

Health Monitoring and Imaging System for Concrete Structures

WiSys: T180044W001

Inventors: Hanwan Jiang, Hanyu Zhan, Ruinian Jiang

WiSys is currently seeking strategic partners operating in the non-destructive testing industry interested in further developing this novel health monitoring system for concrete structures, ultimately providing a route to market for its commercialization.

Overview

As of 2016, 39% of the total 614,387 bridges in the US had exceed their design lives. In China, almost 10% of its 779,159 bridges are classified as structurally deficient. Other countries in South America and Europe are facing similar challenges. With an estimated rehabilitation cost in the US alone estimated to reach \$123 billion, the development and adoption of new technologies enabling early, non-destructive testing (NDT) of damage in concrete structures will be critical. Evidence of this increasing demand is the growing market for NDT equipment and inspection services, which is estimated to reach \$26.4 billion by 2024. Currently, there are a number of NDT techniques on the market, however, they are either not sensitive to minor interior changes in concrete such as small cracking and stress changes, or not applicable to full-size structures on site. As such, there is a clear and unmet need for the development of a comprehensive system capable of generating images of the cracking, damage and subtle stress changes inside as well as on the surface of concrete structures.

The Invention

An assistant professor in civil engineering at the University of Wisconsin-Platteville in partnership with an electrical engineer from New Mexico State University, has developed a comprehensive monitoring system capable of identifying interior defects and stress in concrete structures such as bridges. By combining sensor technology with an ultrasound signal generator, multi-channel data acquisition and proprietary data processing algorithms, the interior conditions in any cross section of a bridge can be visualized in 3D. With this technology, small stress changes in the order of 0.1Mpa and cracks as thin as a human hair are detected. Such a combined system provides competitive advantage over existing methods that solely measure stress changes and rely on installation of strain gauges on the surface or inside concrete structures. These methods only provide for measurement of stress changes at the locations where sensors are placed, creating gaps in the evaluation of stress change. In addition, with current technology, holes must be drilled and patched for sensor placement and bridges must be taken out of service during testing. The proposed technology provides for a more absolute evaluation of not only changes in stress but also identification of cracks, does not require drilling of holes and can be used on in-service bridges, saving time, money and providing a more comprehensive assessment of bridge health.

Applications

• Structural health monitoring and non-destructive testing for concrete infrastructures including bridges, buildings, mines, tunnels, dams and other earth structures.

Key Benefits

we use cookes of assessing large volumes of structures by using an array of installed sensors (no drilling required); user s

Capable of detecting interjourning defects (e.g. cracks) and weak stress changes with high degree of years with in-service bridges (e.g. traffic does not need to be closed);

• Capable of generating 3-dimensional images in real-time enabling the evaluation of damage level and stress change on site (for immediate damage) and over time (for health monitoring).

Stage of Development

A fully functional prototype system has been developed and in-lab and in-field testing have been completed.

Tech Fields

• Engineering : General engineering technologies

For current licensing status, please contact Jennifer Souter at jennifer@wisys.org or (608) 316-4131

We use cookies on this site to enhance your experience and improve our marketing efforts. By continuing to browse without changing your browser settings to block or delete cookies, you agree to the storing of cookies and related technologies on your device. See our privacy policy

