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(57) ABSTRACT 

In accordance with some embodiments, systems, methods 
and media for determining object motion in three dimen­
sions using speckle images are provided. In some embodi­
ments, a system for three dimensional motion estimation is 
provided, comprising: a light source; an image sensor; and 
a hardware processor programmed to: cause the light source 
to emit light toward the scene; cause the image sensor to 
capture a first defocused speckle image of the scene at a first 
time and capture a second defocused speckle image of the 
scene at a second time; generate a first scaled version of the 
first defocused image; generate a second scaled version of 
the first defocused image; compare each of the first defo­
cused image, the first scaled version, and the second scaled 
version to the second defocused image; and determine axial 
and lateral motion of the object based on the comparisons. 

24 Claims, 10 Drawing Sheets 

1002 

GENERATE SCALtD VER'ilO'.\SOf A FJR'iT IMAGE Of SPECKLE AT A 
V 1\RJFTY OF',\ 1\1 FS 

PERFORM A 20 CROSS CORRELA Tl ON OF THE FJRSTJMAGF. AT EI\Cll 
SCALE \VITII A SECO:\JD !MAG[ or SP[('Kl[ 

SELECT A SCALE AT WHICH THE LARGEST CROSS-CORRELATIO:\ JS 
PRODUCED FOR MOVEMENT OF A\ OBJECT IN TIIE SCE:'JE BETWEEN THE 

n1,ro l'.'vlA(,ES 

DETERMINE .\XIAL MOTION m THE OBJECT BASED ON TIIE SELECTED 
SCALE 

DHFR1v1TNFI /\TrRi\l MOTIO'\ R/\SFDO'\ THF \ROSS-CORRFI ,'\TIO'\ /\T 
IHl:S!:L!:CJ!:D SCALL 

YES 

GE:\JERA.TE MOTJON JNFORMAT!ON FOR OBJECT MOTJO:\JS BETWEE:\J THE 
FlRST JMl\l,E 1\ND SECOND JM.\OF. 

1016 



US 10,152,798 B2 
Page 2 

(51) Int. Cl. 
G06K 9162 
G06K 9/46 

(52) U.S. Cl. 

(2006.01) 
(2006.01) 

CPC ......... G06K 916251 (2013.01); G06K 916256 
(2013.01); G06K 916277 (2013.01); G06K 

2209/401 (2013.01); G06T 2207/10028 
(2013.01) 

(56) References Cited 

U.S. PATENT DOCUMENTS 

7,433,024 B2 10/2008 Garcia 
7,715,016 B2 * 5/2010 Hwang G0lB 11/002 

345/166 
8,314,774 Bl * 11/2012 Zeng . ... .... ... ... ... ... . G06F 3/0317 

345/157 
8,692,880 B2 * 4/2014 Tobiason G0lB 11/00 

348/140 
9,610,061 B2 * 4/2017 Ebbini A61B 8/06 

2008/0181477 Al* 7/2008 Izatt . A61B 3/102 
382/128 

2012/0086944 Al* 4/2012 Chrien B64G 1/66 
356/450 

2012/0283564 Al* 11/2012 Ebbini A61B 8/06 
600/439 

2013/0066211 Al * 3/2013 Konofagou . A61B 8/08 
600/450 

OTHER PUBLICATIONS 

Jo, et al., "SpeDo: 6 DOF Ego-Motion Sensor Using Speckle 
Defocus Imaging," 2015, pp. 4319-4327. 
Zalevsky, et al., Simultaneous remote extraction of multiple speech 
sources and heart beats from secondary speckles pattern, Optics 
Express, 2009. 
Lien, et al., ACM Trans. Graph., vol. 35, No. 4, Article 142, 
Publication Date: Jul. 2016 . 
Garcia, et al., Soli: Ubiquitous Gesture Sensing with Millimeter 
Wave Radar, Three-dimensional mapping and range measurement 
by means of projected speckle patterns, Applied Optics,vol. 47, No. 
16, Jun. 1, 2008. 

* cited by examiner 



U.S. Patent 

~ 
206 

Dec. 11, 2018 

t 

-i.p 
surfrtcf.' 

Sheet 1 of 10 US 10,152,798 B2 

FIG. l 

FIG. 2A 

FIG. 2B 

202 
.1 

t) ,·, ,,,, <-'(''1 ··,()'' t <A ... L -.;.·~· }:"> ·~· j_ ~ • J. 

z 

forht source 202 

, __ , t.,:-,···,··::rrn L .1 

• ~ 
204 . 

1.),·'l''f°' ,··,,.-,1-,c, .·,1• 
. f.,>. ,,. ~L •. ID{.t. 



U.S. Patent Dec. 11, 2018 Sheet 2 of 10 

seri.sor 

r1.· 
~':. 

..... ._ ..................... 

......... ._ ............. ._ 

................................. 

._._ ................. 

................................... 

FIG. 3A 

AV 
object (:1;,;:i::\.: sensor 

• t ¼ • t ¼ 
½ f + ¼ i + 
i t + t ! + 
• t ! • t f 

FIG. 3B 

+.so 

+40 

.. ,JO 

··BO 

US 10,152,798 B2 

object 
sensor 

[]\ 
.· : ·. 

~ + 
" .. .;. 'ff R 

+ • . • + 

Al! /fr, l' 4 "'IL. 

J/ ' • ~ 

FIG. 3C 

No 
Corr, 

···80 ···40 0 +40 +80 
!:::.u. 

···80 ·AO O +40 +80 
D,11, 

FIG. 4A FIG. 4B 



U.S. Patent 

;;;; 

High 
(\}!T. 

t-..1~) 
Corr. 

Dec. 11, 2018 Sheet 3 of 10 

FIG. 5A 

Pcnk 1 
Peak 2 Peak ;J 

-0 O(H -0.(x)2 0 +0.002 +CLOO,J 
\ 

FIG. 5B 

·-:-: 
'·• 

US 10,152,798 B2 

:.~n 
.:.1.1 (pix,-i;:) 

FIG. SC 



U.S. Patent Dec. 11, 2018 Sheet 4 of 10 US 10,152,798 B2 

""' ::"l 
~ ...;.; 

' ···t-•' 0 
,.,;.; 

,~ !-{ 

~ *· 
i! ~ 

0 
.,;.; ~ 

C ~ 
,,..,;> 0 
~ C'-l 
0 \0 ,...... 
\0 

N 
~ 

·+· ,N 
~ ~ 

~ ·* 
i! C'-1 

\0 

~ ci 
.,i,;, -0 \0 µ.. 
#' 

,.....; 

~ \0 

00 
0 
\0 

-~ 0 ~ ,-. -- * (:_J 
u o/'< r.,I) ., 

~ 
N N 0 
\0 

,.....; 

\0 



U.S. Patent Dec. 11, 2018 Sheet 5 of 10 

~ ·,::'·-.: :;:::::;. 

::;• <::: 

US 10,152,798 B2 

·:_?, 
.......... 

--c<: 
' 

_ ........ _ 

---. 



U.S. Patent 

N 
0 
co 

Q) 

~ 
:::, 
0 

(/) 

Dec. 11, 2018 

""" 0 
co 

(.!) 
0 
co 

co 
0 
co 

(/) 

C 
0 

:;:; 

-~ 
C 
:::, 
E 

8 
0 

,._ 
0 
(/) 
(/) 
© u e 
Cl. 

Sheet 6 of 10 

0 
T"" 
co 

>-
0 
E 
Q) 

~ 

:§: ..... 
:::, 
0.. 
5 

US 10,152,798 B2 

'-
0 
(/) 
C 
Q) 
(/) 

-0 
C 
<1:l 



U.S. Patent Dec. 11, 2018 Sheet 7 of 10 US 10,152,798 B2 

PROJECT LIGHT FROM A TEMPORALLY COHERENT LIGHT SOlJRCE 
TOWARD A SCENE 

CAPTURE A SERJES OF DEFOCUSED l1vLI\.CiES OF SPECKLE REFLECTED 
FROM THE SCENE 

COMPARE THE CAPTURED IMAGES TO DETERMINE OBJECT MOVEMENTS 
IN THE SCENE 

FIG. 9 

GENERA TE SCALED VERSIONS OF A FIRST IMAGE OF SPECKLE AT A 
VARIETY OF SCALES 

902 

1002 

'--------------.-------------']004 

PERFORM A 2D CROSS CORRELATION OF THE FIRST IMAGE AT EACH 
SCALE WITH A SECOND IMAGE OF SPECKLE 

SELECT ONE OR MORE PEAKS IN AT LEAST ONE OF THE CROSS 
CORRELATIONS, WHERE THE ONE OR MORE PEAKS REPRESENT 

MOVEMENT OF AN OBJECT IN THE SCENE 

SELECT A SCALE AT WHICH THE LARGEST CROSS-CORRELATION IS 
PRODUCED FOR MOVEMENT OF AN OBJECT IN THE SCENE BETWEEN THE 

TWOTMAGES 

DETERMINE AXIAL MOTION OF THE OBJECT BASED ON THE SELECTED 
SCALE 

DETERMINE LATERAL MOTION BASED ON THE CROSS-CORRELATION AT 
THE SELECTED SCALE 

YES 

GENERATE MOTION INFORMATION FOR OBJECT MOTIONS BETWEEN THE 
FIRST IMAGE AND SECOND IMAGE 

FIG. 10 

1016 



U.S. Patent Dec. 11, 2018 Sheet 8 of 10 US 10,152,798 B2 

1102 

CAPTURE SPECKLE IMAGES OF KNOWN OBJECT MOTIONS LJ 
(E.G., FINGER MOTIONS) 

+ 11 

DETERMINE OBJECT MOTIONS IN THE SERIES OF IMAGES ASSOC IA TED L) 
04 

WITH KNOWN OBJ1-<'.CT MOTIONS 

i 11 

USE THE KNOW'N OBJECT MOTIONS AS TRAINING DATA FORA L) 
06 

CLASSIFICATION MODEL BEING TRAINED TO RECOGNIZE THE KNOWN 
OBJECT MOTIONS 

+ 11 

CAPTURE SPECKLE IMAGES OF UNKNOWN OBJECT MOTIONS 
L) 

08 

i 11 

DETERMINE OBJECT MOTIONS IN THE SERIES OF IMAGES ASSOCIATED L) 
10 

WITH UNKNOWN OBJECT MOTION 

i 11 

USE THE UNKNOWN OBJECT MOTIONS AS INPUT TO THE TRAINED L) 
12 

CLASSIFICATION MODEL 

i 11 

GENERATE A LIKELIHOOD THAT THE UNKNOWN MOTIONS CORRESPOND L) 
14 

TO THE KNOWN MOTIONS USING THE TRAINED CLASSIFICATION MODEL 

FIG. 11 



U.S. Patent Dec. 11, 2018 

i-;,m:mm!ll!I~= ; 

i-.1~~ .. ~ 

Sheet 9 of 10 US 10,152,798 B2 

....0 
C) --C) 
;.... ..... 

r./)_ M 
....... ,.... 
c::! d ..... 
;:l -0 µ.. 
N ·-;.... 0 

tt1 



U.S. Patent 

6 

Dec. 11, 2018 

I ,,::, f"" •"'·;'. § ,' /'l.. .,·,~ } .I..,=•~- ,'-.: ~ •. h I,_ i...l.. ,v f 

Object motion {mrn) 

Sheet 10 of 10 US 10,152,798 B2 

.Axial (az} 

·u 
.•I1 O.Otl2 

:7., 

~ 
"."'--'' 

<l 0.001 

FIG. 14 

Conventional Camera Test System 

0 iJ.:26 05 075 f:l5 G .. 7E~ 

6 

5 

4 

Object motion (mm) OhJect motion {rmn) 

FIG. 15 



US 10,152,798 B2 
1 

SYSTEMS, METHODS AND, MEDIA FOR 
DETERMINING OBJECT MOTION IN 

THREE DIMENSIONS USING SPECKLE 
IMAGES 

2 
image by the predetermined amount; compare the first 
defocused image to the second defocused image; compare 
the first scaled version of the first defocused image to the 
second defocused image; compare the second scaled version 

NIA 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

5 of the first defocused image to the second defocused image; 
determine axial motion of the object between the first time 
and the second time based on the comparisons; and deter­
mine lateral motion of the object between the first time and 
second time based on the comparisons. 

10 In some embodiments, the hardware processor is further 

NIA 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

programmed to: calculate, for the first defocused image, a 
first two-dimensional cross-correlation with the second 
defocused image, wherein the first two-dimensional cross­
correlation includes a peak with a first intensity at a first 

BACKGROUND 

In recent years with advancements in digital imaging, 
image sensors have become more popular for measuring 
macroscopic motions in a scene in three dimensions. How­
ever, estimating small motions in three dimensions using 
image sensors remains a difficult problem. Speckle imaging 

15 location, the first intensity indicative of how closely the first 
speckle pattern in the first defocused image matches the 
second speckle pattern in the second defocused image and 
the first location indicative of lateral motion of the object 
between the first time and the second time; calculate, for the 

20 first scaled version of the first defocused image, a second 
two-dimensional cross-correlation with the second defo-

is widely used for micro-motion estimation in several appli­
cations, including industrial inspection, scientific imaging, 
and user interfaces (e.g., optical mice). However, current 25 

speckle imaging techniques are largely limited to measuring 
2D motion ( e.g., parallel to the sensor image plane) of a 
single rigid object. That is, current speckle imaging tech­
niques are generally only useful for estimating the motion of 
a single object, and are not suitable for measuring motion 30 

toward or away from the sensor (i.e., axial motion). 
Measuring micro-motions at macroscopic stand-off dis­

tances is not possible with conventional cameras and vision 
systems without using sophisticated optics. Furthermore, 
measuring multi-object or non-rigid motion is fundamen- 35 

tally more challenging than tracking a single object due to 
the considerably higher number of degrees of freedom, 
especially if the objects are devoid of high-frequency tex-
ture. 

