Technologies

Clean Technology : Wind technologies

Clean Technology Portfolios

Technologies

Integrated Vertical Axis Wind Turbine System Generates More Power from Less Wind with Smaller Turbines

An assistant professor of engineering technology at the University of Wisconsin-Green Bay has developed an innovation that improves the power generation efficiency of vertical axis wind turbine systems and reduces installation and maintenance costs. Conventional wind generation systems are currently limited by a configuration requiring one turbine to one power generator and drive train. The novel technology presented here removes this limitation by combining multiple vertical axis turbines with a single generator and drive train. This approach allows a reduction in size, weight and inertia of each turbine and a reduction in electrical and mechanical infrastructure. The result is a system that operates in less wind and generates more power per multi-turbine tower. In addition to increased capacity for electricity generation, other benefits related to this integrated turbine technology include ground level installation and maintenance of fewer generators and electrical components, options to reduce noise, and lower transportation barriers and costs.
T170048WO01

Power Conditioning Architecture for Wind Turbine

UW-Madison researchers have developed a viable solution that allows DFIG wind turbines connected to the grid to ride through a voltage sag. The turbines need converters, such as a DC/AC inverter, to change the power generated into a form that is compatible with the utility grid. In a conventional DFIG wind turbine, the grid-side converter is connected in parallel with the stator windings of the generator. This approach has the converter connected in series instead. The DC voltage bus of the converter is fed from the induction generator rotor windings through a second, machine-side converter. Connecting the grid-side converter in series allows continuous control of shaft torque and power delivered to the grid even during grid faults, enabling inherent voltage sag ride-through capability.
P06426US