Methods and Reagents for Appending Functional Groups to Proteins

INVENTORS • Ronald Raines, Jeet Kalia

WARF: P04016US
View U.S. Patent No. 8,242,058 in PDF format.

The Wisconsin Alumni Research Foundation (WARF) is seeking commercial partners interested in a bifunctional molecule for the site-selective functionalization of peptides and proteins.

OVERVIEW

Molecules that contain two functional groups of distinct reactivity can be used to link two biomolecules or to immobilize a biomolecule on a surface, such as a protein microarray. These bifunctional molecules must react with their targets in a physiological environment, and the two functional groups must not react with each other.

THE INVENTION

UW-Madison researchers have developed a bifunctional molecule for the site-selective functionalization of peptides and proteins. This molecule can be used to covalently link a peptide or protein to a biological or chemical entity, such as a particular functional group, a reporter molecule, a biological molecule, a ligand that in turn binds a receptor, a small molecule like an antibiotic, or a biological/substrate surface. It has the formula $\text{H}_2\text{NNH-CH}_2\text{M-L-FG}$, where M is a single bond or a chemical group carrying a non-bonding electron pair, L is a linker, and FG is a functional group, such as an azido group (-N_3), which has different reactivity than the hydrazino group (H_2NNH). The hydrazino group reacts with a thioester group at the C-terminus of the target peptide or protein to link the protein to the bifunctional molecule, while the azido group links to a functionalized surface or other chemical species.

APPLICATIONS

• Linking two biomolecules
• Immobilizing a biomolecule on a surface

KEY BENEFITS

• Provides a superior method for making protein “chips”
• Synthesis method is elegant and easy.
• The part of the molecule that links the azido group and the hydrazino group can have a variety of characteristics—for example, it can be hydrophobic or hydrophilic, rigid or flexible, long or short.
• Reacts more rapidly than existing technology
• Hydrazino and azido groups do not react with most biomolecules.
• Reaction can take place in a physiological environment and at physiological temperatures, which minimizes the inactivation of biological molecules.
• Provides nearly 100 percent coupling yield

ADDITIONAL INFORMATION

Tech Fields
Research Tools - Protein interactions & function

CONTACT INFORMATION

For current licensing status, please contact Jennifer Gottwald at jennifer@warf.org or 608-960-9854.