Accordingly, systems, methods, and media for determin- 40 

ing object motion in three dimensions using speckle images 
are desirable. 

SUMMARY 

cused image, wherein the second two-dimensional cross­
correlation includes a peak with a second intensity at a 
second location, the second intensity indicative of how 
closely the first speckle pattern in the first scaled version of 
the first defocused image matches the second speckle pattern 
in the second defocused image and the second location 
indicative of lateral motion of the object between the first 
time and the second time; and calculate, for the second 
scaled version of the first defocused image, a third two­
dimensional cross-correlation with the second defocused 
image; wherein the third two-dimensional cross-correlation 
includes a peak with a third intensity at a third location, the 
third intensity indicative of how closely the first speckle 
pattern in the second scaled version of the first defocused 
image matches the second speckle pattern in the second 
defocused image and the third location indicative of lateral 
motion of the object between the first time and the second 
time. 

In some embodiments, the hardware processor is further 
programmed to: compare at least the intensity of the first 
peak, the second peak, and the third peak; and select a 
version of the first defocused image that includes the largest 
intensity peak; and determine the axial motion of the object 

In accordance with some embodiments of the disclosed 
subject matter, systems, methods, and media for determining 
object motion in three dimensions using speckle images are 
provided. 

45 based on the scale of the selected version of the first 
defocused image. 

In some embodiments, the hardware processor is further 
programmed to: receive information indicating that the 
motion of the object between the first time and the second 

In accordance with some embodiments of the disclosed 
subject matter, a system for three dimensional motion esti­
mation is provided, the system comprising: a light source 
configured to emit temporally coherent light toward a scene; 

50 corresponds to a first hand gesture; generate motion infor­
mation indicative of motion of the object between the first 
time and the second time based on the axial motion and the 
lateral motion; provide the motion information as input to a 

an image sensor; and a hardware processor that is pro­
grammed to: cause the light source to emit light toward the 55 

scene; cause the image sensor to capture a first defocused 
image of the scene at a first time, wherein the first defocused 
image includes a first speckle pattern generated by an object 
in the scene reflecting the light emitted by the light source; 
cause the image sensor to capture a second defocused image 60 

of the scene at a second time, wherein the second defocused 
image includes a second speckle pattern generated by the 
object in the scene reflecting the light emitted by the light 
source; generate a first scaled version of the first defocused 
image by expanding the first defocused image by a prede- 65 

termined amount; generate a second scaled version of the 
first defocused image by contracting the first defocused 

classification model as training data for training the classi­
fication model to recognize the first hand gesture input; 
generate a trained classification model using the input, 
wherein the trained classification model is configured to 
receive motion information of a scene as input and output a 
likelihood that the received motion information corresponds 
to the first hand gesture. 

In some embodiments, the hardware processor is further 
programmed to: cause the light source to emit light toward 
a second scene that is different than the scene subsequent to 
generating the trained classification model; cause the image 
sensor to capture a third defocused image of the second 
scene at a third time, wherein the third defocused image 
includes a third speckle pattern generated by an object in the 
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second scene reflecting the light emitted by the light source; 
cause the image sensor to capture a fourth defocused image 
of the second scene at a fourth time, wherein the fourth 
defocused image includes a fourth speckle pattern generated 
by the object in the second scene reflecting the light emitted 5 

by the light source; generate a first scaled version of the third 
defocused image by expanding the first defocused image by 
a predetermined amount; generate a second scaled version of 
the third defocused image by contracting the first defocused 
image by the predetermined amount; compare the third 10 

defocused image to the fourth defocused image; compare the 
first scaled version of the third defocused image to the fourth 
defocused image; compare the second scaled version of the 
third defocused image to the fourth defocused image; deter­
mine second axial motion of the object in the second scene 15 

between the third time and the fourth time based on the 
comparisons; determine second lateral motion of the object 
in the second scene between the third time and fourth time 
based on the comparisons; generate second motion infor­
mation indicative of motion of the object in the second scene 20 

between the third time and the fourth time based on the 

4 
image; determining axial motion of the object between the 
first time and the second time based on the comparisons; and 
determining lateral motion of the object between the first 
time and second time based on the comparisons. 

In accordance with some embodiments of the disclosed 
subject matter, a non-transitory computer readable medium 
containing computer executable instructions that, when 
executed by a processor, cause the processor to perform a 
method for three dimensional motion estimation is provided, 
the method comprising: causing a light source to emit 
temporally coherent light toward a scene; causing an image 
sensor to capture a first defocused image of the scene at a 
first time, wherein the first defocused image includes a first 
speckle pattern generated by an object in the scene reflecting 
the light emitted by the light source; causing the image 
sensor to capture a second defocused image of the scene at 
a second time, wherein the second defocused image includes 
a second speckle pattern generated by the object in the scene 
reflecting the light emitted by the light source; generating a 
first scaled version of the first defocused image by expand­
ing the first defocused image by a predetermined amount; 
generating a second scaled version of the first defocused 
image by contracting the first defocused image by the 
predetermined amount; comparing the first defocused image 

second axial motion and the second lateral motion; provide 
the second motion information as input to the trained 
classification model; and receive output from the trained 
classification model indicating a likelihood that the motion 
in the second scene corresponds to the first hand gesture. 

In some embodiments, the light source comprises a laser 
diode. 

In some embodiments, the coherence area of the tempo­
rally coherent light at the object is less than 1 mm. 

25 to the second defocused image; comparing the first scaled 
version of the first defocused image to the second defocused 
image; comparing the second scaled version of the first 
defocused image to the second defocused image; determin­
ing axial motion of the object between the first time and the 

In some embodiments, the first defocused image includes 
30 second time based on the comparisons; and determining 

lateral motion of the object between the first time and second 
time based on the comparisons. a first total speckle pattern with contributions from the first 

speckle pattern and a third speckle pattern generated by a 
second object in the scene, the second defocused image 
includes a second total speckle pattern with contributions 35 

from the second speckle pattern and a fourth speckle pattern 
generated by the second object in the scene, and the hard­
ware processor is further programmed to: generate a third 
scaled version of the first defocused image by expanding the 
first defocused image by a second predetermined amount; 40 

compare the third scaled version of the first defocused image 
to the second defocused image; determine axial motion of 
the second object between the first time and the second time 
based on the comparisons; and determine lateral motion of 
the second object between the first time and second time 45 

based on the comparisons 
In accordance with some embodiments of the disclosed 

subject matter, a method for three dimensional motion 
estimation is provided, the method comprising: causing a 
light source to emit temporally coherent light toward a 50 

scene; causing an image sensor to capture a first defocused 
image of the scene at a first time, wherein the first defocused 
image includes a first speckle pattern generated by an object 

BRIEF DESCRIPTION OF THE DRAWINGS 

Various objects, features, and advantages of the disclosed 
subject matter can be more fully appreciated with reference 
to the following detailed description of the disclosed subject 
matter when considered in connection with the following 
drawings, in which like reference numerals identify like 
elements. 

FIG. 1 shows an example of a speckle pattern created 
when coherent light reflects from one or more objects in a 
scene in accordance with some embodiments of the dis-
closed subject matter. 

FIGS. 2A and 2B show an example of system for cap­
turing speckle images of a scene including an optically 
rough surface in accordance with some embodiments of the 
disclosed subject matter. 

FIGS. 3A to 3C represent a qualitative depiction of 
speckle motion due to translation along the X-axis, transla­
tion along the Y-axis, and translation along the Z-axis toward 
the sensor in accordance with some embodiments of the 
disclosed subject matter. 

FIGS. 4A and 4B show examples of a result of comparing 
two speckle images in accordance with some embodiments 
of the disclosed subject matter. 

in the scene reflecting the light emitted by the light source; 
causing the image sensor to capture a second defocused 55 

image of the scene at a second time, wherein the second 
defocused image includes a second speckle pattern gener­
ated by the object in the scene reflecting the light emitted by 
the light source; generating a first scaled version of the first 
defocused image by expanding the first defocused image by 

FIGS. SA to SC show examples of scaling an initial image 
and cross-correlating the scaled images with a second image 

60 to find the motion between the two images in accordance 
with some embodiments of the disclosed subject matter. a predetermined amount; generating a second scaled version 

of the first defocused image by contracting the first defo­
cused image by the predetermined amount; comparing the 
first defocused image to the second defocused image; com­
paring the first scaled version of the first defocused image to 
the second defocused image; comparing the second scaled 
version of the first defocused image to the second defocused 

FIG. 6 shows an example of speckle patterns created by 
two independently moving objects in a scene and cross­
correlations calculated based on the speckle patterns of a 

65 first speckle image and a second speckle image in accor­
dance with some embodiments of the disclosed subject 
matter. 
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FIG. 7 shows an example of three independently moving 
objects, a 3D histogram showing object motions, and his­
tograms showing motion across each of the three axes in 
accordance with some embodiments of the disclosed subject 
matter. 

FIG. 8 shows an example of a system for determining 
object motion in three dimensions using speckle images in 
accordance with some embodiments of the disclosed subject 
matter. 

FIG. 9 shows an example of a process for determining 
motion of objects in a scene in accordance with some 
embodiments of the disclosed subject matter. 

FIG. 10 shows an example of a process for determining 
motion of multiple objects between two speckle images in 
accordance with some embodiments of the disclosed subject 
matter. 

FIG. 11 shows an example of a process for using motion 
information generated from a series of images of a scene to 
recognize motion in the scene in accordance with some 
embodiments of the disclosed subject matter. 

FIG. 12 shows examples of gestures that the classification 
model described above in connection with FIG. 11 can be 
trained to recognize in accordance with some embodiments 
of the disclosed subject matter. 

FIG. 13 shows examples of 3D motion histograms rep­
resenting various gestures in accordance with some embodi­
ments of the disclosed subject matter. 

FIG. 14 shows an example comparing theoretical accu­
racy in recognizing object motions and observed accuracy in 
an example system. 

FIG. 15 shows examples comparing motion measure­
ments made using a conventional camera and motion mea­
surements made using the test system. 

DETAILED DESCRIPTION 

In accordance with various embodiments, mechanisms 
(which can, for example, include systems, methods, and 
media) for determining object motion in three dimensions 
using speckle images are provided. 

In some embodiments, the mechanisms described herein 
can facilitate measurements of object motion in a scene 
using speckle imaging, in which a scene is illuminated with 
a coherent light source ( e.g., a laser diode) and imaged with 
an image sensor. In such embodiments, when the coherent 
light interacts with optically rough surfaces in the scene, a 
high-frequency speckle pattern is created in the captured 
images. As described below, the motion of objects in the 
scene results in shifts in the speckle pattern captured in the 
images, which can be used to estimate the motion of the 
object. For example, a lateral shift of an object can result in 
a corresponding lateral shift in the speckle pattern (e.g., as 
described below in connection with FIGS. 3A and 3B), 
while an axial shift (e.g., toward or away from the image 
sensor) can result in a corresponding expansion or contrac­
tion in the speckle pattern (e.g., as described below in 
connection with FIG. 3C). 

In some embodiments, the mechanisms described herein 
can compare the speckle pattern captured in two images 
captured at different times and estimate motion of objects in 
the scene between the first image to the second image based 
on shifts in the speckle pattern from the first image to the 
second image. 

FIG. 1 shows an example of a speckle pattern created 
when coherent light reflects from one or more objects in a 
scene in accordance with some embodiments of the dis­
closed subject matter. Movement of the speckle resulting 

6 
from relative motion between one or more objects in the 
scene and the image sensor (and/or light source) can be 
measured to determine the relative motions of the one or 
more objects in the scene. Changes in the speckle pattern 

5 due to lateral motion of an object are typically one to two 
orders of magnitude greater than changes due to axial 
motion with the same magnitude change in position. Small 
object motion does not change the speckle pattern, but only 
translates or scales it by a small amount. This result is 

10 sometimes referred to as the homology condition or the 
memory effect. The homology condition has previously been 
exploited for a variety of applications in speckle based 
metrology, including deformation measurement of large 
structures such as aircraft wings and submarine walls, imag-

15 ing through scattering media, and camera-based ego-motion 
estimation. 

In some embodiments, the mechanisms described herein 
can use a global scale-space based analysis of a sequence of 
captured speckle images to determine the motion of objects 

20 in the images, rather than attempting to compute local 
speckle movement in the images, as has been previously 
proposed. For example, a system using the mechanisms 
described herein can measure small axial object motion 
( e.g., on the order of <l 00 microns at 1 meter distance), 

25 which is an order of magnitude higher axial motion sensi­
tivity compared to some existing techniques for measuring 
axial motion using optically captured perspective images. 

