subsequently chemically altered in vitro, so that its sequence is not naturally occurring, or corresponds to naturally occurring sequences that are not positioned as they would be positioned in the native genome. An example of DNA "derived" from a source, would be a DNA sequence that is identified as a useful fragment, and which is then chemically synthesized in essentially pure form. An example of such DNA "isolated" from a source would be a useful DNA sequence that is excised or removed from said source by chemical means, e.g., by the use of restriction endonucleases, so that it can be further manipulated, e.g., amplified, for use in the invention, by the methodology of genetic engineering.

Influenza Virus Replication

Influenza A viruses possess a genome of eight single-stranded negative-sense viral RNAs (vRNAs) that encode a total of ten proteins. The influenza virus life cycle begins with binding of the hemagglutinin (HA) to sialic acid-containing receptors on the surface of the host cell, followed by receptor-mediated endocytosis. The low pH in late endosomes triggers a conformational shift in the HA, thereby exposing the N-terminus of the HA2 subunit (the so-called fusion peptide). The fusion peptide initiates the fusion of the viral and endosomal membrane, and the matrix protein (M1) and RNP complexes are released into the cytoplasm. RNPs consist of the nucleoprotein (NP), which encapsidates vRNA, and the viral polymerase complex, which is formed by the PA, PB1, and PB2 proteins. RNPs are transported into the nucleus, where transcription and replication take place. The RNA polymerase complex catalyzes three different reactions: synthesis of an mRNA with a 5' cap and 3' polyA structure, of a full-length complementary RNA (cRNA), and of genomic vRNA using the cDNA as a template. Newly synthesized vRNAs, NP, and polymerase proteins are then assembled into RNPs, exported from the nucleus, and transported to the plasma membrane, where budding of progeny virus particles occurs. The neuraminidase (NA) protein plays a crucial role late in infection by removing sialic acid from sialyloligosaccharides, thus releasing newly assembled virions from the cell surface and preventing the self aggregation of virus particles. Although virus assembly involves protein-protein and protein-vRNA interactions, the nature of these interactions is largely unknown.
Although influenza B and C viruses are structurally and functionally similar to influenza A virus, there are some differences. For example, influenza B virus does not have a M2 protein with ion channel activity. Similarly, influenza C virus does not have a M2 protein with ion channel activity. However, the CM1 protein is likely to have this activity. The activity of an ion channel protein may be measured by methods well-known to the art, see, e.g., Holsinger et al. (1994) and WO 01/79273.

Cell Lines and Influenza Viruses that can be Used in the Present Invention

According to the present invention, any cell which supports efficient replication of influenza virus can be employed in the invention, including mutant cells which express reduced or increased levels of one or more sialic acids which are receptors for influenza virus. Viruses obtained by the methods can be made into a reassortant virus.

Preferably, the cells are WHO certified, or certifiable, continuous cell lines. The requirements for certifying such cell lines include characterization with respect to at least one of genealogy, growth characteristics, immunological markers, virus susceptibility tumorigenicity and storage conditions, as well as by testing in animals, eggs, and cell culture. Such characterization is used to confirm that the cells are free from detectable adventitious agents. In some countries, karyology may also be required. In addition, tumorigenicity is preferably tested in cells that are at the same passage level as those used for vaccine production. The virus is preferably purified by a process that has been shown to give consistent results, before being inactivated or attenuated for vaccine production (see, e.g., World Health Organization, 1982).

It is preferred to establish a complete characterization of the cell lines to be used, so that appropriate tests for purity of the final product can be included. Data that can be used for the characterization of a cell to be used in the present invention includes (a) information on its origin, derivation, and passage history; (b) information on its growth and morphological characteristics; (c) results of tests of adventitious agents; (d) distinguishing features, such as biochemical, immunological, and cytogenetic patterns which allow the cells to be clearly recognized among other cell lines; and (e) results of tests for tumorigenicity. Preferably, the passage level, or population doubling, of the host cell used is as low as possible.

It is preferred that the virus produced in the cell is highly purified prior to vaccine or gene therapy formulation. Generally, the purification procedures will result in the extensive removal of cellular DNA, other cellular components, and adventitious agents. Procedures that extensively degrade or denature DNA can also be used. See, e.g., Mizrahi, 1990.

Vaccines

A vaccine of the invention may comprise immunogenic proteins including glycoproteins of any pathogen, e.g., an immunogenic protein from one or more bacteria, viruses, yeast or fungi. Thus, in one embodiment, the influenza viruses of the invention may be vaccine vectors for influenza virus or other viral pathogens including but not limited to lentiviruses such as HIV, hepatitis B virus, hepatitis C virus, herpes viruses such as CMV or HSV or foot and mouth disease virus.

A complete virion vaccine is concentrated by ultrafiltration and then purified by zonal centrifugation or by chromatography. It is inactivated before or after purification using formalin or beta-propiolactone, for instance.

A subunit vaccine comprises purified glycoproteins. Such a vaccine may be prepared as follows: using viral suspensions fragmented by treatment with detergent, the surface antigens are purified, by ultracentrifugation for example. The subunit vaccines thus contain mainly HA protein, and also NA. The detergent used may be cationic detergent for example, such as hexadecyl trimethyl ammonium bromide (Bachmeyer, 1975), an anionic detergent such as ammonium deoxycholate (Laver & Webster, 1976); or a nonionic detergent such as that commercially used under the name TRITON X100. The hemagglutinin may also be isolated after treatment of the virions with a protease such as bromelin, then purified by a method such as that described by Grand and Skelch (1972).

A split vaccine comprises virions which have been subjected to treatment with agents that dissolve lipids. A split vaccine can be prepared as follows: an aqueous suspension of the purified virus obtained as above, inactivated or not, is treated, under stirring, by lipid solvents such as ethyl ether or chloroform, associated with detergents. The dissolution of the viral envelope lipids results in fragmentation of the viral particles. The aqueous phase is recuperated containing the split vaccine, constituted mainly of hemagglutinin and neuraminidase with their original lipid environment removed, and the core or its degradation products. Then the residual infectious particles are inactivated if this has not already been done.

Inactivated Vaccines.

Inactivated influenza virus vaccines of the invention are provided by inactivating replicated virus of the invention using known methods, such as, but not limited to, formalin or β-propiolactone treatment. Inactivated vaccine types that can be used in the invention can include whole-virus (WV) vaccines or subvirion (SV) (split) vaccines. The WV vaccine contains intact, inactivated virus, while the SV vaccine contains purified virus disrupted with detergents that solubilize the lipid-containing viral envelope, followed by chemical inactivation of residual virus.

In addition, vaccines that can be used include those containing the isolated HA and NA surface proteins, which are referred to as surface antigen or subunit vaccines. In general, the responses to SV and surface antigen (i.e., purified HA or NA) vaccines are similar. An experimental inactivated WV vaccine containing an NA antigen immunologically related to the epidemic virus and an unrelated HA appears to be less effective than conventional vaccines (Ogra et al., 1977). Inactivated vaccines containing both relevant surface antigens are preferred.

Live Attenuated Virus Vaccines.

Live, attenuated influenza virus vaccines, can also be used for preventing or treating influenza virus infection, according to known method steps. Attenuation is preferably achieved in a single step by transfer of attenuated genes from an attenuated donor virus to a replicated isolate or reassorted virus according to known methods (see, e.g., Murphy, 1993). Since resistance to influenza A virus is mediated by the development of an immune response to the HA and NA glycoproteins, the genes coding for these surface antigens must come from the reassorted viruses or high growth clinical isolates. The attenuated genes are derived from the attenuated parent. In this approach, genes that confer attenuation preferably do not code for the HA and NA glycoproteins. Otherwise, these genes could not be transferred to reassortants bearing the surface antigens of the clinical virus isolate.

Many donor viruses have been evaluated for their ability to reproducibly attenuate influenza viruses. As a non-limiting example, the A/Ann Arbor(AA)/6/60 (H2N2) cold adapted (ca) donor virus can be used for attenuated vaccine production (see, e.g., Edwards, 1994; Murphy, 1993). Additionally, live, attenuated reassortant virus vaccines can be generated by mating the ca donor virus with a virulent replicated virus of the invention. Reassortant progeny are then selected at 25°C,
tions can be introduced into non-coding regions of the infectious viruses bearing these mutant genes. Attenuating muta­
tions can also be introduced into genes other than the HA or NA, e.g., the PB2 polymerase gene (Subbarao et al., 1993).

Thus, new donor viruses can also be generated bearing attenuating mutations introduced by site-directed mutagen­
esis, and such new donor viruses can be used in the reduction of live attenuated reassortants H1N1 and H3N2 vaccine candidates in a manner analogous to that described above for the A/AA/6/60 ca donor virus. Similarly, other known and suitable attenuated donor strains can be reassorted with influenza virus of the invention to obtain attenuated vaccines suitable for use in the vaccination of mammals (Enami et al., 1990; Muster et al., 1991; Subbarao et al., 1993).

It is preferred that such attenuated viruses maintain the genes from the virus that encode antigenic determinants sub­stantially similar to those of the original clinical isolates. This is because the purpose of the attenuated vaccine is to provide substantially the same antigenicity as the original clinical isolate of the virus, while at the same time lacking infectivity to the degree that the vaccine causes minimal change of inducing a serious pathogenic condition in the vaccinated mammal.

The virus can thus be attenuated or inactivated, formulated and administered, according to known methods, as a vaccine to induce an immune response in an animal, e.g., a mammal. Methods are well-known in the art for determining whether such attenuated or inactivated vaccines have maintained similar antigenicity to that of the clinical isolate or high growth strain derived therefrom. Such known methods include the use of antisera or antibodies to eliminate viruses expressing antigenic determinants of the donor virus; chemical selection (e.g., amantadine or rimantidine); HA and NA activity and inhibition; and DNA screening (such as probe hybridization or PCR) to confirm that donor genes encoding the antigenic determinants (e.g., HA or NA genes) are not present in the attenuated viruses. See, e.g., Robertson et al., 1988; Kilbourne, 1969; Aymard-Henry et al., 1985; Robertson et al., 1992.

Pharmaceutical Compositions

Pharmaceutical compositions of the present invention, suitable for inoculation or for parenteral or oral administra­tion, comprise attenuated or inactivated influenza viruses, optionally further comprising sterile aqueous or non-aque­uous solutions, suspensions, and emulsions. The compositions can further comprise auxiliary agents or excipients, as known in the art. See, e.g., Berkow et al., 1987; Avery's Drug Treatment, 1987; Osol, 1980; Katzung, 1992. The composition of the invention is generally presented in the form of individual doses (unit doses).

Conventional vaccines generally contain about 0.1 to 200 µg, preferably 10 to 15 µg, of hemagglutinin from each of the strains entering into their composition. The vaccine forming the main constituent of the vaccine composition of the invention may comprise a virus of type A, B or C, or any combination thereof, for example, at least two of the three types, at least two of different subtypes, at least two of the same subtype, at least two of the same subtype, or a different isolate(s) or reassortant(s). Human influenza virus type A includes H1N1, H2N2 and H3N2 subtypes.

Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and/or emulsions, which may contain auxiliary agents or excipients known in the art. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Carriers or occlusive dressings can be used to increase skin permeability and enhance antigen absorption. Liquid dosage forms for oral administration may generally comprise a liposome solution containing the liquid dosage form. Suitable forms for suspending liposomes include emulsions, suspensions, solutions, syrups, and elixirs containing inert diluents commonly used in the art, such as purified water. Besides the inert diluents, such compositions can also include adjuvants, wetting agents, emulsifying and suspending agents, and sweetening, flavoring, or perfuming agents. See, e.g., Berkow et al., 1992; Avery's, 1987; Osol, 1980; and Katzung, 1992.

When a composition of the present invention is used for administration to an individual, it can further comprise salts, buffers, adjuvants, or other substances which are desirable for improving the efficacy of the composition. For vaccines, adjuvants, substances which can augment a specific immune response, can be used. Normally, the adjuvant and the composition are mixed prior to presentation to the immune system, or presented separately, but into the same site of the organism being immunized. Examples of materials suitable for use in vaccine compositions are provided in Osol (1980).

Heterogeneity in a vaccine may be provided by mixing replicated influenza viruses for at least two influenza virus strains, such as 2-50 strains or any range or value therein. Influenza A or B virus strains having a modern antigenic composition are preferred. According to the present invention, vaccines can be provided for variations in a single strain of an influenza virus, using techniques known in the art.

