Heterogeneous Protein Foldamers Containing Alpha, Beta and Gamma Amino Acids

INVENTORS • Samuel Gellman, Ahlke Hayen, Margaret Schmitt, Felix Ngassa

WARF: P02125US
View U.S. Patent No. 7,858,737 in PDF format.

The Wisconsin Alumni Research Foundation (WARF) is seeking commercial partners interested in developing unnatural compounds containing rotationally constrained amino acid residues that are not amenable to enzymatic degradation, making them useful to probe protein-protein and other large molecule interactions.

OVERVIEW

Foldamers are synthetic protein oligomers with discrete and predictable folding properties akin to those of natural proteins. They provide molecular tools to investigate large-molecule interactions such as protein-protein or protein-RNA interactions. Current foldamers have homogeneous backbones containing either beta-amino acids or gamma-amino acids.

THE INVENTION

UW-Madison researchers have developed polypeptide foldamers containing alpha-amino acids along with cyclically constrained beta-amino acids and gamma-amino acids. These unnatural compounds contain rotationally constrained amino acid residues that are not amenable to enzymatic degradation, making them useful to probe protein-protein and other large molecule interactions. Because the backbone is heterogeneous, a portion of the residues, such as the alpha-amino acids, can provide functional diversity, while the cyclically constrained residues confer conformational specificity and stability.

APPLICATIONS

• Investigating large molecule interactions
• May be useful as non-enzymatically degradable probes to mimic protein behavior in solution

KEY BENEFITS

• Heterogeneous backbone greatly increases the number of specific molecular shapes

THE WARF ADVANTAGE

Since its founding in 1925 as the patenting and licensing organization for the University of Wisconsin-Madison, WARF has been working with business and industry to transform university research into products that benefit society. WARF intellectual property managers and licensing staff members are leaders in the field of university-based technology transfer. They are familiar with the intricacies of patenting, have worked with researchers in relevant disciplines, understand industries and markets, and have negotiated innovative licensing strategies to meet the individual needs of business clients.
that can be achieved.
• Enhances likelihood of creating foldamers with desirable functions
• Allows modeling of peptide and protein conformations in aqueous solutions
• Compounds can be fabricated in many sizes.
• Libraries of compounds can be prepared by automated means.
• Compounds can be labeled and tracked throughout any given reaction.

ADDITIONAL INFORMATION

Tech Fields
Research Tools - Protein interactions & function
Research Tools - Synthesis & purification
Materials & Chemicals - Synthesis

CONTACT INFORMATION

For current licensing status, please contact Rafael Diaz at rdiaz@warf.org or 608-960-9847.