In general, the motion sensitivity of a speckle imaging 
system can be directly proportional to the amount of sensor 

30 defocus, such that the motion sensitivity increases as the 
focus of the scene decreases. Accordingly, using (or omit­
ting) to create a highly defocused image can increase the 
sensitivity to motion, which can be especially advantageous 
when determining axial motion. For example, an imaging 

35 system without a focusing lens (e.g., a bare sensor) can 
result in greater motion sensitivity. In such an example, an 
imaging system with a bare sensor can also be less costly, 
and less complex than a typical camera that is meant to 
capture well-focused images of a scene. One tradeoff with 

40 greater defocus is generally greater overlap between speckle 
patterns generated by different objects in the scene. For 
example, a speckle image of a scene with multiple objects 
can have a speckle pattern that is a combination of speckle 
patterns from different objects, and in some cases can also 

45 include cross-speckle caused by interference of light from 
different objects. In such an example, the resulting speckle 
pattern may not behave in the same way that it would due to 
rigid motion of a single object, and thus, individual object 
motions may not be recoverable. However, if a light source 

50 with relatively high temporal coherence, but relatively low 
spatial coherence is used to generate the speckle pattern, the 
cross-speckle term may be negligible. While this can allow 
the contributions from individual object motions to be 
determined, with a bare sensor it does not allow individual 

55 objects in the scene to be tracked using only the speckle 
motion. Rather, the mechanisms described herein can be 
used to measure aggregate motion statistics of the scene 
based on changes in the speckle pattern, which can, for 
example, be represented as a 3D motion histogram. Such a 

60 3D motion histogram can be used to, for example, recover 
the dynamic configuration of the scene to recognize micro 
hand gestures. 

In some embodiments, the mechanisms described herein 
can optically magnify the motion information from a scene 

65 by capturing the images with a relatively high amount of 
defocus (e.g., by capturing the scene using a sensor with no 
focusing optics). While the speckle patterns captured by the 
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mechanisms described herein are generally not useful to a 
human viewer, they can instead be used for quantitative 
motion measurement and analysis of the scene, whereas 
conventional video motion magnification techniques may be 
more useful to a human viewer. 

The mechanisms described herein can be useful in many 
applications. For example, the ability to measure relatively 
small (e.g., 10-100 microns) non-rigid or multi-object 
motion can be used in evaluating motion of cells in a 
biological sample, hand-gesture recognition for a user inter-

10 
face, motion of molecules during chemical reactions, motion 
of fluids, etc. 

8 
where a(S) encodes the light attenuation due to reflection at 
S, and the intensity fall-off due to propagation. The phase of 
the emitted electric field is shifted by 

2f(S) 
2n:-­

A 

during propagation along the path L-s-p, where r(S) is 
the distance of S from the source, and cp/ is the change in 
phase due to reflection at point S. 

In such embodiments, since bare sensor 204 has no 
focusing optics, we assume that each pixel collects light 
from every point on surface 206. The total electric field U(p) 
at pixel pis then given by integrating the fields Us(p,t) from 
all scene points over the surface W: 

U(p,t)~f,,,U5 (p,t)dS~f,,,j3(S)cos( wt+~5 (t))dS, (3) 

FIGS. 2A and 2B show an example 200 of system for 
capturing speckle images of a scene including an optically 
rough surface 1P in accordance with some embodiments of 
the disclosed subject matter. In some embodiments, system 15 

200 can include a light source 202 that emits light toward a 
surface 206, and a bare image sensor 204 ( e.g., an image 
sensor with no focusing optics) that captures images of the 
speckle pattern generated by surface 206 reflecting light 
from light source 202. In some embodiments, light source 
202 can be a temporally coherent light source with relatively 
low spatial coherence (e.g., a laser diode) that emits tem­
porally coherent light toward the scene including surface 
206. 

20 
where, 

, 2f(S) 
f3(S) = a:(S)Us and ¢5 (1) = ¢s(t)-2n:-"- + 'Ps· 

In some embodiments, the light emitted by a coherent 25 
source can be characterized by the underlying electric field In some embodiments, a speckle image I that represents the 

measured image brightness due to this electric field can be 
given as: 

U, which varies sinusoidally over time t according to the 
following: 

(1) 

where L is the spatial location of light source 202, S is the 30 

spatial location of surface 206, Us is the amplitude of light 
emitted toward surface 206 (e.g., 

I(p)~Kf0"(U(p,t))2dt, (4) 

where -i: is the sensor integration time, and K is a propor­
tionality factor incorporating sensor gain. 

Us= {L;°, 

where Ls is the radiant intensity of the source emitted toward 
the surface 206), and cps(t) is the phase of the light emitted 
by light source 202. The modulation frequency 

2n:c 
w= T· 

where A is the wavelength of light source 202, and c is the 
speed of light. Note that although coherent light sources, 
such as light source 202, are often characterized as having 

In general, a speckle pattern due to reflection of coherent 
light from an optically rough surface is statistically random, 

35 as each point on the illuminated surface acts as a secondary 
light source that emits spherical wavefronts. Accordingly, 
the total light received at a pixel of an image sensor is the 
superposition of all the wavefronts. The phase of each of 
these wavefronts varies rapidly as the path-lengths (from 

40 scene point to sensor pixel) change due to surface roughness, 
which can create the statistically random speckle intensity 
distribution observed by the image sensor (e.g., as shown in 
FIG. 1). This statistical randonmess can manifest as the 
following two properties observed in speckle images: 

45 

lu_~ I)_(u, v) = A(u, vJJ, (5) 

a particular wavelength, coherent light sources typically 
emit light in a narrow band of wavelengths from "-m,n to 50 

"-max' the wavelength A is typically the mean wavelength 
emitted by the coherent light source (e.g., 

Auto-correlation property 

where I(u, v) is a speckle image, [u, v] are image coordi­
nates, and* is the 2D correlation operator. A(u, v)=Kl\(u, v) 
is a scaled dirac-delta function 1\(u, v) (e.g., as shown in 
FIGS. 4A and 4B described below), where K is the square-

Amin -Amax 

2 
55 norm of the speckle image and can be represented as 

K=~u)I(u, v))2; and 

In some embodiments, if surface 206 is assumed to be 
imaged by bare sensor 204, as shown in FIG. 2A, the electric 
field at pixel p due to the light reflected from the point S is 60 

given as: 
Cross-correlation property 

(6) 

( 
2f(S) ) 

Us(P, t) = a:(S)Uscos wt+ ¢s(t)-2n:-"- + !/is , 

where Ii(u, v) and I2 (u, v) are speckle images due to 
(2) reflection from two different rough surfaces 1P 1 and 1P 2 , 

65 respectively. In some embodiments, these two properties can 
lead to the conclusion that speckle images from two different 
surfaces can be treated as mutually orthogonal random 
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functions (i.e., with high probability, a speckle pattern is 
uncorrelated with anything but itself). 

In general, the mean "size" s, of an individual speckle in 
a speckle image is proportional to the wavelength of light 
being reflected to create the speckle pattern, and is given as 5 

where A is the wavelength of light, r is the distance of the 
object from the sensor, and Q is the area of the illuminated 
pattern. Additionally, speckle size may depend on several 
other factors, such as imaging geometry, surface properties 
(e.g., roughness of the surface, a bidirectional reflectance 
distribution function of the surface, etc.), and sensor prop­
erties ( e.g., pixel size, aperture, and focal length). For visible 
or near infrared ("NIR") wavelengths, e.g., -380-800 nano­
meters (nm), the speckle size may be limited only by the 
sensor pixel size, resulting in extremely high spatial fre­
quencies. 

In some embodiments, for example as shown in FIG. 2B, 

10 

15 

20 

(8) 

Speckle Motwn Model 

where p is the side length of the sensor pixels (assuming 

square pixels), and d is the distance between scene point S 

and the light source. FIGS. 3A to 3C represent a qualitative 

depiction of speckle motion due to translation along the 

X-axis, translation along the Y-axis, and translation along 

the Z-axis toward the sensor in accordance with some 

embodiments of the disclosed subject matter. From Equation 

8 it is clear that lateral object motion (Tx or Ty) results in 

translation of the speckle image, whereas axial object 

motion (T
2

) results in radial expansion/contraction of the 

speckle image around the principal point. Note that although 

Equation 8 is described in connection with a simplified 
an approximately planar surface patch 1P of surface 206 is 
illuminated by coherent light source 202. Representing the 
origin of the coordinate system as a point Son W, the Z-axis 

configuration for ease of explanation, the mechanisms 
25 

is perpendicular to the plane containing W. In such embodi­
ments, the patch undergoing a small six degree of freedom 
rigid motion can be represented by a translation vector 

30 T=[Tx, Ty, T
2
]', and a rotation vector R=[Rx, Ry, R

2
]', that 

represent motion along the axes shown in FIG. 2B and 
rotation about those axes, respectively. 

described herein are useful across a variety of geometric 

configurations. 

In another configuration including a conventional pin­
hole sensor imaging a small planar surface patch located at 
a distance d along its optical axis, under perspective pro­
jection (i.e., conventional imaging), the image motion 
[li.upersp, li.vperspl due to small object translation T=[Tx, Ty, 
T

2
]' can be represented as: 

0 

(
!,.upmp) = [ fr 
.6.vpersp O f 

dp 

u 

d [ Tx J Ty , 

d T, 

(9) 

where f is the focal length of the sensor. Based on a 
comparison of Equations 8 and 9, the motion magnification 

I(u, v) and I'(u, v) can represent two speckle images 
captured by an image sensor (e.g., bare sensor 204), before 35 
and after a motion, respectively. Based on the homology 
conditions described above, the speckle pattern does not 
change between the two images, but only gets locally 
displaced (shifted) between the two images. Thus, the inten­
sity at a pixel I'(u', v') in the image captured after motion is 40 

the same as the intensity at a different pixel I(u, v) in the 
image captured before motion. Assuming a paraxial sensor, 
the relationship between the speckle image displacement 
vector [lrn, li.y]=[u'-u, v'-v] and the object motion is given 

45 ratio of a sensor being used to capture a speckle pattern in 
comparison to conventional imaging can be represented by 
the ratio of the image space motions between speckle and 
conventional imaging, for a given motion along the three 
axes X, Y and Z. In some embodiments, for example as 

by a linear system of equations: 

(7) 

where M,rans and Mrot are 2x3 matrices, whose entries 
depend on the geometric configuration of the scene and the 
system used to generate and capture the speckle images 
(e.g., the relative locations of the patch, the properties of the 
sensor being used, the properties of the light source being 
used, etc.), as well as radiometric characteristics of the 
imaging system ( e.g., sensor pixel size, wavelength of light, 
etc.). For example, assuming a set of conditions including: 

50 described above in connection with FIGS. 2A and 2B, the 
motion magnification ratio can represent the ability of a bare 
sensor speckle imaging system to magnify motion, as com­
pared to a conventional perspective imaging system. For 
example, if the patch 206 moves along the X axis by a unit 

55 distance, so that T=[l,0,0]. Then, the motion magnification 
ratio along the X axis can be represented as: 

(10) 2 

It';otionmag = ~ = P = ~ 
!lupmp f f ' 

dp 

a scene made of infinitesimally small surface patches in 60 

which the dominant motion of every patch can be approxi­
mated as a translation (e.g., rotations are negligible); a bare 
sensor (e.g., bare sensor 204); and a light source and 
principal point of the bare sensor being co-located along the 
Z-axis; the relationship between image space speckle motion 
[li.u, li.v] and the object translation in 3D space can be 
represented as: 

65 Similarly, for unit motion along the Y axis (e.g., T=[0,1,0]), 
the motion magnification ratio RymotionMag can be repre­
sented as: 
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FIGS. 4A and 4B show examples of a result of comparing 
2 

Ft;}otionmag = ~ = P = ~ 
!lvpmp f f ' 

dp 

(11) two speckle images in accordance with some embodiments 
of the disclosed subject matter. As shown in FIG. 4A, a 
correlation between two speckle images in which there is no 

In a more particular example, a sensor with pixels having a 
side length p=6 microns (µm), an object motion of 3 µm 
along the X or Y axes will create a single pixel speckle shift, 
whereas, for a perspective sensor with focal length f=20 
mm, and patch distance d=0.5 meters, a motion of0.15 mm 
will create a single pixel motion, resulting in a motion 
magnification ratio of 50 for lateral motion. As another 
example, for unit motion along the Z axis (e.g., T=[0,0,1]), 
the motion magnification ratio R2 motionMag is given as: 

5 substantial lateral motion shows a delta function at the 
origin, indicating a lack of lateral motion between the two 
speckle images. In FIG. 4B, a correlation between two 
speckle images in which there is lateral motion along both 
the X and Y axes shows a delta function displaced from the 

10 origin in both the X and Y directions, indicating the amount 
of lateral motion between the two images. In a more 
particular example, given a pixel size p=6 µm, a small object 
motion of 3 µm will result in the peak location getting 

15 
shifted by 1 pixel. Thus, given pixel size p, we can estimate 
the scene motion (Tx, Ty) by finding the peak location (flu, 
flv) in the cross-correlation image Icorr(t, v). 

-u 

Ft;,otionmag = ~ = d = l 
fl.Upersp -U ' 

d 

(12) In some embodiments, considering an object translating 
axially (i.e., parallel to Z-axis), motion between two suc-

20 cessive speckle images I and I' can be represented by a 
vector T=[0,0,TJ'. Using Equation 8, the resulting speckle 
motion can be represented by the vector 

which is considerably lower than the motion magnification 
along X and Y. This lower axial motion sensitivity as 
compared to the sensitivity for lateral motion has limited 25 
previous attempts to use speckle-based motion analysis for 
both object motion and sensor ego-motion to a relatively 
limited axial motion resolution (e.g., -1-2 cm). 