A pharmaceutical composition according to the present invention may further or additionally comprise at least one chemotherapeutic compound, for example, for gene therapy, immunosuppressants, anti-inflammatory agents or immune enhancers, and for vaccines, chemotherapeutics including, but not limited to, gamma globulin, amantadine, guanidine, hydroxybenzimidazole, interferon-α, interferon-β, interferon-γ, tumor necrosis factor-alpha, thiosemicarbazones, methisazone, rifampin, ribavirin, a pyrimidine analog, a purine analog, focamet, phosphonoacetic acid, acyclovir, dideoxynucleosides, a protease inhibitor, or ganciclovir. See, e.g., Katzung (1992), and the references cited therein on pages 798-800 and 680-681, respectively.

The composition can also contain variable but small quan­tities of endotoxin-free formaldehyde, and preservatives, which have been found safe and not contributing to undesir­able effects in the organism to which the composition is administered.

Pharmaceutical Purposes

The administration of the composition (or the antisera that it elicits) may be for either a "prophylactic" or "therapeutic" purpose. When provided prophylactically, the compositions of the invention which are vaccines, are provided before any
symptom of a pathogen infection becomes manifest. The prophylactic administration of the composition serves to prevent or attenuate any subsequent infection. When provided prophylactically, the gene therapy compositions of the invention, are provided before any symptom of a disease becomes manifest. The prophylactic administration of the composition serves to prevent or attenuate one or more symptoms associated with the disease.

When provided therapeutically, an attenuated or inactivated viral vaccine is provided upon the detection of a symptom of actual infection. The therapeutic administration of the composition(s) serves to attenuate any actual infection. See, e.g., Berkow et al., 1992; Avery, 1987; and Katzung, 1992. When provided therapeutically, a gene therapy composition is provided upon the detection of a symptom or indication of the disease. The therapeutic administration of the composition(s) serves to attenuate a symptom or indication of that disease.

Thus, an attenuated or inactivated vaccine composition of the present invention may thus be provided either before the onset of infection (so as to prevent or attenuate an anticipated infection) or after the initiation of an actual infection. Similarly, for gene therapy, the composition may be provided before any symptom of a disorder or disease is manifested or after one or more symptoms are detected.

A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. A composition of the present invention is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient, e.g., enhances at least one primary or secondary humoral or cellular immune response against at least one strain of an infectious influenza virus.

The "protection" provided need not be absolute, i.e., the influenza infection need not be totally prevented or eradicated, if there is a statistically significant improvement compared with a control population or set of patients. Protection may be limited to mitigating the severity or rapidity of onset of symptoms of the influenza virus infection.

Pharmaceutical Administration

A composition of the present invention may confer resistance to one or more pathogens, e.g., one or more influenza virus strains, by either passive immunization or active immunization. In active immunization, an inactivated or attenuated live vaccine composition is administered prophylactically to a host (e.g., a mammal), and the host’s immune response to the composition protects against infection and/or disease. For passive immunization, the elicited antiserum can be recovered and administered to a recipient suspected of having an infection caused by at least one influenza virus strain. A gene therapy composition of the present invention may yield prophylactic or therapeutic levels of the desired gene product by active immunization.

In one embodiment, the vaccine is provided to a mammalian female (at or prior to pregnancy or parturition), under conditions of time and amount sufficient to cause the production of an immune response which serves to protect both the female and the fetus or newborn (via passive incorporation of the antibodies across the placenta or in the mother’s milk).

The present invention thus includes methods for preventing or attenuating a disorder or disease, e.g., an infection by at least one strain of pathogen. As used herein, a vaccine is said to prevent or attenuate a disease if its administration results either in the total or partial attenuation (i.e., suppression) of a symptom or condition of the disease, or in the total or partial immunity of the individual to the disease. As used herein, a gene therapy composition is said to prevent or attenuate a disease if its administration results either in the total or partial attenuation (i.e., suppression) of a symptom or condition of the disease, or in the total or partial immunity of the individual to the disease.

At least one inactivated or attenuated influenza virus, or composition thereof, of the present invention may be administered by any means that achieve the intended purposes, using a pharmaceutical composition as previously described.

For example, administration of such a composition may be by various parenteral routes such as subcutaneous, intravenous, intradermal, intramuscular, intraperitoneal, intranasal, oral or transdermal routes. Parenteral administration can be by bolus injection or by gradual perfusion over time. A preferred mode of using a pharmaceutical composition of the present invention is by intramuscular or subcutaneous application. See, e.g., Berkow et al., 1992; Avery’s, 1987; and Katzung, 1992.

A typical regimen for preventing, suppressing, or treating an influenza virus related pathology, comprises administration of an effective amount of a vaccine composition as described herein, administered as a single treatment, or repeated as enhancing or booster dosages, over a period up to and including between one week and about 24 months, or any range or value therein.

According to the present invention, an “effective amount” of a composition is one that is sufficient to achieve a desired biological effect. It is understood that the effective dosage will be dependent upon the age, sex, health, and weight of the recipient, kind of concurrent treatment, if any, frequency of treatment, and the nature of the effect wanted. The ranges of effective doses provided below are not intended to limit the invention and represent preferred dose ranges. However, the median dose will be tailored to the individual subject, as is understood and determinable by one of skill in the art. See, e.g., Berkow et al., 1992; Avery’s, 1987; and Katzung, 1992.

The dosage of an attenuated virus vaccine for a mammalian (e.g., human) or avian adult organism can be from about 10^3-10^7 plaque forming units (PFU)/kg, or any range or value therein. The dose of inactivated vaccine can range from about 0.1 to 200, e.g., 50 µg of hemagglutinin protein. However, the dosage should be a safe and effective amount as determined by conventional methods, using existing vaccines as a starting point.

The dosage of immunoreactive HA in each dose of replicated virus vaccine can be standardized to contain a suitable amount, e.g., 1-50 µg or any range or value therein, or the amount recommended by the U.S. Public Health Service (PHS), which is usually 15 µg, per component for older children 3 years of age, and 7.5 µg per component for older children <3 years of age. The quantity of NA can also be standardized, however, this glycoprotein can be labile during the processor purification and storage (Kendal et al., 1980). Each 0.5-ml dose of vaccine preferably contains approximately 1-50 billion virus particles, and preferably 10 billion particles.
The invention will be further described by the following examples.

Example 1

Materials and Methods

Cells and Viruses.

293T human embryonic kidney cells and Madin-Darby canine kidney cells (MDCK) were maintained in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% fetal calf serum and in modified Eagle’s medium (MEM) containing 5% newborn calf serum, respectively. All cells were maintained at 37° C in 5% CO₂.

Influenza viruses AIWSN/33 (H1N1) and A/PR/8/34 (H1N1) were propagated in 10-day-old eggs.

Construction of Plasmids.

To generate RNA polymerase I constructs, cloned cDNAs derived from A/WSN/33 or A/PR/8/34 viral RNA were introduced into the promoter and terminator sequences of RNA polymerase I. Briefly, the cloned cDNAs were amplified by PCR with primers containing BamHI sites, digested with BamHI, and cloned into the BamHI sites of the pHI121 vector, which contains the human RNA polymerase I promoter and the mouse RNA polymerase I terminator, separated by the supernatant and titrated on MDCK cells. Six hours later, the DNA-transfection reagent mixture was replaced by the hemagglutination assay.

Immunostaining Assay.

Nine hours after infection with influenza virus, cells were washed twice with phosphate-buffered saline (PBS) and fixed with 3.7% paraformaldehyde (in PBS) for 20 minutes at room temperature. Next, they were treated with 0.1% Triton X-100 and processed as described by Neumann et al. (1997).

RESULTS

Generation of Infectious Viruses by Plasmid-Driven Expression of Viral RNA Segments, Three Polymerase Subunits and NP Protein.

Although transfection of cells with a mixture of RNPs extracted from purified virions results in infectious influenza particles, this strategy is not likely to be efficient when used with eight different in vitro generated RNPs. To produce infectious influenza viruses entirely from cDNAs, eight viral RNPs were generated in vivo. Thus, plasmids were prepared that contain cDNAs for the full-length viral RNAs of the A/WSN/33 virus, flanked by the human RNA polymerase I promoter and the mouse RNA polymerase I terminator.

In principle, transfection of these eight plasmids into eukaryotic cells should result in the synthesis of all eight influenza vRNAs. The PB2, PB1, PA and NP proteins, generated by cotransfection of protein expression plasmids, should then assemble the vRNAs into functional vRNPs that are replicated and transcribed, ultimately forming infectious influenza viruses (Fig. 3). 1x106 293T cells were transfected with protein expression plasmids (1 µg of pcDNA762(PB2), 1 µg of pcDNA774(PB1), 0.1 µg of pcDNA787(PA), and 1 µg of pCAGGS-WSN-NP0/14) and 1 µg of each of the following RNA polymerase 1 plasmids (pPolI-WSN-PB2, pPolI-WSN-PB1, pPolI-WSN-PA, pPolI-WSN-HA, pPolI-WSN-NA, pPolI-WSN-M, and pPolI-WSN-NS).

The decision to use a reduced amount of pcDNA787(PA) was based on previous observations (Mena et al., 1996), and data on the optimal conditions for generation of virus-like particles (VLPs) (data not shown). Twenty-four hours after transfection of 293T cells, 7x103 pfu of virus per mL was found in the supernatant (Experiment 1, Table 1), demonstrating for the first time the capacity of reverse genetics to produce influenza A virus entirely from plasmids.

TABLE 1

<table>
<thead>
<tr>
<th>Plasmid sets used to produce influenza virus from cloned cDNA*</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8</td>
</tr>
<tr>
<td>RNA polymerase 1 plasmids for;</td>
<td></td>
</tr>
<tr>
<td>PB1</td>
<td>+ + + + + + + +</td>
</tr>
<tr>
<td>PB2</td>
<td>+ + + + + + + +</td>
</tr>
<tr>
<td>PA</td>
<td>+ + + + + + + +</td>
</tr>
<tr>
<td>HA</td>
<td>+ + + + + + + +</td>
</tr>
<tr>
<td>NP</td>
<td>+ + + + + + + +</td>
</tr>
<tr>
<td>NA</td>
<td>+ + + + + + + +</td>
</tr>
</tbody>
</table>

*Note: + indicates presence, - indicates absence.

Twenty-four hours after transfection, 293T cells were dispersed with 0.02% EDTA into single cells. The cell suspension was then diluted 10-fold and transferred to confluent monolayers of MDCK cells in 24-well plates. Viruses were detected by the hemagglutination assay.
Efficiency of influenza virus production with coexpression of all viral structural proteins. Although expression of the viral NP and polymerase proteins is sufficient for the plasmid-driven generation of influenza viruses, it was possible that the efficiency could be improved. In previous studies, the expression of all influenza virus structural proteins (PB2, PB1, PA, HA, NP, NA, M1, M2, and NS2) resulted in VLPs that contained an artificial mRNA encoding a reporter chloramphenicol-acetyltransferase gene (Mené et al., 1996). Thus, the availability of the entire complement of structural proteins, instead of only those required for viral RNA replication and transcription, might improve the efficiency of virus production. To this end, 293T cells were transfected with optimal amounts of viral protein expression plasmids (as judged by VLP production; unreported data: 1 μg of pcDNA762 (PB2) and pcDNA774(PB1); 0.1 μg of pcDNA7787(PA); 1 μg of pcEWSN-HA, pcCAGGS-WSN-NP0/14, and pcCAGGS-WNA15; 2 μg of pcCAGGS-WSN-M1-2/1; 0.3 μg of pcNS2; and 0.03 μg of pEP24c (for M2), together with 1 μg of each RNA polymerase I plasmid (Experiment 2, Table 1). A monoclonal antibody to the FLAG epitope (Castrucci et al., 1992) in the NA protein was generated. 293T cells were transfected with an RNA polymerase I plasmid (pPolI-WSN-NA/FL79) that contained a cDNA encoding the entire NA protein. To verify that the new reverse genetics system allowed the introduction of mutations into the genome of influenza A viruses, a virus containing a FLAG epitope in the protein expression plasmids as described in the text. At different time points, we titrated virus in the culture supernatant (pfu/ml) and determined in MDCK cells.

