Analytical Instrumentation

Analytical Instrumentation Portfolios

Most Recent Inventions

Research Tool for Protein Conformation Analysis

UW–Madison researchers have developed a method and easy-to-operate device that uses plasma to perform hydroxyl radical footprinting. The device tags the outer surface of the protein and allows the user to study its 3-D conformation via mass spectrometry.

The new technique, which is workable on a benchtop, applicable to a range of protein concentrations and sizes and generates µs bursts of hydroxyl radicals without added chemicals or reagents, has been developed and the results benchmarked. It is useful for quickly performing epitope mapping or assessing protein structural characteristics such as unfolding and conformational changes. The method can be used with two or more distinct proteins to map binding events, which enables pharmaceutical and R&D labs to image proteins in their natural state.

The researchers believe this tool will enable much quicker turnaround (on the order of hours) than X-ray crystallography and more reliable data than Hydrogen-Deuterium Exchange (HDX). It can be manufactured alone or in conjunction with mass spectrometry systems.

High Accuracy Angle Measuring Device for Industrial, Medical, Scientific or Recreational Use

A UW-Stout researcher has developed a high-accuracy angle measurement system that addresses the problems inherent to commercially available systems. In this novel device, a high accuracy rotary optical encoder is controlled by a microprocessor. The encoder consists of rotating optical disks and sensors that are precisely formed and placed to read angles with 0.001 arc second sensitivity (average) and better than ±0.1 arc second accuracy (single readings), which is comparable to the accuracy of the high-end commercial encoders currently on the market. This accuracy is maintained with strategies that combat the mechanical sources of error that are known disadvantages of other devices. The system can also be adjusted to compensate for any asymmetrical shifts that may occur. Mechanical sources of error and noise are further minimized by precision placement of disks and sensors, as well as low-friction reference points that keep components centered and level during rotation. In addition, multiple sensor heads eliminate major readout errors and remove the need for recalibration. All of these features and benefits are contained within a design that is both compact and portable. Beyond high accuracy and portability, the cost of this new angle measurement system is substantially lower than a high-end commercial system because it is easily constructed from readily available industrial grade components, bringing the production cost to roughly $2,000. Strikingly, this cost is comparable to the advertised price of other rotary position encoders that are less than one tenth as accurate. Its high accuracy, low cost, and portability make this new angle measurement system a strong option for use in virtually any of the current applications for absolute rotary encoders.

New Gradient-Based Cell Labeling Method Maintains Location Information During Downstream Analysis

UW–Madison researchers have developed a new device and method for tagging and monitoring individual cells in a microenvironment.

Concentrated dye solution is placed within molded wells inside a gel, diffusing throughout to form a color-based gradient. This stamp is then placed over the cell culture to be studied, allowing the dye particles to diffuse into the culture and label the cells. When the cells are removed from their environment for further analysis, the technique allows them to be easily identified and their previous location to be tracked.

Bioreversible Protein Esterification

UW–Madison researchers have developed an efficient new method for esterifying proteins using certain diazo compounds. The compounds convert protein carboxyl groups into esters in buffered water. The modification is removed by enzymes that reside in all human cells, making the method bioreversible.

Diazo compounds have the general formula R2C=N2, but not all are effective. They must have a basicity within a certain range.

Circulating Tumor Cell Assay Using Simple Blood Draw

The researchers now have developed the first fully integrated CTC assay that could eliminate the need for painful biopsies. The device leverages verIFAST technology to capture, purify and molecularly analyze CTCs from a single blood sample.

The sample is deposited in a first well and then magnetically drawn through a second well containing an isolation buffer like oil or wax. The increasingly purified cells are drawn into a final well for extraction or further treatment.

The device includes new technical features and is combined with downstream techniques for staining rare cells like CTCs.

Most Recent Patents

Optimized Nanoresonator Design Signals Breakthroughs in Spectrometry and Device Efficiency

UW–Madison researchers have developed a new method and structure for increasing the cross section of nanoresonators, thereby improving the concentration ratio of light (or other electromagnetic radiation) and device performance. The key to their approach is that the nanoresonator is surrounded by a material that provides increased light concentration.

Single-Crystal Halide Perovskite Nanowires with Superior Performance

Metal halide perovskite-based material is emerging as a “superstar” semiconductor material for cost-effective photovoltaic applications. UW–Madison researchers have developed a practical solution growth method for producing single-crystal perovskite nanowires with superior material quality and lasing performance.

Specifically the new method is based on a facile process of low-temperature dissolution of a metal precursor film in a cation precursor solution, followed by recrystallization to form single-crystal perovskite nanostructures such as nanowires, nanorods and nanoplates. Diverse families of metal halide perovskite materials with different cations, anions and dimensionality with different properties can be made to enable high-performance device applications.

Monitoring Tissue Fluorescence in Bright Light

UW–Madison researchers have developed a fluorescence imaging process that can be used in surgical suites and other brightly lit environments. Specifically, the imaging process coordinates with rapidly switched ambient room light, which turns off and on at a speed imperceptible to the human eye. Alternatively, research locations such as bioimaging facilities that are traditionally dark can be illuminated – improving productivity and safety. During the periods of darkness, fluorescence signals from microscopes can be detected and imaged without background light interference.