However, as described below, although it is difficult to 
achieve high precision by locally measuring speckle move­
ment due to axial object motion, a global scale-space analy- 30 

sis of the entire speckle image can lead to high motion 
sensitivity, along all three axes. For example, by exploiting 
the auto-correlation property of speckle images as described 
above in connection with Equation 5, small axial motion 
(e.g., on the order of <100 µm) can be measured, in addition 35 

to achieving high lateral motion sensitivity (e.g., on the 
order of <5 µm). As described below, the mechanisms 
described herein can compute simple image correlations to 
determine motion of objects represented in a speckle image, 
an operation with relatively low computational complexity. 40 

In some embodiments, in a simplified example in which 
a single object is translating laterally (i.e., parallel to the 
sensor, or X-Y, plane), the object motion between two 
successive speckle images I and I' can be represented by the 

45 translation vector T=[Tx, Ty, 0]'. Using Equation 8, the 
resulting speckle motion can be represented by the speckle 
flow vector 

50 

where d is the distance of the object from the sensor in the 
first image. This speckle motion vector can specify a radial 
scaling (expansion/contraction) of the speckle image, such 
that I/cale(u, v) can represent a scaled version of an image 
I(u, v), around its principal point [c

0
, cJ: 

f/cale(u, v)~J(u+x(u-cu),v+x( V-cv) ), (14) 

where x is the scale. Accordingly, in such an example, the 
speckle image I' after axial object motion can be represented 
as a scaled version of the original speckle image I: 

J'~J/cale, 

where the scale factor x is given as 

T, 
x=-

d 

(because the speckle motion vector 

T, 
[!lu, !lv] = d[-u, -v], 

(15) 

as discussed above). Thus, given scene depth d, we can As described above, the speckle in the image moves with the 
relative motion of the object and is constant over the entire 
image (i.e., not a function ofu and v) in a defocused imaging 
system (e.g., using bare sensor 204). In some embodiments, 
if the scene is imaged with less defocus, the above relation­
ship can also depend on the focal length of the optics used 

55 estimate axial motion T
2 

by measuring the scale factor X 
between I' and I. In some embodiments, if scene depths, d, 
are unknown, but the range of depths over which T 

2 
is being 

measured are small relative to d, (e.g., d>>dmax-dm,n), then, 
the 

to focus the image, but may still be independent of u and v. 60 

From this, it follows that I' is a spatially shifted (translated) 
version of I, and due to the auto-correlation property of 
speckle images (e.g., as described above in connection with 
Equation 5), the 2D cross-correlation image Icorr=I*I' can be 
approximated as a shifted delta function, centered at [ flu, 65 

flv], which can be represented as: 
I'°rr(u, v)I* r~A(u-icu, v-t.y). (13) 

d 

factor from can be considered approximately constant, and 
the axial motion can be recovered up to a constant multi­
plicative factor. 
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motion, as sensitivity to axial motion is much lower than 
sensitivity to lateral motion, and computing cross-correla­
tion images across fine scale increments becomes expensive. 
Accordingly, a ID Gaussian model can be fitted across the 

In some embodiments, the scale factor can be estimated 
by comparing I' with differently versions of I scaled by 
different amounts. In the following example, the correct 
scale is represented by X, so that I'=I;{cale_ In order to 
determine X, a ID search can be performed over a range of 
x (e.g., x=-0.20, -0.19, ... , 0.20). For each candidate X, a 
2D cross-correlation of I' with the scaled version I/cale can 
be performed as represented by: 

5 scale dimension of each initial peak to refine the scale (i.e., 
x) coordinate. Using these techniques can facilitate rela­
tively precise determinations of movement along the axial 
direction with reduced size of the scale-space search by 

IX corr=Jxscale*J', (16) 10 increasing the scale increment, while avoiding fitting a more 
complicated 3D Gaussian model. 

FIGS. SA to SC show examples of scaling an initial image 
and cross-correlating the scaled images with a second image 
to find the motion between the two images in accordance 

Due to the auto-correlation property of speckle (as repre­
sented by Equation 5 described above), the correlation 
image I/0

rr corresponding to the correct scale is the corre­
lation that produces the highest peak ( e.g., a distribution that 
is most similar to a delta function). Thus, x can be estimated 
by creating a stack of I/0

rr images, and finding the image 
that has the highest peak: 

15 
with some embodiments of the disclosed subject matter. As 
shown in FIG. SA, the initial image I can be scaled at various 
levels of contraction and expansion, and a cross-correlation 
of the scaled image with the subsequent image I' can 

arg max 
X = peakVal(ll0 "), 

X 

(17) 20 

where peakVal(I/0
") operator returns the height of the peak 

in image I/0
rr. In some embodiments, motion measurement 25 

using techniques based on the scale-space analysis described 
above can measure axial motions with precision on the order 
of <100 microns. 

In some embodiments, motion of an object undergoing 
compound translation ( e.g., simultaneous lateral and axial 30 
motion), can be represented by a translation vector T=[Tx, 
Ty, TJ', and can be recovered by building upon the lateral 
and axial motion estimation techniques described above. For 
example, as described below in connection with FIG. 10, a 
stack of 2D cross-correlation images I/0

rr can be created, 35 
and from this stack, the image that has the highest peak can 
be used to determine the correct image scale X, and the 
location of the highest peak location (e.g., (flu, flv)). Using 
these techniques, the object translation vector can be recov­

generate information that can be used to select the correct 
scale and determine any lateral translation between the two 
images. FIG. SB shows an example of a set of cross-
correlations at various scales of the initial image I, and FIG. 
SC shows cross-correlation values for a peak from FIG. SB 
fitted to Gaussian models. 

In some embodiments, the cross-correlation can be per­
formed using the cross-correlation theorem, which can be 
represented as: 

f"g=F- 1(conj(F(j))·F(g)), (19) 

where f and g are functions (e.g., f=I 1 and g=I2), F is the 
Fourier transform, F- 1 is the inverse Fourier transform, conj 
is the complex conjugate, and· denotes element-wise mul-
tiplication. In general, F and F- 1 can be computed in O(n log 
n), where n is the number of pixels, via the 2D fast Fourier 
transform (FFT) algorithm, which can be computed effi-
ciently using a graphics processing unit (GPU). 

In some embodiments, a scene can be modeled as a 
collection of multiple independently moving objects, such 

ered as: 

(18) 

40 that the inter-object distance is large as compared to the size 
of the objects, with each individual object assumed to be 
moving rigidly. Various techniques can be used to recover 
motion of multiple independently moving objects. For 
example, the multiple objects can be separated spatially in 

45 the captured image by using a lens-based imaging system, in 
which the amount of lens defocus is lower than the inter-The prec1s10n of the motion measurement techniques 

described above can depend on how accurately the local 
maxima can be located in the stack of scale-space cross­
correlation images, which can be determine using any suit­
able technique or combination of techniques. For example, 50 

a maximum filter can be applied over the 3-dimensional 
stack and values that match the maximum filter output can 
be selected. This produces a set of3D pixel coordinates that 
correspond to local maxima (e.g., as shown in FIG. SB, 
described below). In such an example, the resolution of this 55 

simple approach is limited to one pixel for lateral motion, 
and to flx, the difference between consecutive scale values, 
for axial motion. 

As another example, peaks may exhibit a Gaussian-like 
profile (e.g., as shown in FIG. SC described below), and a 60 

Gaussian model can be fitted to each peak, the centroid of 
which can give a refined sub-pixel and sub-scale location. In 
such an example, using a Gaussian model may not signifi­
cantly increase precision when determining flu and flv 
coordinates due to the large lateral motion magnification 65 

ratio, but may substantially improve precision and/or reduce 
the use of computing resources when determining axial 

object distance in order to ensure that images of different 
objects are spatially separated. However, as described 
above, the motion sensitivity of a speckle imaging system is 
directly proportional to the amount of defocus, which results 
in a tradeoff between spatial resolution and motion sensi­
tivity. On one extreme, if the sensor is focused on the scene, 
separating the different objects is relatively simple, but the 
motion sensitivity is low. On the other extreme, using a bare 
sensor ( extreme defocus) can lead to high motion sensitivity, 
but the light reflected from all scene objects overlaps, 
making the rigid body motion estimation techniques 
described above impossible. 

In some embodiments, the speckle in an image formed by 
capturing overlapping speckle patterns of two optically 
rough objects 1I\ and 1¥2 being illuminated by a coherent 
light source (e.g., light source 202) and imaged by a bare 
sensor (e.g., bare sensor 204) can be described as a total 
speckle image I,

0
, due to light reflected from both the objects 

can be represented by: 

(20) 
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note that the inner integral is over scene points in both 
objects 1I\ and 1¥2 . Expanding the inner integral, and re­
arranging the terms, the above equation can be written as: 

I1o,(P) = __ I~1(~p~) _+ __ I~2(~p~) _+_I~'"="'=,(~p~) _ (21) 
Speckle due to ll'1 Speckle due to ll'2 Cross speckle tenn 

where I,(p )=Kf0 ,,Cfw ~(S)cos( wt+~s(t))dS)2dt is the speckle 
image that the sensbr would capture if it observed only the 
object W,, iE[l,2]. The cross term Icross(p) can be repre­
sented as: 

16 
However, these other examples achieve limited motion 
sensitivity and/or require expensive special purpose hard­
ware. 

In some embodiments, various light sources can be used 
5 to create light with relatively high temporal coherence and 

relatively low spatial coherence that can cause the cross term 
to be negligible with respect to the intensities, while other 
light sources may not have appropriate characteristics. For 
example, light sources with a coherence area that is suffi-

10 ciently large so that individual objects create a speckle 
pattern, but sufficiently small so that light reflected from 
different objects does not interfere can be used to create the 
speckle pattern. In a more particular example, the light 

(22) 15 

source can be a narrow-band filter in front of a white-light 
source ( e.g., a halogen lamp). As another more particular 
example, the light source can be a laser diode. Some light where, ~,=~(S,), and c,=cos(wt+~S,(t)), iE[l,2]. In such 

embodiments, !cross is the component of the total speckle 
image I,

0
,(p) due to interference between light reflected from 

1P 1 and 1P 2 . !cross depends not only on the absolute motion of 
the individual objects, but also their relative motion and 
location. Consequently, !cross does not follow the homology 
conditions for rigid motion of a single object, and Equation 
8 cannot be used to determine the motion represented in 
speckle image I,

0
,. 

However, !cross becomes negligible if the light source has 
high temporal coherence, but low spatial coherence, where 
the degree of spatial coherence of a light source can be 
specified in terms of its coherence area AC, which is defined 
as the area of a surface perpendicular to the direction of 
propagation (at a given distance from the source), over 
which the emitted light remains coherent with itself. For 
example, considering two scene points S1 and S2 , if <Ps

1
(t) 

and <Ps,(t) are the phases of light emitted towards them (as 
described above in connection with Equation 1 ). If S 1 and S2 

lie within the coherence area of the light source, then the 
relative phase is fixed over time, i.e., <Ps

1
(t)-<Ps,(t)=cp 12 . As a 

result, light reflected from these two points will interfere, 
creating a cross term !cross in the speckle pattern. However, 
if the distance between the points is more than the diameter 
of the coherence area, the phases <Ps

1
(t) and <Ps,(t) fluctuate 

randomly with respect to each other, and the cross term 
!cross, which contains a time integral of the product of 
cosines of the two phases, vanishes over time. That is, the 
light reflected from these two points does not interfere, and 
the total image, I,

0
,, is the sum of the intensities, similar to 

incoherent light. In this example, I,
0
,(p )=11 (p )+lip), i.e., the 

total speckle image is simply the sum of both individual 
speckle images. 

sources may not be suitable for use with the mechanisms 
described herein for estimating motion of multiple objects. 
For example, mode-locked lasers typically have high spatial 

20 coherence and a large coherent area. Consequently, if such 
a laser were used to illuminate the scene, the cross term may 
not vanish even for two distant objects. As another example, 
the coherence area of white light sources ( e.g., a halogen 

25 

lamp) may be too small to create a speckle pattern at all. 
FIG. 6 shows an example of speckle patterns created by 

two independently moving objects in a scene and cross­
correlations calculated based on the speckle patterns of a 
first speckle image and a second speckle image in accor­
dance with some embodiments of the disclosed subject 

30 matter. As shown in FIG. 6, a scene 602 includes a first 
object 604 and a second object 606 moving independently. 
A first speckle image 608 (I,

0
,) captured of scene 602 

includes contributions from both the first object (speckle 
image 11 if only the first object were in the scene) and the 

35 second object (speckle image 12 if only the second object 
were in the scene). A second speckle image 610 (speckle 
image I,

0
,') captured of scene 602 after object 604 and object 

606 have moved as indicated includes contributions from the 
first object (speckle image if only the first object were in the 

40 scene) and the second object (speckle image 12 ' if only the 
second object were in the scene). Note that Ii' and 12 ' show 
the speckle images 11 and 12 shifted due to movement of the 
objects, and I,

0
,' shows only the portions that correspond to 

speckle included in I,
0
,, however, this is shown for ease of 

45 explanation and there would be speckle pattern present from 
each object that was not included in I,

0
,. That is, the speckle 

from object 1 and object 2 would each fill the entirety of the 
sensor, as shown in image 608. 

As shown in FIG. 6, a result of a cross-correlation 
50 between 11 and the portion of I,

0
,' generated from object 604 

(i.e., the portion of Ii' as shown that falls within I,
0
,') is 

shown in 612, with a peak 614 indicating the amount by 
which 11 can be shifted to most closely match the portion of 
I,

0
,' created by object 604 based on the cross-correlation 612. 

In general, multi-object motion analysis techniques can be 
broadly classified into two categories: techniques that track 
locations of individual objects over time; and techniques 
which do not explicitly compute the 3D structure of the 
scene or track individual points. For example, most camera­
based hand tracking and gesture recognition systems explic­
itly estimate a hand's pose and skeletal structure, and are 
examples of the first type of motion analysis technique. 
Tracking individual spatio-temporal trajectories of indi­
vidual objects can provide highly detailed motion informa­
tion but is not always possible if objects lack texture or if the 
motions are small. The mechanisms described herein are 
generally the second type of technique for analyzing the 
motion of multiple objects. Other examples of the second 
type of technique can include techniques based on alterna­
tive sensing modalities such as millimeter-wave radar, or 65 

radio waves that recognize hand gestures by performing 
aggregate motion analysis of the entire scene over time. 