Recovery of influenza virus containing the FLAG epitope in the NA protein. To verify that the new reverse genetics system allowed the introduction of mutations into the genome of influenza A viruses, a virus containing a FLAG epitope (Castrucci et al., 1992) in the NA protein was generated. 293T cells were transfected with RNA polymerase I plasmid (pPolI-WSN-NA/FL79) containing a cDNA encoding both the NA protein and a FLAG epitope at the bottom of the protein's head, together with the required RNA polymerase I and protein expression plasmids. To confirm that the recovered virus (PR8-WSN-FL79) did in fact express the NA-FLAG protein, immunostaining assays of cells infected with PR8-WSN-FL79 or A/WSN/33 wild-type virus was performed. A monoclonal antibody to the FLAG epitope detected cells infected with PR8-WSN-FL79, but not those infected with wild-type virus. Recovery of the PR8-WSN-FL79 virus was as efficient as that for the untagged wild-type virus (data not shown). These results indicate that the new reverse genetics system allows one to introduce mutations into the influenza A virus genome.
originated from vRNA instead of the plasmid used to generate the viruses. These results illustrate how viruses with mutated genes can be produced and recovered without the use of helper viruses.

Discussion

The reverse genetics systems described herein allows one to efficiently produce influenza A viruses entirely from cloned cDNAs. Bridgen and Elliott (1996) also used reverse genetics to generate a Bunyamwera virus (Bunyaviridae family), but it contains only three segments of negative-sense RNA, and the efficiency of its production was low, 10^3 pfu/10^7 cells. Although the virus yields differed among the experiments, consistently >10^3 pfu/10^6 cells was observed for influenza virus, which contains eight segments. There are several explanations for the high efficiency of the reverse genetics system described hereinabove. Instead of producing RNPs in vitro (Luytjes et al., 1989), RNPs were generated in vivo through intracellular synthesis of vRNAs using RNA polymerase I and through plasmid-driven expression of the viral polymerase proteins and NP. Also, the use of 293T cells, which are readily transected with plasmids (Goto et al., 1997), ensured that a large population of cells received all of the plasmids needed for virus production. In addition, the large number of transcripts produced by RNA polymerase I, which is among the most abundantly expressed enzymes in growing cells, likely contributed to the overall efficiency of the system. These features led to a correspondingly abundant number of vRNA transcripts and adequate amounts of viral protein for encapsidation of vRNA, formation of RNPs in the nucleus, and export of these complexes to the cell membrane, where new viruses are assembled and released.

Previously established reverse genetics systems (Enami et al., 1990; Neumann et al., 1994; Luytjes et al., 1989; Pleschka et al., 1996) require helper-virus infection and therefore selection methods that permit a small number of transfected cells to be retrieved from a vast number of helper viruses. Such strategies have been employed to generate influenza viruses that possess one of the following cDNA-derived genes: PB2 (Subbarao et al., 1993), HA (Enami et al., 1991; Horimoto et al., 1994), NP (Li et al., 1995), NA (Enami et al., 1990), M (Castrucci et al., 1995; Yasuda et al., 1994), and NS (Enami et al., 1991). Most of the selection methods, except for those applicable to the HA and NA genes, rely on growth temperature, host range restriction, or drug sensitivity, thus limiting the utility of reverse genetics for functional analysis of the gene products. Even with the HA and NA genes, for which reliable antibody-driven selection systems are available, it is difficult to produce viruses with prominent growth defects. In contrast, the reverse genetics system described herein does not require helper virus and permits one to generate transfected cells with mutations in any gene segment or with severe growth defects. Having the technology to introduce any viable mutation into the influenza A virus genome enables investigators to address a number of long-standing issues, such as the nature of regulatory sequences in nontranslated regions of the viral genome, structure-function relationships of viral proteins, and the molecular basis of host-range restriction and viral pathogenicity.

Although inactivated influenza vaccines are available, their efficacy is suboptimal due partly to their limited ability to elicit local IgA and cytotoxic T cell responses. Clinical trials of cold-adapted live influenza vaccines now underway suggest that such vaccines are optimally attenuated, so that they will not cause influenza symptoms, but will still induce protective immunity (reviewed in Keitel & Piedra, 1998). However, preliminary results indicate that these live virus vaccines will not be significantly more effective than the best inactivated vaccine (reviewed in Keitel & Piedra, 1998), leaving room for further improvement. One possibility would be to modify a cold-adapted vaccine with the reverse genetics system described above. Alternatively, one could start from scratch by using reverse genetics to produce a “master” influenza A strain with multiple attenuating mutations in the genes that encode internal proteins. The most intriguing application of the reverse genetics system described herein may lie in the rapid production of attenuated live-virus vaccines in cases of suspected pandemics involving new HA or NA subtypes of influenza virus.

This new reverse genetics system will likely enhance the use of influenza viruses as vaccine vectors. The viruses can be engineered to express foreign proteins or immunogenic epitopes in addition to the influenza viral proteins. One could, for example, generate viruses with foreign proteins as a ninth segment (Enami et al., 1991) and use them as live vaccines. Not only do influenza viruses stimulate strong cell-mediated and humoral immune responses, but they also afford a wide array of virion surface HA and NA proteins (e.g., 15 HA and 9 NA subtypes and their epidemic variants), allowing repeated immunization of the same target population.

Influenza VLPs possessing an artificial vRNA encoding a reporter gene have been produced by expressing viral structural proteins and vRNA with the vaccinia-T7 polymerase system (Mena et al., 1996). Using reverse genetics, one can now generate VLPs containing vRNAs that encode proteins required for vRNA transcription and replication (i.e., PA, PB1, PB2, and NP), as well as vRNAs encoding proteins of interest. Such VLPs could be useful gene delivery vehicles. Importantly, their lack of genes encoding viral structural proteins would ensure that infectious viruses will not be produced after VLP-gene therapy. Since the influenza virus genome is not integrated into host chromosome, the VLP system would be suitable for gene therapy in situations requiring only short-term transduction of cells (e.g., for cancer treatment). In contrast to adenovirus vectors (Kovesdi et al., 1997), influenza VLPs could contain both HA and NA variants, allowing repeated treatment of target populations.

The family Orthomyxoviridae comprises influenza A, B, and C viruses, as well as the recently classified Thogotovirus. The strategy for generating infectious influenza A viruses entirely from cloned cDNAs described herein would apply to any orthomyxovirus, and perhaps to other segmented negative-sense RNA viruses as well (e.g., Bunyaviridae, Arenaviridae). The ability to manipulate the viral genome without technical limitations has profound implications for the study of viral life cycles and their regulation, the function of viral proteins and the molecular mechanisms of viral pathogenicity.

Example 2

To develop a reverse genetics system for influenza A/Puerto Rico/8/34, viral RNA was extracted from the allantoic fluid of A/Puerto Rico/8/34 (H1N1), Madison high grower variant (PR8HG), using RNeasy Mini kit (Qiagen) according to the manufacturer’s protocol. cDNA was synthesized using
MMLV-RTase (Promega) and Uni 12 primer. The cDNAs were amplified overnight by PCR using the following:

Primer sets

PB1: Ba PB1-1 and PB1-1735R (front fragment) and PB1-903 and Ba-PB1-2341R (rear fragment)

<table>
<thead>
<tr>
<th>Primer Set</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba-PB1-1</td>
<td>CACACAGGCCTCCTCCGGGAGCAAAAGCAGGCA</td>
</tr>
<tr>
<td>173PB1-1735R</td>
<td>GGTTTGTATTTGTGTGTCACC</td>
</tr>
<tr>
<td>233PB1-903</td>
<td>CACACAGCTGAAATTTCTTTCAC</td>
</tr>
</tbody>
</table>

DNA Polymerase

pfu Native DNA Polymerase (Stratagene)

The PCR products were separated by gel electrophoresis and extracted from the agarose gel using a gel extraction kit (Qiagen). The extracted genes were ligated into pT7Blue blunt vector (Novagen). After 5 hours, the ligated genes were transformed into JM109 (PB2, M, and NS genes) or DH5alpha (PA, PB1, and NP). Six colonies for each gene were cultured in TB for 8 hours. The plasmids were extracted from the bacteria culture, and four clones per gene were sequenced.

PB2: Ba PB2-1 and B2 1260R (front fragment) and WSN PB2 seq-2 and Ba-PB2-2341R (rear fragment)

<table>
<thead>
<tr>
<th>Primer Set</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba-PB2-1</td>
<td>CACACAGGCCTCCTCCGGGAGCGAAAGCAGGCA</td>
</tr>
<tr>
<td>B2 1260R</td>
<td>CACACAGCTGAAATTTCTTTCAC</td>
</tr>
<tr>
<td>WSN PB2 seq-2</td>
<td>CACACAGCTGAAATTTCTTTCAC</td>
</tr>
</tbody>
</table>

PA:

<table>
<thead>
<tr>
<th>Primer Set</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bm-PA-1</td>
<td>CACACAGGCCTCCTCCGGGAGCAAAAGCAGGCA</td>
</tr>
<tr>
<td>Bm-PA-2233R</td>
<td>CACACAGCTGAAATTTCTTTCAC</td>
</tr>
</tbody>
</table>

HA:

<table>
<thead>
<tr>
<th>Primer Set</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bm-HA-1</td>
<td>CACACAGGCCTCCTCCGGGAGCAAAAGCAGGCA</td>
</tr>
<tr>
<td>Bm-NS-890R</td>
<td>CACACAGGCCTCCTCCGGGAGCAAAAGCAGGCA</td>
</tr>
</tbody>
</table>

NP:

<table>
<thead>
<tr>
<th>Primer Set</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bm-NP-1</td>
<td>CACACAGGCCTCCTCCGGGAGCAAAAGCAGGCA</td>
</tr>
<tr>
<td>Bm-NP-1565R</td>
<td>CACACAGGCCTCCTCCGGGAGCAAAAGCAGGCA</td>
</tr>
</tbody>
</table>

NA:

<table>
<thead>
<tr>
<th>Primer Set</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bm-NA-1</td>
<td>CACACAGGCCTCCTCCGGGAGCAAAAGCAGGCA</td>
</tr>
<tr>
<td>Bm-NA-1413R</td>
<td>CACACAGGCCTCCTCCGGGAGCAAAAGCAGGCA</td>
</tr>
</tbody>
</table>

M:

<table>
<thead>
<tr>
<th>Primer Set</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bm-M-1</td>
<td>CACACAGGCCTCCTCCGGGAGCAAAAGCAGGCA</td>
</tr>
<tr>
<td>Bm-M-1027R</td>
<td>CACACAGGCCTCCTCCGGGAGCAAAAGCAGGCA</td>
</tr>
</tbody>
</table>

The ligated PB1, PA, NP, M, and NS genes in pT7Blue were excised by Bsm BI enzyme (New England Biolabs). The PB1 gene was excised by Bsa I (New England Biolabs). The excised genes were ligated overnight with pPolIR vector which contains the human RNA polymerase I promoter and the mouse RNA polymerase I terminator which had been digested with Bsm BI. The front fragment of the PB2 gene in pT7Blue was excised by Bsr GI (New England Biolabs) and Bam H1 (Roche), and the rear fragment was excised by Bsr GI (New England Biolabs) and Spe I (Roche). The excised fragments were mixed and digested by Bsa I. After 6 hours, the digested genes were purified using a PCR purification kit (Qiagen) and ligated overnight between the Bsm BI sites of the pPolIR vector.

The ligated PB1, PA, NP, M, and NS-pPolIR genes were used to transform JM109 (M and NS genes) or DH5alpha (PB1, PA and NP genes) overnight. The colonies of transformed bacteria were cultured in LB overnight. The ligated PB2-pPolIR was used to transform JM109 overnight.

The plasmids were extracted from the bacterial cultures and gene inserts were confirmed by enzyme digestion. The colonies of bacteria transformed by PB2-PolIR were cultured in LB for 8 hours. The plasmids were then extracted and the gene insertion was confirmed by enzyme digestion. All pPol constructs were sequenced to ensure that they did not contain unwanted mutations.

