Recombinant Raccoon Pox Vaccine Against Highly Pathogenic Avian Influenza

INVENTORS • Jorge Osorio, Keith Iams, Brock Bakke, Shi-Hsia Hwa

WARF: A Leader in Technology Transfer Since 1925
Since its founding as a private, nonprofit affiliate of the University of Wisconsin–Madison, WARF has provided patent and licensing services to UW–Madison and worked with commercial partners to transform university research into products that benefit society. WARF intellectual property managers and licensing staff members are leaders in the field of university-based technology transfer. They are familiar with the intricacies of patenting, have worked with researchers in relevant disciplines, understand industries and markets, and have negotiated innovative licensing strategies to meet the individual needs of business clients.

The University of Wisconsin and WARF – A Single Location to Accelerate Translational Development of New Drugs
UW–Madison has the integrative capabilities to complete many key components of the drug development cycle, from discovery through clinical trials. As one of the top research universities in the world, and one of the two best-funded universities for research in the country, UW–Madison offers state-of-the-art facilities unmatched by most public universities.

These include the Small Molecule Screening Facility at the UW Comprehensive Cancer Center; the Zeeh Pharmaceutical Experiment Station, which provides consulting and laboratory services for developing formulations and studying solubility, stability and more; the Waisman Clinical Biomanufacturing Facility; the Wisconsin Institute for Medical Research, which provides UW–Madison with a complete translational research facility; and the innovative, interdisciplinary Wisconsin Institutes for Discovery, home to the private, nonprofit Morgridge Institute for Research and its public twin, WID, part of the university’s graduate school. The highly qualified experts at these facilities are ready to work with you to create a library of candidates for drug development.

OVERVIEW

The H5N1 influenza A virus subtype is highly contagious among birds and can be deadly to them but does not usually infect people. However, infections with H5N1 have occurred in humans and of the few avian influenza viruses that have crossed the species barrier to infect humans, H5N1 is responsible for the largest number of detected cases of severe disease and death in people.

An effective vaccine against the H5N1 influenza virus that could be used to vaccinate domestic animals and avians would be one step towards preventing a pandemic threat and controlling the spread of H5N1.

THE INVENTION

UW–Madison researchers have constructed vaccines comprising live recombinant raccoon pox viruses that express antigens from pathogens such as highly pathogenic avian influenza virus. When administered to a host animal, the vaccines elicit neutralizing antibodies and/or a cytotoxic T cell response.

APPLICATIONS

• Prevention or treatment of pathogen infection, including infection with the H5N1 influenza virus, in domestic animals and fowl

KEY BENEFITS

• Provides an easy, scalable way to produce influenza vaccines for avians and domestic animals
- Triggers a broader humoral and cellular response than currently available vaccines
- Suitable for pathogens in addition to avian influenza
- Viral vectors can be used alone or in combination with one another.
- Raccoon pox virus provides high levels of antigen expression, is able to tolerate inserts up to 27 kilobases long and has low seroprevalence in domestic animals.
- Raccoon pox virus enables DIVA (differentiate infected from vaccinated animals) surveillance.
- Raccoon pox virus does not cross react with fowlpox virus and has been shown to be a safe and effective vaccine in mice, rabbits, piglets and cats.

ADDITIONAL INFORMATION

Publications

Tech Fields
Pharmaceuticals & Vitamin D - Vaccines

CONTACT INFORMATION

For current licensing status, please contact Emily Bauer at emily@warf.org or (608) 262-8638.