55 Similarly, a result of a cross-correlation between 12 and the 
portion ofl,

0
,' generated from object 606 (i.e., the portion of 

12 ' as shown that falls within I,
0
,') is shown in 616, with a 

peak 618 indicating the amount by which 12 can be shifted 
to most closely match the portion of I,

0
,' created by object 

60 606 based on the cross-correlation 616. A result of a cross-
correlation between I,

0
, and I,

0
,' is shown in 620, with peak 

614 indicating the amount by which 11 can be shifted to most 
closely match the portion ofl,

0
,' created by object 604 based 

on the cross-correlation 620, and peak 618 indicating the 
amount by which 12 can be shifted to most closely match the 
portion of I,

0
,' created by object 606 based on the cross­

correlation 620. Note that adding the results of the individual 



US 10,152,798 B2 
17 

cross-correlations together produces similar results to the 
cross-correlation of the total images, although in most 
situations the individual speckle images produced by each 
object are not available as shown in FIG. 6 (i.e., only the 
total image is typically available for determining object 
motions). 

As described above, the cross term in the speckle pattern 
due to two independently moving objects 1I\ (e.g., object 
604) and 1I\ (e.g., object 606) can be eliminated by using a 
light source with low spatial coherence. However, the total 
speckle image still consists of two speckle components, each 
moving independently, as shown in FIG. 6. If the total 
speckle image, before and after the motion of objects is 
represented by: 

18 
tions, as shown in cross-correlation 620 in FIG. 6. Each peak 
corresponds to the motion of a single object, and can be 
isolated relatively easily. 

In some embodiments, the 3D object motion estimation 
5 techniques described in connection with FIGS. SA-SC can 

be applied to multiple peaks in the cross-correlation between 
two speckle images corresponding to multiple objects, to 
create a 3D motion histogram of the scene, where a non-zero 
bin value corresponds to the 3D motion of an object. For 

10 example, FIG. 7 shows an example of three independently 
moving objects, a 3D histogram showing object motions, 
and histograms showing motion across each of the three 
axes in accordance with some embodiments of the disclosed 
subject matter. As shown in FIG. 7, a scene 702 includes a 

15 first object 704 moving along the x-axis from left to right in 
scene 702, a second object 706 moving along the y-axis 
from bottom to top in scene 702, and a third object 708 
moving along the z-axis toward the image sensor in 702. 

where I,(p) and I,'(p) are the speckle patterns before and after 
20 

motion, due to the individual patch 1I\, iE[l,2], the speckle 
motion model described above in connection with FIGS. 2A 

FIG. 7 shows a 3D histogram 710 from two angles, with 
points in the histogram representing estimated motion 
between successive pairs of speckle images captured of 
scene 702, while histograms 712, 714 and 716 each repre­
sent ID histograms showing the estimated motion of the 
three objects along each axis. Note that objects 704-708 

to 3C directly on the total speckle images I,
0

, and I,
0
,' 

because multiple speckle flows are super-imposed in these 
images. One potential approach would be to separate I,

0
, and 

I,
0
,' into individual components. However, this may not be 

feasible without sophisticated blind source separation algo­
rithms. However, although the speckle patterns cannot be 
easily separated, their motion can be separated by exploiting 
the cross-correlation property of speckle patterns (e.g., as 
described above in connection with Equation 6). Specifi­
cally, the correlation of the speckle images I,

0
, and I,

0
,' can 

be calculated as: 

where the image indices u and v have been omitted. Accord­
ing to the cross-correlation property of speckle patterns, the 
correlation between speckle patterns from two different 
optically rough surfaces is zero. Accordingly the terms 
I1*I2 '=I2 *I1=0 and, and the above relationship can be sim­
plified as: 

25 were moving at relatively constant speeds, and this is 
reflected in the estimated motion shown in the histograms. 
Note that, although the motions in FIG. 7 can be easily 
attributed to individual objects, this is merely shown for the 
purposes of explanation, and using a bare sensor and the 

30 techniques described herein, the motion of individual 
objects in the scene cannot easily be attributed to peaks in 
the cross-correlation without additional processing and/or 
additional data (e.g., from another sensor). Additionally, due 
to the cross-correlation producing peaks corresponding to 

35 the motion of an object in the scene, if two objects were 
moving in the same direction at the same speed, the cross­
correlation would produce very similar peaks that would 
likely be indistinguishable. However, this scenario is 
unlikely in most situations as the objects are unlikely to be 

40 moving with precision greater than the motion sensitivity of 
the scene along all three axes. While the 3D motion histo­
gram (e.g., histogram 710) represents only the aggregate 
scene motion across time, and cannot be used to track 

(23) 45 

individual objects, it can be used to characterize multi-object 
3D motion ofa scene, and can be indicative of the dynamic 
scene configuration. For example, as described below in 

where I,C0
rr =I, *I,' represents the correlation image due to the 

motion of object W,, imaged individually. In general, if K 
independently moving objects are imaged simultaneously, 
we get: 

K (24) 

1corr = '\' /~orr 
tot L..J I 

i=l 

Multi-Object Speckle Correlation 

connection with FIGS. 11-13, the motion histogram can be 
used as the basis for a hand gesture recognition system. 

Note that, although the mathematical model described 
50 herein assumes that the scene is made up of small and distant 

objects, in general, objects may have a finite spatial extent 
and inter-object distance may be small (e.g., fingers while 
performing a gesture). Using the mechanisms described 
herein, motion in such a scene can be estimated, but the 

55 precision may be reduced as compared to an idealized 
system, and such scenes may produce a non-zero cross term 
in the speckle image due to interference between the speckle 
generated by different objects. However, if a light source 
with a relatively narrow bandwidth and a relatively small 

Note that, under the certain assumptions ( e.g., small objects 
moving independently, illuminated by a light source with 
low spatial coherence), the speckle correlation image due to 
multiple objects moving simultaneously is the sum of the 
correlation images due to the motion of objects imaged 
individually. Accordingly, because each individual correla­
tion image can be approximated as a shifted delta function 
(with the shift corresponding to the motion of that object, as 65 

described above in connection with FIGS. 4A to SC), the 
total correlation image is a sum of the shifted delta func-

60 coherence area is used (e.g., a laser diode with a coherence 
area of less than about 1 mm, and a bandwidth of about 10 
nm), the cross term may remain negligible and the speckle 
contrast may be sufficiently high to enable relatively precise 
multi-object motion analysis of the scene. 

Turning to FIG. 8, an example 800 of a system for 
determining object motion in three dimensions using speckle 
images is shown in accordance with some embodiments of 
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the disclosed subject matter. As shown, system 800 can 
include a light source 802; an image sensor 804; a filter 806; 
a processor 808 for controlling operations of system 800 
which can include any suitable hardware processor (which 
can be a microprocessor, digital signal processor, a micro- 5 

controller, a GPU, etc.) or combination of hardware proces­
sors; an input device 810 (such as a shutter button, a menu 
button, a microphone, a touchscreen, a motion sensor, a etc., 
or any suitable combination thereof) for accepting input 
from a user and/or from the environment; memory 812; and 10 

a communication system or systems 814 for allowing com­
munication between processor 808 and other devices, such 
as a smartphone, a wearable computer, a tablet computer, a 
laptop computer, a personal computer, a server, etc., via a 
communication link. In some embodiments, memory 812 15 

can store speckle images, results of cross-correlations 
between speckle images, data that can be used to create a 3D 
histogram, etc. Memory 812 can include a storage device 

20 
Research) with a resolution of 1920x1200 pixels, which the 
side of each pixel, p=5.62 µm. 

In some embodiments, filter 806 can be any suitable filter 
or combination of filters that permit light emitted by light 
source 802 and reflected by objects in the scene to impinge 
on image sensor 804, while reducing the amount of ambient 
light from the scene that impinges on image sensor 804. For 
example, filter 806 can be a narrow band pass filter centered 
around the wavelength ( e.g., the mean wavelength) at which 
light source 802 emits coherent light. In a more particular 
example, if light source 802 is the 532 nm laser described 
above, filter 806 can be a bandpass filter centered around 
532 nm (±2 nm). 

In some embodiments, system 800 can include additional 
optics. For example, a beam splitter can be used in system 
800 such that light is emitted from light source 802 along the 
same optical path as light received by image sensor 804 (i.e., 
light source 802 and image sensor 804 can act as though they 
are collocated). As another example, although image sensor 
802 is generally described herein as being a bare sensor, 
optics can be used to provide defocus of the image while 
narrowing the field of view of image sensor 802. As yet 
another example, optics that can change between a focused 
and defocused state can be used in system 800 to facilitate 

( e.g., a hard disk, a Blu-ray disc, a Digital Video Disk, RAM, 
ROM, EEPROM, etc.) for storing a computer program for 20 

controlling processor 808. In some embodiments, memory 
812 can include instructions for causing processor 808 to 
execute processes associated with the mechanisms described 
herein, such as processes described below in connection 
with FIGS. 9-11. 

In some embodiments, light source 802 can be any 
suitable light source that produces light that has relatively 
high temporal coherence and relatively low spatial coher­
ence, for example, as described above in connection with 
FIGS. 2 and 5. For example, light source 802 can include a 30 

laser diode, a white light source ( e.g., a halogen bulb) and a 
narrow band filter, a laser that is defocused using a concave 
lens, and/or any other suitable light source. In some embodi­
ments, light source 802 can emit light at any suitable 
wavelength. For example, light source 802 can emit visible 
light, near-infrared light, infrared light, etc. In a more 
particular example, light source 802 can emit temporally 
coherent light with a center wavelength (i.e., A) that is in a 
range that typically is not visible to humans ( e.g., from 700 
nm to 1200 nm) but can be detected by conventional 40 

silicon-based image sensors (e.g., CMOS sensors, CCD 
sensors, etc.). In another more particular example, light 
source 802 can emit temporally coherent light with a center 
wavelength (i.e., A) that is in the infrared range (e.g., above 
1200 nm) that may require image sensors based on other 
semi-conductors (e.g., Indium Gallium Arsnide-based sen­
sors). In yet another more particular example, light source 
802 can be a laser centered around 532 nm that is defocused 
using a concave lens to create light that is temporal coherent, 
but has low spatial coherence. 

25 alternately capturing images of objects in the scene, and 
speckle images. In a more particular example, an electrowet­
ting lens, and/or other controllable optics, can be used to 
provide a focused image to the image sensor at a first time, 
and a defocused speckle image at a second time. 

In some embodiments, system 800 can communicate with 
a remote device over a network using communication sys­
tem( s) 814 and a communication link. Additionally or alter­
natively, system 800 can be included as part of another 
device, such as a smartphone, a tablet computer, a laptop 

35 computer, etc. Parts of system 800 can be shared with a 
device within which system 800 is integrated. For example, 
if system 800 is integrated with a smartphone, processor 808 
can be a processor of the smartphone and can be used to 
control operation of system 800. 

In some embodiments, system 800 can communicate with 
any other suitable device, where the other device can be one 
of a general purpose device such as a computer or a special 
purpose device such as a client, a server, etc. Any of these 
general or special purpose devices can include any suitable 

45 components such as a hardware processor (which can be a 
microprocessor, digital signal processor, a controller, etc.), 
memory, communication interfaces, display controllers, 
input devices, etc. For example, the other device can be 
implemented as a digital camera, security camera, outdoor 

50 monitoring system, a smartphone, a wearable computer, a 
tablet computer, a personal data assistant (PDA), a personal 
computer, a laptop computer, a multimedia terminal, a game 
console or peripheral for a gaming counsel or any of the 

In some embodiments, image sensor 804 can be any 
suitable image sensor that can generate an image of the 
speckle reflected from the scene. In some embodiments, 
image sensor 804 can be a bare image sensor without any 
color filters (e.g., a monochrome sensor, an IR sensor, etc.). 55 

In some embodiments, image sensor 804 can be a high speed 
image sensor that is configured to capture images at a frame 
rate substantially higher than thirty frames per second. For 
example, the frame rate can be at least 250 frames per 
second. In some embodiments, image sensor 804 can be a 
color sensor, which may reduce the amount of information 
captured in an image due to the coherent nature of the light 
that makes up the speckle pattern. In a particular example, 
the image sensor can be an image sensor included in the 
Grasshopper 3 camera (e.g., an IMXl 74 CMOS image 
sensor available from Sony Corp.) available from FLIR 
Integrated Imaging Solutions, Inc. (formerly Point Grey 

above devices, a special purpose device, etc. 
Communications by communication system 814 via a 

communication link can be carried out using any suitable 
computer network, or any suitable combination of networks, 
including the Internet, an intranet, a wide-area network 
(WAN), a local-area network (LAN), a wireless network, a 

60 digital subscriber line (DSL) network, a frame relay net­
work, an asynchronous transfer mode (ATM) network, a 
virtual private network (VPN). The communications link 
can include any communication links suitable for commu­
nicating data between system 800 and another device, such 

65 as a network link, a dial-up link, a wireless link, a hard-wired 
link, any other suitable communication link, or any suitable 
combination of such links. System 800 and/or another 
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device (e.g., a server, a personal computer, a smartphone, 
etc.) can enable a user to execute a computer program uses 
information derived using the mechanisms described herein 
to, for example, control a user interface. 