The pPolIR constructs for PR8HG were transfected into 293T human embryonic kidney cells with A/WSN/33(WSN)-HA and NA, A/Hong Kong/483/97(HK)-H1Aavir and NA, or A/Kawasaki/01(Kawasaki)-H1A and NA Pol constructs and four protein-expression constructs for the polymerase proteins and NP of A/WSN/33. The supernatants from transfected 293T cells were serially diluted (undiluted to 10^{-7}) and infected into the allantoic cavities of 9-day-old embryonated chicken eggs. The allantoic fluids of the infected eggs were harvested and their virus titers tested by HA assay (Table 3).
HA-positive samples (virus with WSN-HA NA at 10^{-2} and virus with HK-HAavir NA at undiluted) were diluted serially from 10^{-2} to 10^{-8} and 100 ul of each dilution was injected into embryonated chicken eggs. The allantoic fluids of the infected eggs were harvested and their virus titers tested by HA assay (Table 4). The 50% egg infectious dose (EID$_{50}$) of A/Puerto Rico/8/34 (H1N1) prepared from plasmids was $10^{10.53}/ml$, and the HA titer was 1:3200.

A recombinant virus having the HA and NA genes from A/Hong Kong/213/2003 (H5N1) and the remainder of the type A influenza virus genes from PR8HG was prepared. The titer of the recombinant virus was $10^{10.97}$ EID$_{50}$/ml, and the HA titer was 1:1600.

Sequences of PR8 genes:

<table>
<thead>
<tr>
<th>PA</th>
<th>AGCGAAGAAGCA GGTACGACTC CAAAATGGAA GATTATTGCC GACAATGCTT (SEQ ID NO: 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR8 genes</td>
<td>CAATCCAGTG ATTCGCGGC TTGGGAAAA AACAAACAA GAGTATGGG</td>
</tr>
<tr>
<td></td>
<td>ACGACCTGAA AATCGAAACA AACAATGGT CAGCAATATT CACTCACTTG</td>
</tr>
<tr>
<td></td>
<td>GAGGATTATG TATGTATTC AGATTTTCAC TTCATCAATG AGCAGGAGCA</td>
</tr>
<tr>
<td></td>
<td>GTCGAAATCT GTGAAACTTG GTGATCCAAA TGCACTTTTG AAGCAACAGT</td>
</tr>
<tr>
<td></td>
<td>TTGAAATTAAT CGAGGGAAGA GATGCAACAA TGCACTGACG AGTACAAAC</td>
</tr>
<tr>
<td></td>
<td>AGTATTTCGA ACAGATAAGG GCTGAAAGAA CCAAGTTCC TACAGATTT</td>
</tr>
<tr>
<td></td>
<td>GTATGATGAC AAGAGAATA GATCATCAAG ATGGAATAG AAGAAGAGG</td>
</tr>
<tr>
<td></td>
<td>AAGTCTATAT ATACATCTTG GAAAGGCTCA ATTAAAAAT AATCGAGAAA</td>
</tr>
<tr>
<td></td>
<td>ACAGACACCT AGATTATCTTC GTGCAGCGGG GAGAAAAGCC CCAAAGGCC</td>
</tr>
<tr>
<td></td>
<td>AGGACTACCT CTCGATGAG AAACGAGGCG TAGCATAAAG AAGCAGAAAT</td>
</tr>
<tr>
<td></td>
<td>TCACTCAGAA ACAGAAAGGT GCGACACGAG GCCGCTGAAG TTCAGTTGCT</td>
</tr>
<tr>
<td></td>
<td>CAGTCAGAGA GAGAAGAGAA GAAAGTGGT GAACTCAGAG</td>
</tr>
<tr>
<td></td>
<td>AACAGAGCC ACAGTTCGCG ACCAGAGCTT CCAGGCGAC TCTCAGGC</td>
</tr>
<tr>
<td></td>
<td>TGGAAATATG TAGCTATATG TGCGATGATG TCGAACCAGA CGGACTACAG</td>
</tr>
<tr>
<td></td>
<td>GAGGCCAGC GGCCTCAAGGTT TGGAGCTTC AAGCAGCTT ATGACCAGCC</td>
</tr>
<tr>
<td></td>
<td>TTGAAATATG TAGCTCATATG TGCGATGATG TCGAACCAGA CGGACTACAG</td>
</tr>
<tr>
<td></td>
<td>GAGGCCAGC GGCCTCAAGGTT TGGAGCTTC AAGCAGCTT ATGACCAGCC</td>
</tr>
<tr>
<td></td>
<td>TTTTGGGGAA AAGACACCC ACAGCTTGG GAGGAGGAT GAGGAGGAT</td>
</tr>
<tr>
<td></td>
<td>GTTCCTGCG ATCGAAATAC ATGGCTATAG TACCCCTCAT GCTGAGGAAG</td>
</tr>
<tr>
<td></td>
<td>GAGGACCCAA GTGATGGTG ACAGAGAAAT CCGTATGAT ATCAGATCAA</td>
</tr>
<tr>
<td></td>
<td>ACGCATGAGA AGCATCTTTTG TAGGAGGAGG ACCCAATTTT GATACACG</td>
</tr>
<tr>
<td></td>
<td>ACGGAAGGAG GTAAATCCA AATTATGG AGTGTCAATGT GCAAGTACG</td>
</tr>
<tr>
<td></td>
<td>GCAGAATCT GCAGATGAGA GATGAGGGAG AAAATTCGCA AGACTAAGAA</td>
</tr>
<tr>
<td></td>
<td>TATGAGAGAA ACAAGTCAGC TAAAGGAGGC ACTTGAGAGG AGACAGGAC</td>
</tr>
<tr>
<td></td>
<td>CAGAAGAGAGT AGAACATGGC AGCAGTAAAG AGTATGAGG TTTGAGGCCA</td>
</tr>
<tr>
<td></td>
<td>TATGAGATGG ATGACAGGAA ATGAGGAGG CTGCAAGGTT GATGCGAGA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Virus possessing PR8 genes together with the following HA and NA genes</th>
<th>Table 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA titer (HAU/ml) in each dilution</td>
<td></td>
</tr>
<tr>
<td>10^{-2}</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>WSN-HA NA</td>
<td>160</td>
</tr>
<tr>
<td>HK-HAavir NA</td>
<td>400</td>
</tr>
</tbody>
</table>
TGAGTTTAAC AAGGCATGCG AACTGACAGA TTCAAGCTGG ATAGAGCTCG
ATGAGATTGG AGAAGATGTG GCTCCAATTG AACACATTGC AAGCATGAGA
AGGAATTATT TCACATCAGA GGTGTCTCAC TGCAGAGCCA CAGAATACAT
AATGAAGGGA GTGTACATCA ATACTGCCTT GCTTAATGCA TCTTGTGCAG
CAATGGATGA TTTCCAATTA ATTCCAATGA TAAGCAAGTG TAGAACTAAG
GAGGGAAGGC GAAAGACCAA CTTGTATGGT TTCATCATAA AAGGAAGATC
CCACTTAAGG AAGGACACGG AGCTGCTAAA CTTGTGAGC ATGGAGTTTT
CTCTCACTGA CCCAGAAGTT GCCACCACAGA GTACTGTTTT
CTTGAGATAG GAGAGATCT CTTAAGAAGT GCCATAGCC GAGTTTCAAG
GCCCATGTTC TTGTATGTGA GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
GCCAGTATC TGGTAGTCTG GAACAAATGG AACCTCAAAA ATTAAAATGA
AATGGGGAAT GGGAGTGAAG COTGCTCTCC TCAAGACTCT TCAACAAAAT
 GCCCAAACCAT TGGAGATCAT (SEQ ID NO: 2)
CCTTACTTTT CTAAAAGTGT CCCGACCAA AAATGCTAAGG CACAACCTCTC
CCTTATACCT GAGACCTCCT TCACAGCCAT GGGCAAGGAA CAGGARACAC
CATGGAATCT GTCAACAGGA CACATCGATA TCGAGAAAAG GGGAGATGGA
CAACACACAC CAGAACCTGCA CGACCACCAAC TCAAACCGAT TGAAGAGCCA
CTGCCAGAAG GCAATAGACCG AAGTGGTTTAT GCCCCACCGA ATGGGTATT
GGGGCGGATT GCTTTCTCTG AGAAATCCCA TCTCTGATT TTGAAAAACT
CGTGTATTTGA AACGATGAGG GTGGTTCAGC AACACAGAGT AGRCAAGCTG
ACACAGGCC GAGACATCTA TGGACTGACT CTAAATAGAA ACCAACCTGC
TGCAACAGCA TGGCACAACA CAATAAAGAG GTCAAGATCA AATGGCCCTCA
CGGCCAAGCT GTCTGGAAGG CTGATAGACT TCTCTAAGGA TGTAAGGAGG
TCAGTAAACA AGAGAAGAAG GGGATACAACA ACTCAATTTC AGAGAAGAGG
ACCAAGAGCA GACAATACGA ATCAAGATGA ACAAAGAAAG AGAAAGAGGC
GCTAAACAGA AGAAGAGTAC ACCAAAGAAAG GTGATACATG TGAAGAGGC
ACTCTACGCA CAAATACCCA AGAGTCTGAG AGAGGAGAGG TAAAGAGGG
AGCAATTGCA ACCCAAGGA TGGGATGCAG ACTCATTTC TAAAGAGGG
ACAGACTGCG AAAGATTATA TGGAGAAAAA TGAAAGACAT AGGGTACCA
GTGGAGAGGA ATGAGAACGA ACCCAATTTG GCAAAATTG TAAAGAGAG
GAGTACCACT AGTCAAAGCA CGGACTTTCT TTTCCACCAT ACTGGAGATA
ACACCAAGTC GAAAGAAATG CAAATACGTCG GGATTTTTT GGGCAGACAC
ACATATATGA CCAGAAATCA GCCGAATGAG TTCAAAATGG TTCTAAGTTAT
TGCTCCATA ATGTTCTCAA ACAAAGATGCG GAGACTGGAGA AGAGGATATA
TGTTTTGAGG CAAAGATATG AAACTTAGAA CTCAATACCC TGGCAAAATG
CTGACAAAACA TGATTTGAGA ATTATTTGTC TGGTAGAGTG AAAGGATG
TGAAAAATATC CAACCTCCTCT TAATGAAAGG GACTGACTCG TGGAGCCCTG
GAATGATATG GGGCATGTTC AATATGTTAA GCACTGTATT AGGCGTCTCC
ATCCTGAAATC TGGCAAAAGA GAGATACCC AAGACTATTG ACGGTGGG
TGCTCTCAGA TCTCTGAGCG ATTTTGCTCT GATTGTGAAT GCACCCAATC
AGTAAAGGGGT TCAAGGGCGA GTGCAACAGTT TTATCGAACG CTTTAAGCTA
CTGGAATCA ATAGAGCAAA GAAAGATCT TACATGAACCA GAGAGATAC
ATTGGAAATTC ACAAGTTTTTTCTCTGTTA TGCTGTTTGG TCCAAATTTC
GCATGGACCT TCCTGGTTGG TTGCTGTTGCA AGATACACGC ATGGCGGAC
AGTGAATATG GAGTTACTGT CATCGAAATAC AATAGATGAA ACAAGGAC
TGCTGCCACA ACAGCTCAA TGGCCCTTCA AAGATTACCA GGACTCTGAC
GCTGCTTCCC GACGGAGGCC CAAATTATATA AACATATGAA ACCTCTCCACA
TTCTGAAGCT CTGGCTAAAA TTGGAATGGA TGAYGAAGCT TACCAAGGG
CTTTTATGCA ACCACCTGAA CCGATTGTGC ATGCATGAAGG AATATTGAACT
GAATGAACTAT CAGTGATGAA ACACTCTCCT GCTCTCCTCAA AAAAATGAG
AGTATGACG TGTTGCAACA ACACACTCCT GCTCTCCTCAA AAAAATGAG
GCTCTTCTGA AAAGAGGATCT TACACATGAA AATGTTATCT CTCAAGATGAA
ACAAATTTATTTGAGAAATG TCTCCCGACG AGGCGAAGCTT AATTTATAGT
CCAAAGGATGC TGGCAATTTAT TTGAAAATTT CTCCCCAGC AGTTCATACA
GAAGAAGCCC CGATTGATAT GAATGAGCACG TCTGTGATTC CTCAAGGCC
CGAATGAGAT CGACGTTGAA TTTCGAATCT ATGGATGATG GCAATGAAAT ATCCAATTAC
AGCAGACAAG AGTAGTGTGAC AAGTTGTTTT CCCTAACGAA GTGGGAGCCA
GGATACTAAC ATCGGAATCG CAACTAACGA TAACCAAAGA GAAGAAAGAA

