Technologies

Explore WARF Inventions and Patents

WARF Technologies

WARF’s portfolio of more than 1,700 technologies covers a wide range of categories, including analytical instrumentation, pharmaceuticals, food products, agriculture, research tools, medical devices, pluripotent stem cells, clean technology, information technology and semiconductors.

Information summaries, which describe each technology and its applications, benefits, inventors and patent status, can be downloaded, printed and shared by clicking on the technology category links to the left on this page.

Visit our subscription center to sign up for our monthly email updates and learn when new WARF technologies become available for licensing.

New Inventions

Industrial Furnace With Flameless Combustion and Impingement Flow for Increased Efficiency, Reduced Emissions and Intensified Heat Transfer

An assistant professor of mechanical engineering technology and inventor from the University of Wisconsin Oshkosh has developed an industrial natural gas furnace and oven design that combines flameless combustion with high velocity impingement gas and air jets directed toward the product being heated. This novel combination has the potential to provide advantages over conventional technology that include higher energy efficiency, uniform temperature distribution, reduced NOx emissions, and intensified convection heat transfer. The design also has the potential to increase productivity by allowing more material to be processed within the same combustion area. This innovative system can be used for production of new furnaces as well as retrofitting existing installations.
T170023US01

Low Maintenance Snowmobile Ski Design that Increases Traction, Maneuverability and Safety on Paved Surfaces

Students from the University of Wisconsin-Green Bay in partnership with UW-Platteville Senior Design have developed a snowmobile ski that offers improved steering and traction on pavement and other hard surfaces. The design incorporates a fixed wheel and runner system, which provides steering control when rolling on pavement and concrete yet allows the skis to function properly when driving on snow and ice surfaces. The design has been refined through multiple prototype iterations and has passed testing for mobility on hard surfaces, traction on ice, and functionality on snow. The present design increases maneuverability on pavement and requires less maintenance when compared with snowmobiles that are currently on the market.
T170041US01

Modified Newton’s Cradle Demonstrating Mechanical Impedance

A Physics professor and inventor at the University of Wisconsin – Whitewater has developed a modified Newton’s Cradle that allows the user to visualize and test the concept of mechanical impedance in addition to momentum and energy conservation. The traditional version of Newton’s cradle has a cradle of identical metal spheres. In this modified and improved device, the user is able to interchange these spheres with ones of varying mass and material composition. By allowing the user to strategically align and create a unique cradle, they have the opportunity to visualize mechanical impedance. For example, a sphere with a small mass would have the ability to strike the cradle and lift a sphere of greater mass on the opposite side if the spheres in-between had a gradient of increasing mass themselves. The possibility of changing a sphere at any position in the cradle allows for an exceptionally large number of possible experiments and would overall lead to an enhanced understanding of the aforementioned physics concepts, something a traditional cradle device does not provide for.
T170047US02

Modified Newton’s Cradle Demonstrating Mechanical Impedance

A Physics professor and inventor at the University of Wisconsin – Whitewater has developed a modified Newton’s Cradle that allows the user to visualize and test the concept of mechanical impedance in addition to momentum and energy conservation. The traditional version of Newton’s cradle has a cradle of identical metal spheres. In this modified and improved device, the user is able to interchange these spheres with ones of varying mass and material composition. By allowing the user to strategically align and create a unique cradle, they have the opportunity to visualize mechanical impedance. For example, a sphere with a small mass would have the ability to strike the cradle and lift a sphere of greater mass on the opposite side if the spheres in-between had a gradient of increasing mass themselves. The possibility of changing a sphere at any position in the cradle allows for an exceptionally large number of possible experiments and would overall lead to an enhanced understanding of the aforementioned physics concepts, something a traditional cradle device does not provide for.
T170047US02

Novel Transparent Dilatant Materials Comprised of Single Chemical Component

Research from the University of Wisconsin-Stevens Point has resulted in the synthesis of a series of materials exhibiting a range of dilatant properties. The materials show good transparency and are chemically uniform (e.g. consisting of a single chemical component). The degree of dilatancy is easily controlled by adjusting the compositions of the materials. Due to the range of dilatant properties, good transparency, and single chemical component nature of the dilatant samples, these materials show significant promise for novel uses in protective equipment and other areas related to impact protection, especially where transparency is desirable.
T170056WO01
View More

New Patents

Single MRI Scan Acquires Multiple Sets of Inversion Recovery Data

UW–Madison researchers have developed a method that expedites inversion recovery by acquiring data after each IR radiofrequency pulse. In this way, both single IR and DIR data can be obtained in a single, condensed scan.

In the method, each IR pulse is followed by an excitation pulse and data acquisition. Any suitable data acquisition scheme can be employed, such as VIPR (vastly undersampled isotropic projection reconstruction). Multiple images of the subject are reconstructed from this data. Data after the first image can produce a traditional T1-weighted image, while data after the second inversion produces a traditional DIR image.
P130278US01

Generic Drug to Treat and Prevent Macular Degenerative Diseases

UW–Madison researchers have identified a new treatment option for a number of macular degenerative diseases including AMD, Stargardt’s disease and juvenile macular dystrophy.

The researchers found that a class of compounds called acid sphingomyelinase inhibitors can be used to fight retinal disorders associated with abnormal accumulations of lipofuscin (a cellular waste product), cholesterol or increased inflammation. One such inhibitor, generic name desipramine, is currently sold on the market as an antidepressant. Other acid sphingomyelinase inhibitors also may be suitable.
P140282US02

Dense Polymer Brush Growth with New Copolymer

UW–Madison researchers have developed a novel crosslinkable random copolymer and film. The film can be used as a grafting substrate to grow polymer brushes via SI-ATRP.

The copolymers are synthesized by standard techniques. They consist of a styrene or acrylate-based inimer for initiating ATRP and a monomer for crosslinking. Once the copolymers have been formed, they can be crosslinked into films by applying heat and/or light. This step can be carried out on different surfaces using spin-coating methods.

After the crosslinked films have been prepared, they can be used as grafting substrates for SI-ATRP growth of polymer and copolymer brushes. During SI-ATRP, a reaction generates a polymer brush composed of multiple polymer chains attached to the film.
P130169US02
View More