It should also be noted that data received through the 
communication link or any other communication link(s) can 
be received from any suitable source. In some embodiments, 
processor 808 can send and receive data through the com­
munication link or any other communication link(s) using, 
for example, a transmitter, receiver, transmitter/receiver, 
transceiver, or any other suitable communication device. 

FIG. 9 shows an example 900 of a process for determining 
motion of objects in a scene in accordance with some 
embodiments of the disclosed subject matter. As shown in 
FIG. 9, process 900 can start at 902 by causing light to be 
projected by a temporally coherent light source ( e.g., light 
source 802) toward a scene for which motion is to be 
determined. As described above (e.g., in connection with 
FIGS. 2A, 2B and 8), the light source can be any suitable 
light source that emits light that is temporally coherent, but 
that has relatively low spatial coherence. In some embodi­
ments, process 900 can cause the light to be emitted by the 
light source continuously or intermittently while images are 
to be captured. 

At 904, process 900 can cause an image sensor (e.g., 
image sensor 804) to capture a series of defocused images of 
speckle patterns reflected from the scene. As described 
above in connection with FIG. 8, the image sensor can 
capture images of the scene at any suitable frame rate. In 
some embodiments, the captured speckle images can be 
stored in any suitable memory (e.g., memory 812). As 
described above in connection with FIGS. SA-SC, the 
amount of defocus with which the speckle image is captured 
can be proportional to the sensitivity of motion estimates 
that can be made using the images. 

At 906, process 900 can compare two of the captured 
speckle images to determine object movements in the scene 
based on shifts in the speckle included in the images. In 
some embodiments, process 900 can use any suitable tech­
nique or combination of techniques to determine object 
motions in the scene based on the two images. For example, 
as described above in connection with FIGS. SA-SC and 6 
and below in connection with FIG. 10, process 900 can 
create versions of one of the images (e.g., an image that was 
captured first) at various scales, and can compare these 
versions to the other image by performing a 2D cross­
correlation. The result of the cross-correlations at various 
scales can be evaluated to determine movement of an object 

22 
ments near the scale of the original version of the image, and 
larger increments farther from the scale of the original 
version of the image. 

At 1004, process 1000 can perform a two-dimensional 
5 cross-correlation between the first image at each scale and a 

second speckle image of the scene captured at another time. 
Process 1000 can use any suitable technique or combination 
of techniques to perform the cross-correlation, such as 
techniques described above in connection with FIGS. 4A to 

10 7. Note that, although the first image is generally described 
herein as being captured before the second image, the first 
image can be an image captured after the second image. 
Additionally, in some embodiments, process 1000 can select 
the first image and second image from a series of speckle 

15 images captured using an image sensor (e.g., image sensor 
804), such as the series of images captured as described 
above in connection with process 900 of FIG. 9. In some 
embodiments, the first image and second image can be 
images that were consecutively captured. Alternatively, the 

20 first image and second image can be images that were 
captured non-consecutively. 

At 1006, process 1000 can select a peak from one of the 
cross-correlations that represents movement of an object in 
the scene. In some embodiments, process 1000 can use any 

25 suitable technique or combination of technique to select a 
peak. For example, process 1000 can select a peak from 
among all peaks in all of the cross-correlations that has a 
largest value. As another example, process 1000 can select 
a subset of peaks with a value that meets and/or exceeds a 

30 threshold value, which can be a predetermined threshold or 
a threshold based on the peak values present in the cross­
correlation. 

At 1008, process 1000 can select a scale at which the 
largest cross-correlation is produced for movement of an 

35 object in the scene between the two scenes. For example, 
process 1000 can select the scale as described above in 
connection with Equation 17. In some embodiments, as 
described above in connection with FIG. SC, process 1000 
can select a scale by fitting the values of the peaks to a 

40 Gaussian model, and selecting a peak based on the Gaussian 
model if the largest peak from the cross-correlations does 
not coincide with the peak in the fitted Gaussian model. In 
some embodiments, if the scale is selected using the fitted 
Gaussian model, the first image can be scaled to a value 

45 based on the selected scale and cross-correlated with the 
second image to produce another cross-correlation from 
which the lateral motion of the object can be determined. 

in an axial direction from the cross-correlation that produced 
the largest peak, and can determine lateral motion of the 50 

object based on the location of a peak resulting from the 
cross-correlation. 

At 1010, process 1000 can determine axial motion of the 
object based on the scale selected at 1008. For example, as 
described above in connection with Equation 18, process 
1000 can generate the axial portion of an object translation 
vector based on the selected scale y:. 

FIG. 10 shows an example 1000 of a process for deter­
mining motion of multiple objects between two speckle 
images in accordance with some embodiments of the dis- 55 

closed subject matter. As shown in FIG. 10, process 1000 
can start at 1002 by generating scaled versions of a first 
image of speckle at a variety of scales. In some embodi­
ments, process 1000 can use any suitable technique or 
combination of techniques to generate scaled images. For 60 

example, the first image can be expanded and contracted by 
varying amounts ( e.g., as described above in connection 
with FIG. SA). In some embodiments, any suitable number 
of scaled images can be generated in any suitable increment 
or increments. For example, the first image can be scaled 65 

over a range from -20% to +20% in increments of 1 %. As 
another example, the image can be scaled at smaller incre-

At 1012, process 1000 can determine the lateral motion of 
the object based on the location of the peak in the cross­
correlation between the first image scaled at scale selected at 
1008 and the second image. For example, the peak can 
indicate a horizontal shift lrn and a vertical shift llv that 
process 1000 can use to determine the horizontal and 
vertical motion, respectively (e.g., as described above in 
connection with Equation 18). 

At 1014, process 1000 can determine whether there are 
additional object motions represented in the cross-correla­
tions between the two speckle images. In some embodi­
ments, process 1000 can use any suitable technique or 
combination of techniques to determine whether there are 
additional object motions represented in the cross-correla­
tions between the two speckle images. For example, process 
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1000 can determine whether there are additional peaks in the 
various cross-correlations that likely do not correspond to 
the object for which motion was determined at 1010 and 
1012. As another example, process 1000 can search for any 
peaks that are greater than a threshold value in the cross­
correlations, and can identify the peaks that meet the thresh­
old (e.g., are greater than, greater than or equal to, etc.) as 
potentially corresponding to object motion. In some embodi­
ments, the threshold can be dynamically determined based 
on the values in the cross-correlation. For example, the 
threshold can be determined based on the highest value peak 
or peaks present in the results of the cross-correlations. In 
some embodiments, as the number of moving objects in the 
scene increases the correlation peak intensities may 
decrease. The maximum number of moving objects that can 
be detected can be dependent on scene, illumination, and 
sensor characteristics. 

If there are additional object motions ("YES" at 1014), 
process 1000 can return to 1006 to select one or more peaks 
corresponding to object motion of other objects. Otherwise, 
if there are no more object motions ("NO" at 1014), process 
1000 can generate motion information for object motions 
between the first image and the second image based on the 
determined axial motion and lateral motion for each object 
evaluated by process 1000. In some embodiments, the 
motion information can represented as a series of motion 
vectors, a matrix representing motion vectors for each object 
motion, etc. In some embodiments, the motion information 
can be associated with the first image and the second image 

24 
motions. For example, object motion information can be 
determined using process 900 and/or process 1000 described 
above in connection with FIGS. 9 and 10. Additionally or 
alternatively, process 1100 can receive motion information 

5 calculated by another device that is associated with a known 
motion (e.g., a known gesture). In some embodiments, 
process 1100 can use the motion information for each series 
of images corresponding to a known gesture to compute a 
3D motion histogram representing motion between pairs of 

10 consecutive frames. In some embodiments, process 1100 can 
represent the motion in the motion histograms using feature 
vectors that include the top M motion modes ( e.g., M 
strongest cross-correlation peaks) from each motion histo­
gram within histograms representing an N-frame window. In 

15 some such embodiments, each motion mode can be repre­
sented as a 4-vector (x, y, z, intensity), consisting of the 
location and the intensity of the corresponding correlation 
peak (e.g., as described above in connection with FIGS. 
SA-SC, 6, 7 and 9. In some embodiments, the motion modes 

20 from a histogram can be ordered by peak intensity and 
concatenated to form a vector of length 4M, where each 
4M-length vector can then be concatenated within the tem­
poral window to form a final 4MN-length feature vector, 
which can be used as the input to a gesture classification 

25 model. In a particular example, feature vectors can be 
generated for hand gesture recognition with M=l0 modes 
and a temporal window size of N=200 frames, which can 
corresponds to M = 10 dominant independently moving 
objects, and a temporal duration of N/660ss0.3 seconds. 

to indicate that the motion information represents motion 30 

between the two images. In some embodiments, process 
1000 can execute 1006-1012 for multiple peaks substantially 
simultaneously (i.e., in parallel). 

At 1106, process 1100 can use the motion information 
determined at 1104 as training data to train a classification 
model to recognize one or more of the known object 
motions. Any suitable machine learning technique or com­
bination of techniques can be used to train a classification In some embodiments, process 1000 can generate motion 

information for various different pairs of images to represent 
motion of objects in the scene over time. Such information 
can be used to, for example, create a 3D motion histogram 
representing motion in the scene over a particular period of 
time, as described above in connection with FIG. 7 (and as 
described below in connection with FIG. 13). 

FIG. 11 shows an example 1100 of a process for using 
motion information generated from a series of images of a 
scene to recognize motion in the scene in accordance with 
some embodiments of the disclosed subject matter. At 1102, 
process 1100 can cause an image sensor (e.g., image sensor 
802) to capture a series of speckle images of scenes includ­
ing known motions. For example, process 1100 can capture 
images of hand motions performed by human subjects that 
have been instructed to perform a certain hand gesture. For 
example, these hand gestures can include the hand gestures 
described below in connection with FIG. 12. In some 
embodiments, process 1100 can capture images of one or 
more of the gestures being performed any suitable number 
of times. In a particular example, five subjects can be 
instructed to perform each of the gestures described below 
in connection with FIG. 12 five times each. In the example, 
the subjects can be shown an example of each gesture, and 
be instructed to place their hand approximately 0.5 meter 
from the image sensor to perform the gestures. The gestures 
can be recorded at any suitable frame rate ( e.g., 660 frames­
per second) using an image sensor (e.g., image sensor 804) 
at a 256x256-pixel resolution. Additionally or alternatively, 
the speckle images can be captured by another device and 
transmitted to a device executing process 1100, which can 
receive the images at 1102. 

At 1104, process 1100 can determine object motions in the 
series of images that are associated with the known object 

35 model to recognize the gestures represented in the motion 
information derived from the speckle images captured at 
1102. For example, support vector machines, hidden 
Markov models based on temporal time-series analysis, 
and/or convolutional neural networks can be trained to 

40 recognize unknown examples of the known object motions 
based on the motion information in the images captured at 
1102. As another example, a random forest classifier ( e.g., as 
described by the scikit-learn library at scikit-learn ( dot) org), 
which generally exhibits a high degree of computational 

45 efficiency, and low memory usage, which can be appropriate 
for use in relatively low power devices, such as smart­
phones, tablet computers, wearable computers, etc. In a 
more particular example, using a 32-core processor with a 
base frequency of 2.60 GHz, training took ss40 seconds for 

50 ss40,000 samples (with one sample corresponding to a single 
feature vector as described above) and test-time classifica­
tion took ss0.27 seconds for ss9000 test samples. In such an 
example, a gesture instance can be a set of samples (e.g., 
frames) spanning a time duration of approximately 0.7 

55 seconds. In such an example, the amount of training (and 
testing) information can be increased by extracting multiple 
feature vectors from within each gesture instance by shifting 
the window ofN frames (from which a single sample can be 
extracted) one frame at a time. This can result in ss280 

60 feature vectors (samples) per gesture instance. In some 
embodiments, process 1100 can test the classification model 
trained at 1106 using motion information corresponding to 
known object motions that may not have been used during 

65 

the training of the classification model. 
At 1108, process 1100 can cause an image sensor (e.g., 

image sensor 802) to capture a series of speckle images of 
a scene including unknown object motions. For example, 
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process 1100 can cause the image sensor to capture speckle 
images of a scene that may include a hand of a subject 
performing an unknown hand gesture. 

At 1110, process 1100 can determine motion information 
for objects in the scene that includes the unknown object 5 

motions from the series of images captured at 1108. In some 
embodiments, process 1100 can capture images and deter­
mine motion information from a window of the most recent 
N frames (e.g., as described above in connection with 1104). 
In some embodiments, a secondary device ( e.g., a motion 
sensor, a camera, etc.) can be used to determine whether the 
unknown motion in the scene likely represents an example 
of a known object motion. For example, the secondary 
device can be used to determine if there is a hand ( or other 
object) in the field of view of the image sensor used to 
capture the speckle images. Process 1100 can use any 
suitable technique or combination of techniques to deter­
mine the motion information from the images captured at 
1108. 

10 

15 

20 

At 1112, process 1100 can use the motion information 
corresponding to the unknown object motions as input to the 
trained classification model or models. For example, a 
feature vector as described above in connection with 1104 
can be provided to the trained classification model(s) as 25 

input to be classified. 
At 1114, process 1100 can use the output from the trained 

classification model to generate one or more likelihoods that 
the unknown motion in the scene corresponds to a particular 
known motion. For example, the classification model or 30 

models can output a likelihood(s) that the motion repre­
sented by the feature vector provided at 1112 corresponds to 
a particular known motion. 

In some embodiments, the portion of process 1100 for 
training the classification model can be executed by a first 
device (e.g., a server) and the trained classification model 
can be provided to another device ( e.g., a smartphone, a 
tablet computer, a wearable computer, a laptop computer, 
etc.) for recognizing unknown gestures or other motions. 
Additionally or alternatively, process 1100 can be executed 
by a single device, which can, for example, train the 
classification model to recognize gestures performed by a 
particular subject or subjects. 