PB2
ACGCAAAAGCCA GTGCAATATT ATTCGAATAG GAAGAATTTA AAGAACTACG (SEQ ID NO: 3)
AAATCAATAG TGCAAGCTCT GCAACCGCGA GATACCTACA AAAACCACCG
TGACACCATG GACCAATATC AACATATAC AATCAGAAAG AGCCGATATG
AACCCGACC TTAGGATGAA AAGGATGAGG GCAATGAATAT ATCCAAATTAC
ACGAGAATAAG AGATAAATGAA ATGATTTGCTGG TACAGAATAT GACGAGGCC
AAACTTATAG AGTAAATAGG AATGATGCCC GATCAACAGG AGTATGGAGTA
TCATCTCTGG CTGGAAAGTG ATGAAATGAG AAGCTACCCAA TACAAATTAC
AGCTCATTAT CATCAACTAT CAAAACATTG TTTGAAGAG GTGCAAGGCC
TAAAGCATTG AAGTTTTTTT CCTCTTCAAAT TACAAACTCA CTGCAAAAATA
GTGGCAAGAG TGGACATTTA CTTCTGACAT ATGACATCAG TGCAAAAGGC
GGCCACAGAT GATACATGAA AATTTTTTTC CTTAACAGGA ATGCAAGGCA
GGAAGAATAC ATGCAATACG GAAAGACGA TACCAAGAGA GAAAGAAGA
GAACTCCAGG ATTGCAAAAT TTCTCTTTTG ACGTTTCAT AGATTTGGA
GAGGAATCTG TCCTCCAAA CGAGATCTCT CCACGTTGCT GGTGAAACAA
GCAGTTGTAT CATTGAATGG TTTGCTTTGA CTCAAGAACA ATGCTGGGAA
CAGGCTGATA CTCAGGGAGG GGAGATGGAG AAGTATGATG TTGATCAAAG
CTTGATTTAC GCTGCTAGGA ACATAGTGAG AAGAGCTGCA GTATCAGCAG
ATTCAACAGG GTAATCTATG CATCAACTTT TAAGACATTT TCAGAAGGAT
TTGGATTTGG TTGAGGATGG TAGACA TC CT TAGGCAGAAC CCAACAGAAG AGCAAGCCGT
GGATATATGC AAGGCTGCAA TGGGACTGAG AATTAGCTCA TCCTTCAGTT
TGGCTGATATT CAAATTAAGG AGAACAGGCG GTACTCATG CAAAGAGAG
TAGAGATGCA TTAAGGGGAGC TTTTTTCAGA AAAACAGAAC AAATCATGGC GTCTCAAGGC ACCAAACGAT CTTACGACCA GATGGAGACT
GATGGAGAAC GCCAGAATGC CACTGAAATC AGAGCATCCG TCGGAAAAAT
GATTGGTGGA ATTGGACGAT TCTACATCCA AATGTGCACC GAACTCAAAC
TCAGTGATTA TGAGAGGAGT GCTGCTAGGA ACATAGTGAG AAGAGCTGCA GTATCAGCAG
TTCAACAGG GTAATCTATG CATCAACTTT TAAGACATTT TCAGAAGGAT
TTGGATTTGG TTGAGGATGG TAGACA TC CT TAGGCAGAAC CCAACAGAAG AGCAAGCCGT
GGATATATGC AAGGCTGCAA TGGGACTGAG AATTAGCTCA TCCTTCAGTT

NP
AGCAAAGACG GGGTAGATAA TCACCTCATG AGTAGACATCA (SEQ ID NO: 4)
AAATCATGGC GTCCTCAAGGC ACCAAACGAT CTTACGACCA GATGGAGACT
GATGGAGAAC GCCAGAATGC CACTGAAATC AGAGCATCCG TCGGAAAAAT
GATGGAGAAC CAGAAGGCTG CTGCTAGGA ACATAGTGAG AAGAGCTGCA GTATCAGCAG
ATGGTGCTCT CTGCTTTTGA CGAAAGGAGA AATAAATACC TTGAAGAACA
TCCGATGTCG GGGAAAGATC CTAGAAACC TGGAAGCCT ATATACAGGA
GAGTAACCGG AAATAGCAAG AGAAGACTCA TCCCTTAGTA CAAAGAGGAA
GAAAGGCUAA TCTGCGCCCA ACGTAAATAT GGGACAGTAG GAACGCTGAG
TCTGACTCAC AGTAGATCTG GCCATCCTAA TTGGAATGAT GGAACCTTATC
AGAGGATCAGG GTTCAACTCT CCTTAAAGGG TCTGGAACCG CAGGTCGCTG
AGTCAAAAGAA GTTGGACAAA TGGTGATGGA ATTGTCAAGA AGATGCAAAAC
GTGGAGTCAGA TTGTTGCAAAC TTTGGAAGGG TTTGAAAGTGG ACAGAGATA
AGATATCGCT ATGAAAGAAT GTGCAACATT CTTCAAAGGGA AATTTTCAAC
TGGTCGCAAA AAGGCAATGA TGGATCAAGT GAGAGAGGCG CCAAGCCCGA
GGAATGCCGA GTTCAACAGT GCTACACTTC TACAGCCCTG GTGACTCTAG
TTGAGAGGCT CAGTTGCTCA CAATTGCTTC CTCGCTCCTT GTGGAATGCG
ACCTGGCTTA GCCGAcGCTT GAGCAGTTTG AGGGAGAGAG TACCTCCTAG
TGCAAAATAGA CCTTTCCAGA CTGTCTCAAACAGGCAAGATGTAGAAGTACAA
AGTCAACCAAG ATGGAACATC ACGCAACAGT AGTCAACTCG TGTGGATGCG
AGTCCATTTT GCCGACATTG AGAGATCTAA AGATATGACG TCTCATGAAAG
GGACGAAAGT GCTCCCAAGA GGAAGGCTTT CCGTAAAGATGTGGAAGTT
GCTTACATG AAAAAATGGA GACGTAGGAA TCAAGTACAC TGGACTGGAAG
AAGCAGTACG TCGGGCCCAA ATCTACATAC ACCTACGTGTT CTGACATAGA
AGAAATCTCC TTTCAGCAAG ACAACACATT AGGCGAACAT TCAATGGGAA
TCAGAGGGGG AGAACAGCTG AGCAAGAGCC GCAAAAAAGA AAGAGCTTAAAG
AAATACTTGG CATGGAATTG CTAGAAAGATG ACAACATCAAG TGTGGCAAGT
CAGTAGACGCT TTGTCCAAGA GGAGCCGACG GTGCTCTTCTT TGTACATGAG
TAAAGAAGA TTTTCTTCTC TGGGAAGCAA TGCAGAGGAG TACGACATT
AAGAAAGATAG ACCTCTGTATT CTACT

M
AGCAAAAGCA GGTAGATATT GAAAGAGGAG TCTTCATACC GAGGTGAAGA (SEQ ID NO: 5)

CGTAGCTAC TCTCTGACCT CCGGAGCC TCCCTCAAGG GCAGATCCA
CGAGACTGG AGAGATCTCT TGGAGGGAAG AAGACACTGTC TGGAGGTCCT
CATGAATACG TCTTGAAGAA GACCCAGTCC GTCAACTGGT ACTGAAGCGA
TTTAAAGATG TGGTGTACAG CTCAAGTCGG CAGGTAGAGG AGGACTGCGA
CGTAGACCTT TCTCTCAGAA TGGGACGGAG ATCCAAATTA
CATGGAACCA ACTGAAATAC GGTATAGGAA GGTCAAGAGA GAGAAACAT
TCCATGGGGG CAAAGAATAC CCGAAGGTGT ATGCTGAGTT ATCAGCTCCC
AGTTGTATTG GCTCCATATA CAAAGGATGG GGGCTGTGGA CCACTGAAAT
GGCACTCGCC CGTGATATGG CAAGCTGGGA ACAGAGCGCT GCCCTCCAGC
ATCGGTCTCA TCGCAAAATG GTGCAACAAA CCAATCCACT AACAGACCAT
GAGAGACAAA TGTTTTTACG CAGACTACA GCTAACGCTA TGCGACCAAT
GGCTTGATCG AGGTAGAGAG CAGGCAAGGC CAGGGAGGTT GCTAGTCAAG
-continued

CTAGACAAAT GGTGCCAGCC ATGGAGACCA TGGGACTCA TCTAGCTCC
AGCTGCGTGCT TGAAAATAGA TCTCTTGGAA AATTTGCAGG CCTACGAGA
ACGAAATGGGG GTCGAGATGC AACGTTCAAA GTGACCTCT CACATTGCC
GCAAATACGA TGGAGAAGCT GCACCGACAA TGCGAGATCC TGAGATGCT
TTTTTTCAAA TGGATATTAC CTCGTTTAA AAGGAGACTG AAAAGAGGAGC
CTCTTACGGA AGGAGAGCA AAGATTGAGA GGAGAGATAA TGAGAGAAAG
CAAGCAAGAGCTGTCGAGATGC TGCGAGATCT CMTTTGTCGA GCATAGACT
GGAGTTAAA ACTCTCTTGT TCTACT

NS
ACCAAAACCA GGGTGACAAA AACAATAAGG ATCCACACAC TGGTCTAAGC (SEQ ID NO: 6)
TTTCAGCTAG ATTCTCTCT TGGCATATGC CGCAAGGAGG TGGACACCA
AGACTGAGCC GATGGGGCAT TTCTGATCGGT CAGAGAAAGT GATGAGAGAT
CCCTAGAGCG ACGCAAGGAGG ATCTCTCTCT TGGCATATGC CGCAAGGAGG
AGCAACTGGA GCAGACCTATG TTAAAGAGAGT ACTGAGGAGG ATCTCTCTCT
ACAGAAGATG TTGGAGATCT TGGGAGATTG GATGAGAGAT
GGAAAATGACAC CAGATAGAA TCGGGCTAGGG TGGGAAATTG GCAGAGGAGG
AGCAGAGGGT GCTTCCACAG AGTATAGAGG ATCCACACAC TGGTCTAAGC
TTCTCTCTCT TGGCATATGC CGCAAGGAGG TGGACACCA
AGACTGAGCC GATGGGGCAT TTCTGATCGGT CAGAGAAAGT GATGAGAGAT
CCCTAGAGCG ACGCAAGGAGG ATCTCTCTCT TGGCATATGC CGCAAGGAGG
AGCAACTGGA GCAGACCTATG TTAAAGAGAGT ACTGAGGAGG ATCTCTCTCT
ACAGAAGATG TTGGAGATCT TGGGAGATTG GATGAGAGAT
GGAAAATGACAC CAGATAGAA TCGGGCTAGGG TGGGAAATTG GCAGAGGAGG
AGCAGAGGGT GCTTCCACAG AGTATAGAGG ATCCACACAC TGGTCTAAGC
TTCTCTCTCT TGGCATATGC CGCAAGGAGG TGGACACCA
CTGAAAATTCATTTGAGAAACAAAGAAAAGAAATCTCTGGTACTGTGGGAT
ATTCATCACCCGCTTACAGTAAAGGA
ACACACAGATCTCTATCAGAACAAAGAACACTCTTTATATCTCTGTGAATCTTCAAA
TTATACACCCAGATTTACACCCGCTTACAGTAAAGGA
TAACGAAAGACAAAGAACACTCTTTATATCTCTGTGAATCTTCAAA
CTCTGTTTGAATCCGCACCTACATGAC
CTTTACCCAGTACATGACATGAACTTTGGAACCAGGAGTAAAGGCTTTGGGATCCGGCATCATCAC
CTCAAACGCATCAATGCACTAGTGAACAGTGTAACAGGA
ATACACACAGATCTCTTTATATCTCTGTGAATCTTCAAA
CTTACTGTTAACATGCACTAGTGAACAGGA
AAAAAGCACACAAAATGCCATTAACAG
GGATTACAAACAAGGTGAACACTGTTACAGAAAATGAACATTCAATTCACAG
CTTGTTTGAATAGAACTAACCCGTTACAAAATA
GAAACCCAAAGAACAACATCATGCACTAGTGAACAGGA
AACCCGCCCTTTGTTTGGGCTATATACAGCAAAGACAATAGCATAA
GAATTGGTTCCAAAGGAGACGTGTTTTT
GTCATAAGAGAGCCCTTTATTTCATGTTCTCACTTGGAATGCAGGACCTTTTTT
AGCAAAAGCAGGGGTTTAAAATGAATCCAAATCAGAAAATAATAACCATTGGAT (SEQ ID NO: 8)
CAATCTGTCTGGTAGTCGGACTAATT
AGCCTAATATTCGAATAAGGAAATATATCTCTCAATTATATGATATTTACCCATTAAATTTAA
CAAATCAGATCTCTTTATATCTCTGTGAATCTTCAAA
AATCGCAATGCACTAGTGAACAGGA
AACCCGCCCTTTGTTTGGGCTATATACAGCAAAGACAATAGCATAA
GAATTGGTTCCAAAGGAGACGTGTTTTT
GTCATAAGAGAGCCCTTTATTTCATGTTCTCACTTGGAATGCAGGACCTTTTTT
Influenza virus A/Hong Kong/213/2003 (H5N1, HK213) replicates systemically in chickens, causing lethal infection. Furthermore, this virus is lethal to chicken embryos. Thus, although its surface proteins are highly related to the currently circulating pathogenic avian influenza viruses, HK213 cannot be used as a vaccine strain as attempts to grow it in embryonated chicken eggs result in the production of poor-quality allantoic fluid. Additionally, the use of this highly virulent virus in the production of vaccines is unsafe for vaccine workers. To test the feasibility of using A/PR/8/34 as a master vaccine strain, the cleavage site of the hemagglutinin (HA) gene of HK213 (containing multiple basic amino acids) was mutated from a virulent to an avirulent phenotype (from RERRRKKR (SEQ ID NO:9) to TETR). A virus containing the mutated HA gene produced non-lethal, localized infection in chickens. Additionally, the mutated virus was non-lethal to chicken embryos. Thus, growth of the mutated virus in embryonated eggs yielded high-quality allantoic fluid, and in this attenuated form, the virus is safe for vaccine producers.

