Improved Method for More Efficient Mapping of Images

INVENTORS • Sigurd Angenent, Steven Haker, Allen Tannenbaum, Ronald Kikinis

WARF: P99136US
View U.S. Patent No. 6,697,538 in PDF format.

The Wisconsin Alumni Research Foundation (WARF) is seeking commercial partners interested in developing a computerized apparatus for producing an improved flattening map of a digitized image.

OVERVIEW

Texture mapping is a method used to add detail, texture or color to a computer-generated graphic or 3-D model. This process has been limited thus far to the transfer of a 2-D image onto a 3-D computer generated surface. Basic techniques have been proposed for obtaining a flattened computerized image to aid in the visualization of complex structures; however, the resulting flattened representations are often distorted. An improved method for mapping any image that can be stored in a computer-readable format onto a flattened surface is needed.

THE INVENTION

UW–Madison researchers have developed a computerized apparatus and an associated method and program for producing a flattening map from a digitized image. The digitized image may be a real object, quasi-discrete data or computer-generated discrete data. A first set of data comprising a plurality of discrete surface-elements is constructed to represent at least a portion of the surface of a digitized image; then, a flattening function is performed on the data set to produce the flattening map. The flattening map is conformally mapped onto a computer-generated surface that then can be displayed on a computer-assisted display apparatus that is in communication with a processor.
APPLICATIONS

• Computer vision and image processing
• Medical diagnostic: image-guided surgery or non-invasive diagnostic imaging
• Product and process design research and development, such as integrated circuit and printed circuit board fabrication or vehicle components and assemblies
• 3-D texture mapping for use in the computer animation of cartoons, virtual reality or image restoration
• 2-D or 3-D conformally mapped graphic images for the shading of geographic, atmospheric, galactic and weather maps

KEY BENEFITS

• Can produce single mapped images (electronic form or hardcopy) as well as a series of dynamically-mapped sequential images (e.g., beating human heart)
• Flexible design—can produce surface flattening information about an original image or conformally mapped surfaces onto a computer generated shape such as a sphere, blob, cylinder or square
• Much faster and more efficient mapping of original images
• Simplified process
• Extremely versatile applications
• Reliable and robust

ADDITIONAL INFORMATION

Tech Fields
Information Technology - Image processing

CONTACT INFORMATION

For current licensing status, please contact Jeanine Burmania at jeanine@warf.org or 608-960-9846.