35 

40 

FIG. 12 shows examples of gestures that the classification 
model described above in connection with FIG. 11 can be 45 

26 
As shown below in Table 1, an example of results 

generated by a classification model trained using the mecha­
nisms described herein to recognize unknown inputs from a 
non-specific user. 

TABLE 1 

SD SU BP BR HS vs IF 

SD 84% 2% 1% 0% 5% 4% 3% 
SU 9% 82% 0% 1% 2% 4% 1% 
BP 4% 1% 61% 10% 3% 7% 14% 
BR 2% 5% 8% 52% 7% 11% 15% 
HS 0% 0% 1% 5% 83% 4% 7% 
vs 1% 1% 1% 2% 4% 89% 1% 
IF 0% 0% 0% 0% 4% 7% 89% 

SD = Swipe Down, 

SU = Swipe Up, 

BP = Button Press, 

BR= Button Release, 
HS = Horizontal Stretch 

VS = Vertical Stretch, 

IF = Inflate 

In the results illustrated by Table 1, the overall multi-class 
sample-level classification accuracy was 78%. The overall 
gesture-level classification accuracy, computed by taking the 
modal class label for each gesture trial, was 83%. The 
trained classification model was able to recognize most 
gestures with relatively high (>80%) accuracy. Whereas 
gestures involving axial motion (e.g., Button Press and 
Button Release) were more difficult to accurately recognize 
( e.g., due to the lower sensitivity when recognizing axial 
motion). As shown below in Table 2, an example of results 
generated by a classification model trained using the mecha­
nisms described herein to recognize unknown inputs from a 
user that provided the training samples. 

TABLE 2 

SD SU BP BR HS vs IF 

Sl 100% 100% 100% 100% 90% 86% 99% 
S2 94% 69% 53% 39% 69% 87% 100% 
S3 91% 62% 40% 26% 79% 99% 69% 
S4 39% 75% 3% 0% 86% 85% 100% 
S5 90% 100% 92% 67% 86% 91% 88% 

FIG. 14 shows an example comparing theoretical accu-
racy in recognizing object motions and observed accuracy in 
an example system. The example system can be an imaging 
system that includes the Grasshopper 3 sensor described 
above in connection with FIG. 8, and a 532 nm laser offset 

trained to recognize in accordance with some embodiments 
of the disclosed subject matter. As shown in FIG. 12, the 
gestures can include a swipe down and a swipe up involving 
small single-finger lateral motions, a button press and a 
button release involving small axial motions, a horizontal 
stretch and a vertical stretch involving simultaneous motion 
by two fingers in opposite directions, and an inflate gesture 
involving simultaneous motion by multiple fingers with 
significant axial and lateral components. 

50 from the sensor by about 4.5 cm. The results were generated 
based on images captured of a 5 mm-diameter piece of white 
chalk as a target object. The surface of chalk is microscopi­
cally rough, and has negligible sub-surface scattering. The 
target was mounted on a linear stage using a thin matte black 

FIG. 13 shows examples of 3D motion histograms rep­
resenting various gestures in accordance with some embodi­
ments of the disclosed subject matter. As shown in FIG. 13, 
a histogram representing a swipe down, a horizontal stretch, 
and an inflate gesture can include distinctive features clus­
tered based on the gesture being performed. The gestures 
described in connection with FIGS. 12 and 13 can be 
characterized as gestures involving relatively subtle motion, 
as opposed to pose gestures which can involve recognizing 
the spatial configuration of the hand and can more easily be 
distinguished by a camera. Note that, in the motion histo­
grams shown in FIG. 13, the bins each represent a 20 micron 
motion. 

55 rod, and the whole assembly was mounted on an optical 
table supported by air cushions to minimize vibrations. 
Matte black velvet cloth was used as background so that 
most of the received light came from the target object. 

To measure lateral accuracy of the test system, the target 
60 object was moved from left to right along the x-axis (how­

ever, the y-axis can be considered in a similar manner) in 
increments of 40 µm, and a speckle image was recorded after 
each increment. The amount of speckle shift was measured 
between pairs of frames using the techniques described 

65 herein ( e.g., as described above in connection with Equation 
13). Over a 2-mm motion sequence, the mean shift was 
measured to be 13 .98 pixels per 40 µm of lateral motion, or 
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a slope of 0.348 pixels/µm. This agrees with the theoretical 
prediction produced from Equation 8 of a slope of 0.341 
pixels/µm. The speckle motion model for lateral motion is 
quasi-invariant to scene geometry (e.g., depth, lateral offset) 
and object properties (e.g., size, shape, wide range of 5 

materials). 

(where the image motion is smaller). In general, the amount 
of axial motion magnification depends on a variety of scene 
characteristics, including scene geometry and reflectance 
properties. 

In some embodiments, any suitable computer readable 
media can be used for storing instructions for performing the 
functions and/or processes described herein. For example, in 
some embodiments, computer readable media can be tran­
sitory or non-transitory. For example, non-transitory com-

To measure the axial accuracy of the test system, the 
target object was moved from a distance of 50 cm toward the 
sensor along the z-axis in increments of 40 µm. The image 
scale factor x between pairs of frames was calculated using 
the techniques described herein in connection with FIGS. 
SA-SC. For a 2-mm motion (e.g., Frame 1 vs. Frame 2), the 
system measured the scale to be 4.66xl0-3

, which substan­
tially agrees with the theoretical prediction from Equation 8 
of 4.38xl0-3 for the same axial motion. Note that the 
theoretical prediction was calculated with a correction for 
the offset between the sensor and the light source. In general, 
axial motion measurements are dependent on scene depth, 
however, if the axial motion is significantly smaller than the 
distance from the sensor to the object, the depth can be 
considered approximately constant, making the axial motion 
estimates quasi-invariant to scene depths. 

FIG. 15 shows examples comparing motion measure­
ments made using a conventional camera and motion mea­
surements made using the test system. To measure the lateral 
motion magnification ratio (i.e., RxmotionMag) between a 
conventional camera and the test system, the first frame in 
the sequence and each subsequent frame can be compared to 
determine the amount of lateral motion (e.g., Frame 1 vs. 
Frame 2, Frame 1 vs. Frame 3, etc.) A correlation-based 
optical flow algorithm was used with the output of the 
conventional camera to compute image motion. The top row 
of FIG. 15 compares the object motion calculated from 
images captured by the conventional camera (in the left 
colunm), and object motion from speckle images captured 
by the test system (in the right colunm), for the same object 
x-translation. The measured lateral motion magnification 
ratio is approximately 60: 1 (i.e., the test system was approxi­
mately 60 times more sensitive to lateral motion than the 
conventional camera), which is consistent with the theoreti­
cal prediction from Equation 10: 

r,not;onMag 2d 500 
nx = f =2x 16 se62, 

for d=50 cm, and focal length f=16 mm. 
To measure the axial motion magnification ratio (i.e., 

10 puter readable media can include media such as magnetic 
media (such as hard disks, floppy disks, etc.), optical media 
(such as compact discs, digital video discs, Blu-ray discs, 
etc.), semiconductor media (such as RAM, Flash memory, 
electrically programmable read only memory (EPROM), 

15 electrically erasable programmable read only memory (EE­
PROM), etc.), any suitable media that is not fleeting or 
devoid of any semblance of permanence during transmis­
sion, and/or any suitable tangible media. As another 
example, transitory computer readable media can include 

20 signals on networks, in wires, conductors, optical fibers, 
circuits, or any suitable media that is fleeting and devoid of 
any semblance of permanence during transmission, and/or 
any suitable intangible media. 

It should be noted that, as used herein, the term mecha-
25 nism can encompass hardware, software, firmware, or any 

suitable combination thereof. 
It should be understood that the above described steps of 

the processes of FIGS. 9-11 can be executed or performed in 
any order or sequence not limited to the order and sequence 

30 shown and described in the figures. Also, some of the above 
steps of the processes of FIGS. 9-11 can be executed or 
performed substantially simultaneously where appropriate 
or in parallel to reduce latency and processing times. 

Although the invention has been described and illustrated 
35 in the foregoing illustrative embodiments, it is understood 

that the present disclosure has been made only by way of 
example, and that numerous changes in the details of imple­
mentation of the invention can be made without departing 
from the spirit and scope of the invention, which is limited 

40 only by the claims that follow. Features of the disclosed 
embodiments can be combined and rearranged in various 
ways. 

What is claimed is: 
1. A system for three dimensional motion estimation, the 

45 system comprising: 
a light source configured to emit light toward a scene, 

wherein the light is substantially temporally coherent 
around a center frequency A; 

an image sensor; and 
R2 motionMa~, we the first frame in the sequence and each 50 

subsequent frame can be compared to determine the amount 
a hardware processor that is programmed to: 

cause the light source to emit light toward the scene; 
cause the image sensor to capture a first defocused of axial motion (e.g., Frame 1 vs. Frame 2, Frame 1 vs. 

Frame 3, etc.) A simple scale space algorithm was used with 
the output of the conventional camera to compute the change 
in object size due to object motion. The bottom row of FIG. 55 

15 compares the object motion required to create the same 
image scale change for the conventional camera (in the left 
colunm), and the test system (in the right colunm). The units 
of image scale change are given in image size increments. 
While the theoretically predicted value for the axial motion 60 

magnification ratio is 1, using the techniques described 
above in connection with FIGS. SA-SC, a significantly 
higher measured magnification ratio of approximately 15: 1 
was observed because the test system used a bare sensor, and 
thus, can measure speckle scale change over the entire 65 

image, including the periphery (where the speckle motion is 
larger), and not just a small patch centered on the object 

image of the scene at a first time, wherein the first 
defocused image includes a first speckle pattern 
generated by an object in the scene reflecting the 
light emitted by the light source; 

cause the image sensor to capture a second defocused 
image of the scene at a second time, wherein the 
second defocused image includes a second speckle 
pattern generated by the object in the scene reflecting 
the light emitted by the light source; 

generate a first scaled version of the first defocused 
image by expanding the first defocused image by a 
predetermined amount; 

generate a second scaled version of the first defocused 
image by contracting the first defocused image by 
the predetermined amount; 
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compare the first defocused image to the second defo­
cused image; 

compare the first scaled version of the first defocused 
image to the second defocused image; 

compare the second scaled version of the first defo- 5 

cused image to the second defocused image; 
determine axial motion of the object between the first 

time and the second time based on the comparisons; 
and 

determine lateral motion of the object between the first 10 

time and second time based on the comparisons. 
2. The system of claim 1, wherein the hardware processor 

is further programmed to: 
calculate, for the first defocused image, a first two­

dimensional cross-correlation with the second defo- 15 

cused image, wherein the first two-dimensional cross­
correlation includes a peak with a first intensity at a first 
location, the first intensity indicative of how closely the 
first speckle pattern in the first defocused image 
matches the second speckle pattern in the second 20 

defocused image and the first location indicative of 
lateral motion of the object between the first time and 
the second time; 

calculate, for the first scaled version of the first defocused 
image, a second two-dimensional cross-correlation 25 

with the second defocused image, wherein the second 
two-dimensional cross-correlation includes a peak with 
a second intensity at a second location, the second 
intensity indicative of how closely the first speckle 
pattern in the first scaled version of the first defocused 30 

image matches the second speckle pattern in the second 
defocused image and the second location indicative of 
lateral motion of the object between the first time and 
the second time; and 

calculate, for the second scaled version of the first defo- 35 

cused image, a third two-dimensional cross-correlation 
with the second defocused image; wherein the third 
two-dimensional cross-correlation includes a peak with 
a third intensity at a third location, the third intensity 
indicative of how closely the first speckle pattern in the 40 

second scaled version of the first defocused image 
matches the second speckle pattern in the second 
defocused image and the third location indicative of 
lateral motion of the object between the first time and 
the second time. 45 

3. The system of claim 2, wherein the hardware processor 
is further programmed to: 

30 
output a likelihood that the received motion informa­
tion corresponds to the first hand gesture. 

5. The system of claim 4, wherein the hardware processor 
is further progranimed to: 

cause the light source to emit light toward a second scene 
that is different than the scene subsequent to generating 
the trained classification model; 

cause the image sensor to capture a third defocused image 
of the second scene at a third time, wherein the third 
defocused image includes a third speckle pattern gen­
erated by an object in the second scene reflecting the 
light emitted by the light source; 

cause the image sensor to capture a fourth defocused 
image of the second scene at a fourth time, wherein the 
fourth defocused image includes a fourth speckle pat­
tern generated by the object in the second scene reflect­
ing the light emitted by the light source; 

generate a first scaled version of the third defocused 
image by expanding the first defocused image by a 
predetermined amount; 

generate a second scaled version of the third defocused 
image by contracting the first defocused image by the 
predetermined amount; 

compare the third defocused image to the fourth defo­
cused image; 

compare the first scaled version of the third defocused 
image to the fourth defocused image; 

compare the second scaled version of the third defocused 
image to the fourth defocused image; 

determine second axial motion of the object in the second 
scene between the third time and the fourth time based 
on the comparisons; 

determine second lateral motion of the object in the 
second scene between the third time and fourth time 
based on the comparisons; 

generate second motion information indicative of motion 
of the object in the second scene between the third time 
and the fourth time based on the second axial motion 
and the second lateral motion; 

provide the second motion information as input to the 
trained classification model; and 

receive output from the trained classification model indi­
cating a likelihood that the motion in the second scene 
corresponds to the first hand gesture. 