REFERENCES
SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 40
<210> SEQ ID NO 1
<211> LENGTH: 2233
<212> TYPE: DNA
<213> ORGANISM: Influenza virus

<220> COMPLEMENTARY DNA
<221> FEATURES:
<222> LOCATION: 1..2233
<223> NAME: KIND1
<224> DESCRIPTION: DNA base pair sequence.

SEQ ID NO 1

agcgaagca ggtacctgac ccaaattggaa gatttttgcc gacaattggtt caatccgtg
atgttcgag tggcggaaaa aacattgaga gatgttgggg aggacctgaa aatcgaagaacaattttagc agactacact ccaacctgcag ttgatgttctg agatatcttcc
agcagcagat ttgaaatat cggagaaaga gatcgcacaag tggctttgca aagtagtaac
agaatttgg aacatacagg ggtctgagaa ccaagtttcc tacagatttt gtagattac
agagagacta gactcaagct aatttgtaga acaagaggag aagttcactat tatactcttg
ngaagggcga ataaatttac atctgagaaa acaacatgcc atctttcttc gcatacctgg
aggaagatgg caacaaaggg agagactacat otgagatag aagagcaggg taggtcaca aaccagactat acaccatag lcogacagag gccttgctgaa tcttcttgtg
caagttcagaa gaggagaga caaattgga gaaagttctt aatcagacag aacaaatttt
agctgtgacc acaacagtct ccgcccagcc tcctccagcc tgaaatttt tagagctat

US 8,475,806 B2

World Health Organization TSR No. 673 (1982).

All publications, patents and patent applications are incorporated herein by reference. While in the foregoing specification this invention has been described in relation to certain preferred embodiments thereof, and many details have been set forth for purposes of illustration, it will be apparent to those skilled in the art that the invention is susceptible to additional embodiments and that certain of the details described herein may be varied considerably without departing from the basic principles of the invention.
gtgagatgat tcgaacccaa cggtacatt gaggcaagc tgttcaaat gtccaaagaa 780
gtaaatgcta gaattgaac tttttgaa aacaacccac gaccaacttag actccggaat 840
ggggccctct tctttcagct gtcbaacctc ctgcagattg attacatgaa 900
gaggacccaa gtcataggg agaggaata agcgtatagc atgcctacaat atgcatgaga 960
aatcctttgc attacatgaa accccaattt gccaaacctc gcagaaaggg aataatcct 1020
aatcatcttc tgcatagga gcaagtacct gcagaactgc aggaacctga gataggagag 1080
aaatcttca agacataaaa tatgaagaaa aaatgtgaaag actggtgtgag 1140
aacatggttc cagaaagaggt gacaccttgaa atgtaggtgag tttgaagcaas 1200
tatgatagt atgaacccga atggaggtcg ctgcaagttt ggtatcagaa tgtgttac 1260
aagcgatgcg aactgcagaa tccagctgg atagagcttg atgagatggtg agaagatgtg 1320
gtcccaatgt aacacactgc aagcatgaga aggaattatt tcacatcaga ggtgcctcac 1380
tgcagagcca caaagctgcctt gtcatagga aatagacggag 1440
tttgtcag caattgagta tcttcacatc tcacactgtg aagcatgaga 1500
gaggggaagg gcgaagccaa ctggtagtttg ttgcatagag ttaaaatgaa 1560
aatcagcag ctggtcttgg cctttgtggaa ctgcagaaag ccacatcaga 1620
gacaccacata aacgttggag ctgcgctagt attgaagact gcggatgcc 1680
agcagatgcg gcagatagtt ttcgccagac cagccggtta accattcctt 1740
atataatgtg cctggttatt tttgaaaact cgtgtatatt gcaatgag 1800
agagaagtc gcgattgcag ctgctctcct tcacactgtg aagcatgaga 1860
gacaataagctc gacatcagac cagccggtta accattcctt 1920
attggagag ttcgcagac tttttgctt gcgattgcag ctgctctcct 1980
ccacacattc cagcaattgc gccatgagtt gcgcttgcac tttttgctt gcgattgcag 2040
caatctagag cagcctcgg acgagacttg acctgtgttt gccatgagtt gcgcttgcac 2100
tccaggcagt ctgctctcct gcgattgcag ctgctctcct 2160
tggtgcacat cacaagcttc cagccggtta accattcctt 2220
cctgctttct act 2233

<210> SEQ ID NO 2
<211> LENGTH: 2341
<212> TYPE: DNA
<213> ORGANISM: Influenza virus
<400> SEQUENCE: 2
agcgaaagca ggcaacacat ttgaatggat gtcaatccga ccttactttt cttaaaagtt 60
cagccacaaa atggatagc cacaattttc cttttaccgt gcaccccttc ttaagcctt 120
agggcgccaa cagcatcagc catgatagc tcggactgg cacaactactgc ttcagaaag 180
ggagactgca ccaacacac gcagactgtg gcaccccttc ttaagcctt 240
gtccgacag cacaaraacg aagtgtttat gcgcacacag atgtgtgttt gccagccagt 300
gttttccttg ggaattaacc tttttgctt ttggaagact ctgtttgatt aagcagag 360
gtggttcac gaaacagcag agacactagt gcaccccttc ttaagcctt 420
tcaattgacac ccacactgc ttcggcccaa cataagact gcgtcagaaa 480
aatgggactc gcgggtaagc gctgcttttt cctaaagct gcgggtgaga 540
toaatgacac aagaagata gcgggtgaga actcattttc agagaagagc 600
gacaatatga ctgaagaaat gataacacag agaacaatgg gtaaaaagaa gcagagattg
660
aacaaaagga ggtatcctaa tagagctctg acocctaaca caagacccaa aaagtcgtgag
720
agaagggaag ctaaaacctga agcagcaagga cccaaaggtga gcagataagtag gggtttaa
780
taattgttg agcacagggg aagagagtata tggagaaac ttgaaacatg aggggttgcac
840
gtgaggagca ataggaagaga agcaagaagt gcaaatagtg taagagagat gtagcaccat
900
toctcagaca caagactctc tttcactact actgagatata acacaagatt gaacagcaat
960
cagaacccgc ggtgatttct tgcacacgac atatagatga ccagaaatca gcccgaatgg
1020
ttcagaaagt ttttaaatgatat ggttccaata aataatgctga acaaatggga gagaatggag
1080
aaagaggtta ttgtcggag cagagattg aacacttgaat ccacagatgg tggcaaacat
1140
cagacaagca tcgattgaaa atatcctaat gatctccaca gaaagaagat ttggaaaaac
1200
cagagacgtc ttaaatccgg gactgtcata tggagccctc gaaccgaagaagaatctgtcttg
1260
aatataac gaagctgatt gggcttccc atcctgcctgc gcttcttctta ctggtaagttt
1320
acgaccgcc tcaaggggag caagagcggc tcgagcaggt tttttccagg tggagttattc
1380
tgtggaaatc atggcagcag aatgctctac aggggatcgg ggcgtgcgtgg attctctgtt
1440
tcggactaa atatagacag cagagccagc atatagcatt atgatgaaggg tggagggagt
1500
acaagtttttc tttatcggaa ggctgtaaat gctgggaaa tggccccttc gcgatcagtt
1560
aggggtggtgc gataacacgag tggagcaggac atagagttag ggtgtacagt tatcaaaaa
1620
aatataaga caagacagtt ggtgattcct gcgctcaagc ctgatatggc acctggattc
1680
acaacaggta gccacagact ataggggaag caacatcagc tcgtcttttc gaagagttgg
1740
tcattgaaa taagaaaact gttggacacaa accgttgcct caaggganct ctggatttcc
1800
gacggagcc caaatttaata caccagtaga atacggcaca ttcctggaat ctggctaaaa
1860
tggagattca atgattgagc ttcaccggag ctgatttcga accacgttca cccattttgc
1920
agcctcaag aatagagaat ataggggaag caacatcagc tcgtcttttc gaagagttgg
1980
aaaaagatgg agtagtagtc gttgacacta caaccacccct gcgctcaagc ctgatatggc
2040
tcataattca atacaagcact aatgacagc tggggatgta ccaaaaaaag ccaaaagagc
2100
tgagctctac gttcagagag cggcatcgggc gagacagatgg gagatgcgtag gggagatg
2160
agtagtgctgg cggcttgcct ctggagacag cggcatcgg gcggtagagc gggagatg
2220
ggaagagttta aagaaagacag atgtgtaggg caagagagag ctcgctcgc cctcaggtct
2280
tctcagaggg cccaaaaagt tttgaggct ttcctgttct gtaaaatgcc tgggagatc
2340
tt
2341
agcaaaaagca ggtgtagatct ctcattgtaga attgcattc ctcctttctgt 60
acccaaatct cacaacctta ttggaaaga gtcgaaaggc taaagcatgg aacctttggc 120
agagcatcgc tggaaaataat gatgggtgaa attggaggtat tctacatca aatgtgcaacc 180
gaacctcaac tctgtgttaa tgggaggggg tggatccaa acagcctaa cctagtgag 240
atggtgctct atgccttggct gaaagaagga aatgaataac atgggagaa ctttgtgag 300
ggagaaagtc ctgaagaatcc tatacatgaa gtaaaagaag aatgtgag 360
agagaactca ctcttgcttgt atgatcactgt cttgcaatgt ggcctacaa aatgtgag 420
gaaatagagaga cttgctattat cgcacgagaa tggagatcag agatgtgactt 480
cgaactctac agacgagaa cgcctcttgc cgcacgagaa tggacatcag gatatgctct 540
tgtgtaagct gttaactctt ccttagaggct tggagacgct cagcttggtgc gttcagaa 600
gttgaaacaa tggagtgtga attggcaga atatcagac aaccacgtgat ggagctgaa 660
ttcctgaggg gttagaattg agaaaaaaca gaattggctt atgaaagat gtgtcagcctt 720
tcataaaggg aatcctcaca atgtgcaaa aaccgaagta tttgctagct gagaagagc 780
cggaacccag ggaatatgctt gttgaagact ctacatttc ttcgcggtgc tgcacactaa 840
ttggacgctg cggcctcttc ggtccctttg cccacggtct tgcacatcag 900
gcgggtggtt gagaacgctg cccctcagct cgggttgcgc gacgctttga gacggacgctg 960
gcggagatgg gaagagagag tggagatcag gttgaaacaa aatgtgag 1020
tttgctccaac aaccagctct cggcctttgc cgcacgagaa cgccttcaca aaccacgctc 1080
gatgagctaa ggaatggtct cagctcttcc atgtgctgct gttgaagact ctacatttc 1140
tcataaaggg gaaatgctgct cgcctctttc ggcctacaa aaccacgctc 1200
tttggggtc gacgcagcta cgccttttc ggcctacaa aaccacgctc 1260
atcagcatc aaccacgttt ctcgcattca gaaatctcct ctcgttccag cgggttgcgc gacgctttga gacggacgctg 1320
atgagctaa ggaatggtct cagctcttcc atgtgctgct gttgaagact ctacatttc 1380
tcataaaggg gaaatgctgct cgcctctttc ggcctacaa aaccacgctc 1440
tttggggtc gacgcagcta cgccttttc ggcctacaa aaccacgctc 1500
ctctattttc tggagacaa tgccagagag tagcactctt aagaaaaaat aaccacgctc 1560
cctact 1565