6. The system of claim 1, wherein the light source 
comprises a laser diode. compare at least the intensity of the first peak, the second 

peak, and the third peak; and 
select a version of the first defocused image that includes 

the largest intensity peak; and 

7. The system of claim 1, wherein the coherence area of 
50 the temporally coherent light at the object is less than 1 mm. 

determine the axial motion of the object based on the scale 
of the selected version of the first defocused image. 

4. The system of claim 1, wherein the hardware processor 
is further programmed to: 

receive information indicating that the motion of the 
object between the first time and the second corre­
sponds to a first hand gesture; 

55 

generate motion information indicative of motion of the 
object between the first time and the second time based 60 

on the axial motion and the lateral motion; 
provide the motion information as input to a classification 

model as training data for training the classification 
model to recognize the first hand gesture input; 

generate a trained classification model using the input, 65 

wherein the trained classification model is configured 
to receive motion information of a scene as input and 

8. The system of claim 1, wherein the first defocused 
image includes a first total speckle pattern with contributions 
from the first speckle pattern and a third speckle pattern 
generated by a second object in the scene, and 

the second defocused image includes a second total 
speckle pattern with contributions from the second 
speckle pattern and a fourth speckle pattern generated 
by the second object in the scene, 

wherein the hardware processor is further progranimed to: 
generate a third scaled version of the first defocused 

image by expanding the first defocused image by a 
second predetermined amount; 

compare the third scaled version of the first defocused 
image to the second defocused image; 

determine axial motion of the second object between 
the first time and the second time based on the 
comparisons; and 
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determine lateral motion of the second object between 
the first time and second time based on the compari­
sons. 

9. A method for three dimensional motion estimation, the 
method comprising: 5 

causing a light source to emit light toward a scene, 
wherein the light is substantially temporally coherent 
around a center frequency A; 

causing an image sensor to capture a first defocused 
image of the scene at a first time, wherein the first 10 

defocused image includes a first speckle pattern gen­
erated by an object in the scene reflecting the light 
emitted by the light source; 

causing the image sensor to capture a second defocused 
image of the scene at a second time, wherein the second 15 

defocused image includes a second speckle pattern 
generated by the object in the scene reflecting the light 
emitted by the light source; 

generating a first scaled version of the first defocused 
image by expanding the first defocused image by a 20 

predetermined amount; 
generating a second scaled version of the first defocused 

image by contracting the first defocused image by the 
predetermined amount; 

comparing the first defocused image to the second defo- 25 

cused image; 
comparing the first scaled version of the first defocused 

image to the second defocused image; 
comparing the second scaled version of the first defocused 

image to the second defocused image; 30 

determining axial motion of the object between the first 
time and the second time based on the comparisons; 
and 

determining lateral motion of the object between the first 
time and second time based on the comparisons. 35 

10. The method of claim 9, wherein comparing the first 
defocused image to the second defocused image comprises 
calculating, for the first defocused image, a first two-dimen­
sional cross-correlation with the second defocused image, 
wherein the first two-dimensional cross-correlation includes 40 

a peak with a first intensity at a first location, the first 
intensity indicative of how closely the first speckle pattern in 
the first defocused image matches the second speckle pattern 
in the second defocused image and the first location indica­
tive oflateral motion of the object between the first time and 45 

the second time, 
comparing the first scaled version of the first defocused 

image to the second defocused image comprises cal­
culating, for the first scaled version of the first defo­
cused image, a second two-dimensional cross-correla- 50 

tion with the second defocused image, wherein the 
second two-dimensional cross-correlation includes a 
peak with a second intensity at a second location, the 
second intensity indicative of how closely the first 
speckle pattern in the first scaled version of the first 55 

defocused image matches the second speckle pattern in 
the second defocused image and the second location 
indicative of lateral motion of the object between the 
first time and the second time; and 

comparing the second scaled version of the first defocused 60 

image to the second defocused image comprises cal­
culating, for the second scaled version of the first 
defocused image, a third two-dimensional cross-corre­
lation with the second defocused image; wherein the 
third two-dimensional cross-correlation includes a peak 65 

with a third intensity at a third location, the third 
intensity indicative of how closely the first speckle 

32 
pattern in the second scaled version of the first defo­
cused image matches the second speckle pattern in the 
second defocused image and the third location indica­
tive of lateral motion of the object between the first 
time and the second time. 

11. The method of claim 10, the method further compris­
ing: 

comparing the intensity of at least the first peak, the 
second peak, and the third peak; and 

selecting a version of the first defocused image that 
includes the largest intensity peak; and 

determining the axial motion of the object based on the 
scale of the selected version of the first defocused 
image. 

12. The method of claim 9, the method further compris­
ing: 

receiving information indicating that the motion of the 
object between the first time and the second corre­
sponds to a first hand gesture; 

generating motion information indicative of motion of the 
object between the first time and the second time based 
on the axial motion and the lateral motion; 

providing the motion information as input to a classifi­
cation model as training data for training the classifi­
cation model to recognize the first hand gesture input; 

generating a trained classification model using the input, 
wherein the trained classification model is configured 
to receive motion information of a scene as input and 
output a likelihood that the received motion informa­
tion corresponds to the first hand gesture. 

13. The method of claim 12, the method further compris­
ing: 

causing the light source to emit light toward a second 
scene that is different than the scene subsequent to 
generating the trained classification model; 

causing the image sensor to capture a third defocused 
image of the second scene at a third time, wherein the 
third defocused image includes a third speckle pattern 
generated by an object in the second scene reflecting 
the light emitted by the light source; 

causing the image sensor to capture a fourth defocused 
image of the second scene at a fourth time, wherein the 
fourth defocused image includes a fourth speckle pat­
tern generated by the object in the second scene reflect­
ing the light emitted by the light source; 

generating a first scaled version of the third defocused 
image by expanding the first defocused image by a 
predetermined amount; 

generating a second scaled version of the third defocused 
image by contracting the first defocused image by the 
predetermined amount; 

comparing the third defocused image to the fourth defo­
cused image; 

comparing the first scaled version of the third defocused 
image to the fourth defocused image; 

comparing the second scaled version of the third defo­
cused image to the fourth defocused image; 

determining second axial motion of the object in the 
second scene between the third time and the fourth time 
based on the comparisons; 

determining second lateral motion of the object in the 
second scene between the third time and fourth time 
based on the comparisons; 

generating second motion information indicative of 
motion of the object in the second scene between the 
third time and the fourth time based on the second axial 
motion and the second lateral motion; 
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providing the second motion information as input to the 
trained classification model; and 

34 
lation with the second defocused image, wherein the first 
two-dimensional cross-correlation includes a peak with a 
first intensity at a first location, the first intensity indicative 
of how closely the first speckle pattern in the first defocused 

receiving output from the trained classification model 
indicating a likelihood that the motion of the second 
object corresponds to the first hand gesture. 

14. The method of claim 9, wherein the light source 
comprises a laser diode. 

15. The method of claim 9, wherein the coherence area of 
the temporally coherent light at the object is less than 1 mm. 

5 image matches the second speckle pattern in the second 
defocused image and the first location indicative of lateral 
motion of the object between the first time and the second 
time, 

16. The method of claim 9, wherein the first defocused 10 

image includes a first total speckle pattern with contributions 
from the first speckle pattern and a third speckle pattern 
generated by a second object in the scene, and 

the second defocused image includes a second total 
speckle pattern with contributions from the second 15 

speckle pattern and a fourth speckle pattern generated 
by the second object in the scene, 

the method further comprising: 
generating a third scaled version of the first defocused 

image by expanding the first defocused image by a 20 

second predetermined amount; 
comparing the third scaled version of the first defo­

cused image to the second defocused image; 
determining axial motion of the second object between 

the first time and the second time based on the 25 

comparisons; and 
determining lateral motion of the second object 

between the first time and second time based on the 
comparisons. 

17. A non-transitory computer readable medium contain- 30 

ing computer executable instructions that, when executed by 
a processor, cause the processor to perform a method for 
three dimensional motion estimation, the method compris­
ing: 

causing a light source to emit temporally coherent light 35 

toward a scene; 
causing an image sensor to capture a first defocused 

image of the scene at a first time, wherein the first 
defocused image includes a first speckle pattern gen­
erated by an object in the scene reflecting the light 40 

emitted by the light source; 
causing the image sensor to capture a second defocused 

image of the scene at a second time, wherein the second 
defocused image includes a second speckle pattern 
generated by the object in the scene reflecting the light 45 

emitted by the light source; 
generating a first scaled version of the first defocused 

image by expanding the first defocused image by a 
predetermined amount; 

generating a second scaled version of the first defocused 50 

image by contracting the first defocused image by the 
predetermined amount; 

comparing the first defocused image to the second defo­
cused image; 

comparing the first scaled version of the first defocused 55 

image to the second defocused image; 
comparing the second scaled version of the first defocused 

image to the second defocused image; 
determining axial motion of the object between the first 

time and the second time based on the comparisons; 60 

and 
determining lateral motion of the object between the first 

time and second time based on the comparisons. 
18. The non-transitory computer-readable medium of 

claim 17, wherein comparing the first defocused image to 65 

the second defocused image comprises calculating, for the 
first defocused image, a first two-dimensional cross-corre-

comparing the first scaled version of the first defocused 
image to the second defocused image comprises cal­
culating, for the first scaled version of the first defo­
cused image, a second two-dimensional cross-correla-
tion with the second defocused image, wherein the 
second two-dimensional cross-correlation includes a 
peak with a second intensity at a second location, the 
second intensity indicative of how closely the first 
speckle pattern in the first scaled version of the first 
defocused image matches the second speckle pattern in 
the second defocused image and the second location 
indicative of lateral motion of the object between the 
first time and the second time; and 

comparing the second scaled version of the first defocused 
image to the second defocused image comprises cal­
culating, for the second scaled version of the first 
defocused image, a third two-dimensional cross-corre­
lation with the second defocused image; wherein the 
third two-dimensional cross-correlation includes a peak 
with a third intensity at a third location, the third 
intensity indicative of how closely the first speckle 
pattern in the second scaled version of the first defo­
cused image matches the second speckle pattern in the 
second defocused image and the third location indica­
tive of lateral motion of the object between the first 
time and the second time. 

19. The non-transitory computer-readable medium of 
claim 18, wherein the method further comprises: 

comparing the intensity of at least the first peak, the 
second peak, and the third peak; and 

selecting a version of the first defocused image that 
includes the largest intensity peak; and 

determining the axial motion of the object based on the 
scale of the selected version of the first defocused 
image. 

20. The non-transitory computer-readable medium of 
claim 17, wherein the method further comprises: 

receiving information indicating that the motion of the 
object between the first time and the second corre­
sponds to a first hand gesture; 

generating motion information indicative of motion of the 
object between the first time and the second time based 
on the axial motion and the lateral motion; 

providing the motion information as input to a classifi­
cation model as training data for training the classifi­
cation model to recognize the first hand gesture input; 

generating a trained classification model using the input, 
wherein the trained classification model is configured 
to receive motion information of a scene as input and 
output a likelihood that the received motion informa­
tion corresponds to the first hand gesture. 

21. The non-transitory computer-readable medium of 
claim 20, wherein the method further comprises: 

causing the light source to emit light toward a second 
scene that is different than the scene subsequent to 
generating the trained classification model; 

causing the image sensor to capture a third defocused 
image of the second scene at a third time, wherein the 
third defocused image includes a third speckle pattern 
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generated by an object in the second scene reflecting 
the light emitted by the light source; 

causing the image sensor to capture a fourth defocused 
image of the second scene at a fourth time, wherein the 
fourth defocused image includes a fourth speckle pat- 5 

tern generated by the object in the second scene reflect­
ing the light emitted by the light source; 

generating a first scaled version of the third defocused 
image by expanding the first defocused image by a 
predetermined amount; 

generating a second scaled version of the third defocused 
image by contracting the first defocused image by the 
predetermined amount; 

comparing the third defocused image to the fourth defo­
cused image; 

comparing the first scaled version of the third defocused 
image to the fourth defocused image; 

comparing the second scaled version of the third defo­
cused image to the fourth defocused image; 

10 

15 

determining second axial motion of the object in the 20 
second scene between the third time and the fourth time 
based on the comparisons; 

determining second lateral motion of the object in the 
second scene between the third time and fourth time 
based on the comparisons; 

generating second motion information indicative of 
motion of the object in the second scene between the 
third time and the fourth time based on the second axial 
motion and the second lateral motion-

providing the second motion informatio~ as input to the 
trained classification model; and 

25 

36 
receiving output from the trained classification model 

indicating a likelihood that the motion of the second 
object corresponds to the first hand gesture. 

22. The non-transitory computer-readable medium of 
claim 17, wherein the light source comprises a laser diode. 

23. The non-transitory computer-readable medium of 
claim 17, wherein the coherence area of the temporally 
coherent light at the object is less than 1 mm. 

24. The non-transitory computer-readable medium of 
claim 17, wherein the first defocused image includes a first 
total speckle pattern with contributions from the first speckle 
pattern and a third speckle pattern generated by a second 
object in the scene, and 

the second defocused image includes a second total 
speckle pattern with contributions from the second 
speckle pattern and a fourth speckle pattern generated 
by the second object in the scene, 

wherein the method further comprises: 
generating a third scaled version of the first defocused 

image by expanding the first defocused image by a 
second predetermined amount; 

comparing the third scaled version of the first defo­
cused image to the second defocused image; 

determining axial motion of the second object between 
the first time and the second time based on the 
comparisons; and 

determining lateral motion of the second object 
between the first time and second time based on the 
comparisons. 

* * * * * 