<210> SEQ ID NO 5
<211> LENGTH: 1027
<212> TYPE: DNA
<213> ORGANISM: Influenza virus
<400> SEQUENCE: 5
agcacaagca gctgagtatt tgaagaatcc gggctgaaaa gctagcatt 60
cctatcact cctctgaggct cctcaaaaaa aacatctgct gtagctattt 120
tgacagggaa aaccagcctg tgtaggttct ctagaattg ctaaaagca gaccacctct 180
gctacacttg ctaaaagca gaccacctct 240
tgagctcaag ctgtagacgct cctctgaggg ttttgggaaa gtagctattt 300
cctctgaggg ttttgggaaa gtagctattt 360
camgtggttc acctgccagc cgggtggcgt cagctcttgt gtagctattt 420
camgtggttcacctgccagc cgggtggcgt cagctcttgt gtagctattt 480
camgtggttcacctgccagc cgggtggcgt cagctcttgt gtagctattt 540
camgtggttcacctgccagc cgggtggcgt cagctcttgt gtagctattt 600
gggagagttg gttgagagttg gttgagagttg gttgagagttg gttgagagttg 660

US 8,475,806 B2
-continued
ggtgcaagcg atgagaacca ttgggactca tcctagctcc agtgctggtc tgaaaaatga 720
tcttcttgaa aatttgcagg cctatcagaa acgaatgggg gtgcagatgc aacggttcaa 780
gtgatcctct cactattgcc gcaaatatca ttgggatctt gcacttgaca ttgtggattc 840
ttgatcgtct ttttttcaaa tgcatttacc gtcgctttaa atacggaatg aaaggagggc 900
ccttcaacga gagggtgcga aagctctatga gggaagaata tcgaaaggaa cagcagagtg 960
cctgtggatgc tgacgatggt cattttgtca gcatagagct ggagtaaaaa actaccttgt 1020
tttact 1027

<210> SEQ ID NO 6
<211> LENGTH, 890
<212> TYPE, DNA
<213> ORGANISM, Influenza virus
<400> SEQUENCE, 6
agcaaaagca ggtgcaaaaa aacataatgg atccaaacac tgtgtcaagc tttcaggtag 60
attgctttct ttggcatgtc cgcaaacgag ttgcagacca agaactaggc gatgccccat 120
tccttgatcg gccttcgccga gatcagaaat ccctaagagg aaggggcagt actctcggtc 180
tggacatcaa gacagccaca cgtgctggaa agcagatagt ggagcggatt ctgaaagaag 240
aatcgatga ggcactttaa atgaccaggg cctctgtaac tgcgtcgtgc tacctgaactg 300
acatgtctt tgaaggaagt ctcagggact gttctgtgtc gactctgcgc tctctctctc 360
cagccctct cttgtctaga atgaaggtgg cagaactctc tctccagaag cattctcact 420
cgaacctcg tgcggatttt gacgccgtgg agaactctta attgctcttc gtttccgagc 480
agaggggc gaaatttgcc gaaatttcac ccttcctcac tcctttgacc cattctcttc 540
agaggtcaaa aatgctaat gtagagctca ctagctgtat cagaaaaggg 600
ttcggcttc tgcagactca cagaggactg cttggagaag ctaaacctca cttcagcagt 660
tcctactcct tcccagacct aacagcagaag ggtggaagc aattaggtca gcacagagtg 720
gagaagtc gagctcagag tcagctgatt acagttcagg gtttaagattatttagttccctt 780
gagaatagcc ccattctctct cagctgcggct tggcgacccct acacacacgt tcagagatc 840
actttctgt ttcaggttta ttagctactaa aaaaaaaccct tgggctctgta 890

<210> SEQ ID NO 7
<211> LENGTH, 1775
<212> TYPE, DNA
<213> ORGANISM, Influenza virus
<400> SEQUENCE, 7
agcaaaagca ggggaaaata aaaaaaaccct aatgagaagc aacattctactg tgcctgatt 60
gtcgactttgc agtgcgagat gcagacccaa tatgtatagg ctacagtccg aaccacttca 120
cgcagcagct tgcacactgt cttggagaag cttggatcct gcgaactcct ccggctgtcg 180
tggagacag ccacaaagga aactatagta gatttaaaag aatgcgacca cttcagatgg 240
gggattcata ctcgagccga ctgctctcgg gaaacccaca agatggagc cttgggccagc 300
tggagtcacg tgcctacttg tgggaacaac caaactctga gaattggattatttagtttt 360
gagattctgt cgcagatagc gatgcggagc aagctatcag tccaagctgc cttcagatgg 420
ggggccccaa atttgtcatgc ggcccaacca cacaacaccg ggtagaacgg 480
cgcagcagct tctgagaggg ggagagttgt tttagacaga ttttagatgg cttggcagc 540
agaggggcct ataccccact cggaaaaaagg cagcagagtg 600
ttgtactgct gggtatctat caccgcctta acaatgaagga acaacagaaat ctctatcaga 660
atgaaaatgc ttatgtctct gtagtgactt caaatttataa caggagatatt accocggaaa 720
tagcgaagaa aagcaaggtg angaatcaag ccggagaggt gactaattac tgcgaccttg 780
taaacccgg agacaaataa ataatggagg cagatgaaa ctctatagca caatgatgtg 840
cctctgcaat gtagtgagggt tttgggtccg gcatctacac cttacaagcga tocctacag 900
agtgtcacaac gaagttgcaaa acaacctgctg gacgtagtcaaa cagcattcatc cttacacag 960
ataacaccag acgtaaatta gaagagtgcc caaatagctg gagggtgccc aatctgagaa 1020
tggttaacg ataatggagac atctctgcaaa tcaatcagag cggctatattg gagaacccttg 1080
cggttttat tgaaggggga ttagaattgc ttagtattgt tagtattacat tatacatac 1140
aggtgtaaca ggcagatgct gtagtgcaaat ttatgcagaag caaatgatgtg cttcttggct 1200
agactaatc aacaggaactg acgtgactt gttcagagga tgaatgattct tttgggtgac 1260
taaacagatt caaacataaa gagaagatgt aagaaaaaatt aataacagat gcctattggt 1320
gttctgggt tactgactca aatctgaatt gtaagttgcag aagagttgga atggggatat 1380
taaacatgtc cccatctttt ctcctgacag aagagttgac aagagttgtgc gttcttggct 1440
agataaatgc gtagaatgtg gtttcttggct cttccagaaag aatctttgag gagaggaat 1500
acggcatgga aagtgaagaat acgggtttaat caaatgatgtg tttgggtgac gttcttggct 1560
agataaatgc gtagaatgtg gtttcttggct cttccagaaag aatctttgag gagaggaat 1620
tggcagatc tcaactgctg cacagcttcag tggtgtgtttt gtttcttggct cttccagaaag 1680
tttctgctg gtattcttctg cttccttggct cttccagaaag aatctttgag gagaggaat 1740
tcagagacag gtagaatgtg gtttcttggct cttccagaaag aatctttgag gagaggaat 1800

<210> SEQ ID NO 8
<211> LENGTH: 1413
<212> TYPE: DNA
<213> ORGANISM: Influenza virus
<400> SEQUENCE: 8
agcaaaagca ggggtttaaa atgaatccaa atcagaaaat aataaccatg gcatcaatct 60
gcatcagagt gcgcaatatt agcataaatg tcgatcaggg gatataatac tcaataggg 120
ttagcaacct caccgcctta acaatgaagga acaacagaaat ctctatcaga 180
ttaactataa aacagcaaaac tgggttaaggg acaacatctg aacacccaagt gttcttacat 240
catcctgtt cttccttggct ggtgggtcata tataagctt gttcttacat 300
gtctcaaaaag agcagtttttt tgcataaaaag agcctttttt ctcctgtt 360
gcagagacctt tttttctgcac caagctgcttc tacagacatc aagcagaatc 420
ttaaggagac gacagccccct tggatgtgctg tttgggtgac gttcttggct 480
cgtcttttctt cttcttgcaag tattgcaaaa ataatcttgc tttgggtgac 540
gcagagacctt tttttctgcac caagctgcttc tacagacatc aagcagaatc 600
cgctgttctt cttctttctg tttcttgcaag tattgcaaaa ataatcttgc tttgggtgac 660
cgctgttctt cttctttctg tttcttgcaag tattgcaaaa ataatcttgc tttgggtgac 720
ggctgttctt cttctttctg tttcttgcaag tattgcaaaa ataatcttgc tttgggtgac 780
tgaaatctgct gtagtgactt caaatttataa caggagatatt accocggaaa 840
taggcttttctt cttctttctg tttcttgcaag tattgcaaaa ataatcttgc tttgggtgac 900
agctggttcctgcttggctt cttctttctg tttcttgcaag tattgcaaaa ataatcttgc tttgggtgac 960
aagatggagc aggcagctgt ggtccagtgt atgttgatgg agcaaagggga gtaagggat 1020
tttcatatag gtatggtaat ggttctggga taggaaggac caaagtccac agtccagac 1080
atgggtttga gatgatttgg tgaggcaaga tgttgtggca 1140
atcctgagct gacagggcta gacgacctaa agaaaaaaca 1200
agtagtctgt tcaaaaaact 1260
gacgacctaa agaaaaaaca atctggaact tagcagcag catttttttt tttggtgcgtga 1320
atagtgatcg tctggtcag gctgtgtgca agcagcgtga gttccatctc 1380
agtagtctgt tcaaaaaact act 1413

<210> SEQ ID NO 9
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic primer
<400> SEQUENCE: 9
cacacaggt tctcggagac gaaagcaggt c 31

<210> SEQ ID NO 10
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic primer
<400> SEQUENCE: 10
ggttctgat tttgtgtctca cc 22

<210> SEQ ID NO 11
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic primer
<400> SEQUENCE: 11
ccaggacact gaaatttttct tcac 24

<210> SEQ ID NO 12
<211> LENGTH: 35
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic primer
<400> SEQUENCE: 12
cacacaggtc tctattagt agaaacaagg cattt 35

<210> SEQ ID NO 13
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic primer
<400> SEQUENCE: 13
cacacaggtc tccgggagcg aaagcaggtc 30

<210> SEQ ID NO 14
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic primer

<400> SEQUENCE: 14

cacacagtc tccctattagt agaaacagtga

<210> SEQ ID NO 15
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic primer

<400> SEQUENCE: 15

ctcctctgtc ggctgaca

<210> SEQ ID NO 16
<211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic primer

<400> SEQUENCE: 16

cacacagtc tccctattagt agaaacaggtta

cacacagtc tccctattagt agaaacaggttc

cacacagtc tccctattagt agaaacaggttt

cacacagtc tccctattagt agaaacaggtttt

cacacagtc tccctattagt agaaacaggttttt

<210> SEQ ID NO 17
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic primer

<400> SEQUENCE: 17

cacacagtc tccctattagt agaaacaggtta

cacacagtc tccctattagt agaaacaggttt

cacacagtc tccctattagt agaaacaggtttt

<210> SEQ ID NO 19
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic primer

<400> SEQUENCE: 19

cacacagtc tccctattagt agaaacaggtta

cacacagtc tccctattagt agaaacaggttt

cacacagtc tccctattagt agaaacaggtttt

cacacagtc tccctattagt agaaacaggttttt
<210> SEQ ID NO 21
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic primer

<400> SEQUENCE: 21
 cacacacgtc tcggsgacca aagcagggt a 31

<210> SEQ ID NO 22
<211> LENGTH: 38
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic primer

<400> SEQUENCE: 22
 cacacaggtc tccgggagca aagcaggag t 31

<210> SEQ ID NO 23
<211> LENGTH: 38
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic primer

<400> SEQUENCE: 23
 cacacaggtc tccgggagca aagcaggag t 31

<210> SEQ ID NO 24
<211> LENGTH: 38
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic primer

<400> SEQUENCE: 24
 cacacacgtc tcggsgagc t aagcagggt a 31

<210> SEQ ID NO 25
<211> LENGTH: 38
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic primer

<400> SEQUENCE: 25
 cacacacgtc tcggsgagc t aagcaggta g 31

<210> SEQ ID NO 26
<211> LENGTH: 38
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic primer

<400> SEQUENCE: 26
 cacacacgtc tcggsgagc t aagcaggt a a 31

<210> SEQ ID NO 27
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic primer
<400> SEQUENCE: 27

cacacagtctcgggagcaaaagcagggtg

<210> SEQ ID NO 28
<211> LENGTH: 37
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic primer

<400> SEQUENCE: 28

cacacagtctcctattagt agaaacaagggtggtttt

<210> SEQ ID NO 29
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic vector sequence

<400> SEQUENCE: 29

gggttattggagacggtaccgtctcctccc

<210> SEQ ID NO 30
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic vector sequence

<400> SEQUENCE: 30

gggggagga gacggtaccoctcctccc

<210> SEQ ID NO 31
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic vector/influenza viral cDNA sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1) ... (18)
<223> OTHER INFORMATION: n = A, T, C or G

<400> SEQUENCE: 31

cgtctctagtgtaagaa

<210> SEQ ID NO 32
<211> LENGTH: 17
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic vector/influenza viral cDNA sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1) ... (17)
<223> OTHER INFORMATION: n = A, T, C or G

<400> SEQUENCE: 32

ttttgctcccngagacg

<210> SEQ ID NO 33
<211> LENGTH: 17
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic vector/influenza viral cDNA sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)...(17)
<223> OTHER INFORMATION: n = A,T,C or G

<400> SEQUENCE: 33

cgtctcnggg agcaaaa

<210> SEQ ID NO 34
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic vector/influenza viral cDNA sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)...(18)
<223> OTHER INFORMATION: n = A,T,C or G

<400> SEQUENCE: 34

ttctactaat angagacg

<210> SEQ ID NO 35
<211> LENGTH: 11
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic vector/influenza viral cDNA sequence

<400> SEQUENCE: 35

tattagtaga a

<210> SEQ ID NO 36
<211> LENGTH: 10
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic vector/influenza viral cDNA sequence

<400> SEQUENCE: 36

ggsgagcaaaa

<210> SEQ ID NO 37
<211> LENGTH: 15
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic vector/influenza viral cDNA sequence

<400> SEQUENCE: 37

gggtattag tagaa

<210> SEQ ID NO 38
<211> LENGTH: 13
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: A synthetic vector/influenza viral cDNA sequence

<400> SEQUENCE: 38
	ttttgtcucci cc
What is claimed:

1. A plurality of influenza virus vectors for high titer reassortant recombinant influenza virus production comprising:
 a plurality of vectors for vRNA production comprising:
 a vector comprising an influenza virus PA cDNA having
 SEQ ID NO: 1;
 a vector comprising an influenza virus PB1 cDNA having
 SEQ ID NO:2;
 a vector comprising an influenza virus PB2 cDNA having
 SEQ ID NO:3;
 a vector comprising an influenza virus NP cDNA having
 SEQ ID NO:4;
 a vector comprising an influenza virus M cDNA having
 SEQ ID NO:5;
 a vector comprising an influenza virus NS cDNA having
 SEQ ID NO:6;
 a vector comprising an influenza virus H5 HA cDNA;
 and
 a vector comprising an influenza virus NA cDNA that
does not include sequences for a polypeptide encoded by
SEQ ID NO:8,
 wherein each vector for vRNA production further comprises
 a RNA polymerase I promoter and a RNA polymerase I terminator operably linked to the influ-
 enza virus cDNA, and wherein the sequences in the vectors for vRNA production are those for a reassor-
 tant influenza virus; and
 a plurality of vectors for mRNA production comprising:
 a vector comprising a promoter operably linked to a
 DNA segment encoding influenza virus PA;
 a vector comprising a promoter operably linked to a
 DNA segment encoding influenza virus PB1;
 a vector comprising a promoter operably linked to a
 DNA segment encoding influenza virus PB2, and
 a vector comprising a promoter operably linked to a
 DNA segment encoding influenza virus NP.

2. A method to prepare influenza virus, comprising con-
tacting a cell with the plurality of vectors for vRNA produc-
tion and the plurality of vectors for mRNA production of
claim 1, so as to yield an infectious reassortant virus.

3. A plurality of influenza virus for high titer reassortant recombinant influenza virus production comprising:
 a plurality of vectors for vRNA production comprising:
 a vector comprising an influenza virus PA cDNA includ-
ing sequences that encode a polypeptide encoded by
SEQ ID NO: 1;
 a vector comprising an influenza virus PB1 cDNA includ-
ing sequences that encode a polypeptide encoded by
SEQ ID NO:2;
 a vector comprising an influenza virus PB2 cDNA includ-
ing sequences that encode a polypeptide encoded by
SEQ ID NO:3;
 a vector comprising an influenza virus NP cDNA includ-
ing sequences that encode a polypeptide encoded by
SEQ ID NO:4;
 a vector comprising an influenza virus M cDNA includ-
ing sequences that encode a polypeptide encoded by
SEQ ID NO:5;
 a vector comprising an influenza virus NS cDNA includ-
ing sequences that encode a polypeptide encoded by
SEQ ID NO:6;
 a vector comprising an influenza virus H5 HA cDNA;
 and
 a vector comprising an influenza virus NA cDNA that
does not include sequences for a polypeptide encoded
by SEQ ID NO:8,
 wherein each vector for vRNA production further comprises
 a RNA polymerase I promoter and a RNA polymerase I terminator operably linked to the influ-
 enza virus cDNA, and wherein the sequences in the vectors for vRNA production are those for a reassor-
 tant influenza virus; and
 a plurality of vectors for mRNA production comprising:
 a vector comprising a promoter operably linked to a
 DNA segment encoding influenza virus PA;
 a vector comprising a promoter operably linked to a
 DNA segment encoding influenza virus PB1;
 a vector comprising a promoter operably linked to a
 DNA segment encoding influenza virus PB2, and
 a vector comprising a promoter operably linked to a
 DNA segment encoding influenza virus NP.
4. A method to prepare influenza virus, comprising contacting a cell with the plurality of vectors for vRNA production and the plurality of vectors for mRNA production of claim 3, so as to yield an infectious reassortant virus.

5. A plurality of influenza virus vectors for higher reassortant recombinant influenza virus production comprising: a vector comprising an influenza virus PA cDNA having SEQ ID NO: 1; a vector comprising an influenza virus PB1 cDNA having SEQ ID NO:2; a vector comprising an influenza virus PB2 cDNA having SEQ ID NO:3; a vector comprising an influenza virus NP cDNA having SEQ ID NO:4; a vector comprising an influenza virus M cDNA having SEQ ID NO:5; a vector comprising an influenza virus NS cDNA having SEQ ID NO:6; a vector comprising an influenza virus NA cDNA that does not include sequences for a polypeptide encoded by SEQ ID NO:7; and a vector comprising an influenza virus NA cDNA that does not include sequences for a polypeptide encoded by SEQ ID NO:8, wherein each vector for vRNA production further comprises a RNA polymerase I promoter and a RNA polymerase I terminator operably linked to the influenza virus cDNA, and wherein the sequences in the vectors for vRNA production are those for a reassortant influenza virus; and a plurality of vectors for mRNA production comprising: a vector comprising a promoter operably linked to a DNA segment encoding influenza virus PA; a vector comprising a promoter operably linked to a DNA segment encoding influenza virus PB1; a vector comprising a promoter operably linked to a DNA segment encoding influenza virus PB2, and a vector comprising a promoter operably linked to a DNA segment encoding influenza virus NP.

6. A method to prepare influenza virus, comprising contacting a cell with the plurality of vectors for vRNA production and the plurality of vectors for mRNA production of claim 5 so as to yield an infectious reassortant virus.

7. A composition comprising the plurality of vectors of claim 1, 3 or 5.

8. The plurality of vectors of claim 3 or 5 wherein the vectors for mRNA production further include a vector comprising a promoter operably linked to a DNA segment encoding influenza virus HA, a vector comprising a promoter operably linked to a DNA segment encoding influenza virus NA; a vector comprising a promoter operably linked to a DNA segment encoding influenza virus M1; a vector comprising a promoter operably linked to a DNA segment encoding influenza virus M2; or a vector comprising a promoter operably linked to a DNA segment encoding influenza virus NS2.

9. The plurality of vectors of claim 3 or 5 wherein the RNA polymerase I promoter is a human RNA polymerase I promoter.

10. The plurality of vectors of claim 3 or 5 wherein all of the vectors for mRNA production comprise a RNA polymerase II promoter.

11. The plurality of vectors of claim 3 or 5 wherein each vector for vRNA production is on a separate plasmid.

12. The plurality of vectors of claim 3 or 5 wherein each vector for mRNA production is on a separate plasmid.

13. The plurality of vectors of claim 3 or 5 wherein each of the vectors for mRNA production further comprise a RNA transcription termination sequence.

14. The plurality of vectors of claim 3 or 5 further comprising a vector comprising a promoter linked to 5′ influenza virus sequences comprising 5′ influenza virus noncoding sequences linked to a cDNA of interest linked to 3′ influenza virus sequences comprising 3′ influenza virus noncoding sequences linked to a transcription termination sequence.

15. The plurality of vectors of claim 14 wherein the cDNA of interest is in the sense orientation.

16. The plurality of vectors of claim 14 wherein the cDNA of interest is in the antisense orientation.

17. The plurality of vectors of claim 14 wherein the cDNA or interest comprises an open reading frame encoding an immunogenic polypeptide or peptide of a pathogen or a therapeutic polypeptide or peptide.

18. The method of claim 4 or 6 further comprising isolating the virus.

19. A method to prepare a gene delivery vehicle, comprising: contacting cells with the plurality of vectors of claim 14 in an amount effective to yield influenza virus, and isolating the virus.

20. An isolated virus obtained by the method of claim 19.

21. An isolated cell contacted with the plurality of vectors of claim 14.

22. An isolated cell infected with the virus of claim 14.

23. The method of claim 4 or 6 further comprising a vector comprising a promoter operably linked to a DNA segment encoding influenza virus NA, a vector comprising a promoter operably linked to a DNA segment encoding influenza virus M1, a vector comprising a promoter operably linked to a DNA segment encoding influenza virus M2, and a vector comprising a promoter operably linked to a DNA segment encoding influenza virus NS2.

24. The method of claim 23 further comprising a vector comprising a promoter linked to 5′ influenza virus sequences comprising 5′ influenza virus noncoding sequences linked to a cDNA of interest or a fragment thereof linked to 3′ influenza virus sequences comprising 3′ influenza virus noncoding sequences linked to a transcription termination sequence.

25. The method of claim 24 wherein the cDNA of interest comprises an open reading frame encoding an immunogenic polypeptide or peptide of a pathogen or a therapeutic polypeptide or peptide.

26. The method of claim 24 wherein the cDNA of interest is in the sense orientation.

27. The method of claim 24 wherein the cDNA of interest is in the antisense orientation.

28. The method of claim 4 or 6 further comprising isolating the virus.

29. The plurality of vectors of claim 3 wherein the cDNA for PA, PB1, PB2, NP, M and NS has at least 90% nucleotide sequence identity to SEQ ID NOs:1-6 or the complement thereof.

30. The method of claim 4 wherein the cDNA for PA, PB1, PB2, NP, M and NS has at least 90% nucleotide sequence identity to SEQ ID NOs:1-6 or the complement thereof.

31. The plurality of vectors of claim 1 or 3 wherein the H5 HA is a mutant H5 with an avirulent cleavage site.

32. The method of claim 2 or 4 wherein the cDNA for H5 HA is a mutant H5 with an avirulent cleavage site.