Technologies

Diagnostic Assays

Diagnostic Assays Portfolios

Most Recent Inventions

Enhanced Endotoxin Detection: New Advantages in Liquid Crystal Assays for Gram-Negative Pathogens

UW–Madison researchers have now demonstrated enhanced endotoxin detection in the presence of masking agents in their previous liquid crystal system.

Unlike the LAL assay, the LC-based method does not suffer from LER or any loss of sensitivity due to the presence of cations (e.g., Ca2+ or Mg2+), buffers (e.g., citrate), surfactants (e.g., SDS), chelating agents (e.g., EDTA), proteins or nucleic acids (e.g., DNA or RNA). Thus, the LC-based method provides faster and cheaper detection of endotoxin when compared to existing methods, such as the LAL assay.
P160072WO01

Predicting Glucoregulatory Dysfunction

UW–Madison researchers have developed a method based on blood lipid chemistry to identify a subject at risk for glucoregulatory dysfunction. The method involves obtaining a biosample from the subject, separating the diacylglycerol fatty acids and determining if the concentration is above or below a control range.
P150057US02

Blood Protein Biomarkers for Detection of Colon Cancer

UW–Madison researchers have developed methods and kits for diagnosing colon cancer, including precancerous and early stage disease, using protein biomarkers in blood/serum. Approximately 30 peptides identified and validated in animal models were used to conduct targeted proteomic analysis in humans. The serum levels of several of the biomarkers correlated with cancer incidence and outcomes in the study of normal patients versus those with stage 1, 2 or stage 3 colon cancer.
P150077US02

Field Test for Mycobacterial Infections

A UW–Madison researcher has identified a set of biomarkers that can indicate whether a mammal is vaccinated or infected, as well as the type of infection (bovine tuberculosis or Johne’s disease).
P150020US02

Assay to Determine Risk of Fungal Infection

More specifically, the researchers have developed a detection agent made up of calnexin peptides that recognize the telltale signs of infection. The peptides are able to track how a patient’s helper T cells respond to infection and/or vaccination.
P140236US02

Most Recent Patents

Diagnostic Kit for Blastomycosis

UW–Madison researchers have developed a method for obtaining highly pure native BAD-1 protein that could be used to detect B. dermatitidis infection.

A solution containing native BAD-1 protein or fragments is collected from cultured fungus strains. The solution is combined with nickel-chelating resin, washed and eluted to obtain a highly pure form without the need for more expensive recombinant methods. This can be mixed and analyzed with a patient’s sample to determine if the fungus is present.
P110280US02

Detecting Ovarian Cancer and Risk

A UW–Madison researcher and others have developed a new ovarian cancer screening method that measures total or ionized serum calcium levels in blood samples. Women exhibiting elevated levels may be up to three times more likely to be diagnosed with ovarian cancer.

Serum calcium can be detected and quantified using standard techniques, including absorption spectrometry, ion selective electrode, fluorescent detection, etc. The measured levels can be incorporated into an overall risk score, identifying women who should undergo further CA125 and ultrasound screening.
P130052US03

Quantitative Comet Assay for Measuring Viral Growth and Resistance to Anti-Viral Compounds

UW-Madison researchers have developed a sensitive means of measuring viral infectivity and replication activity by monitoring flow-induced viral comet formation. A layer of host cells is contacted with a viral sample and cultured in a thin layer of liquid culture medium. Preferably, the host cells are cultured with the virus particles in a microfluidic channel. The liquid medium flows controllably through the channel to enhance the spread of the viral progeny to uninfected host cells. Infected host cells develop an observable indication of viral gene expression, like cell death. The resulting comet-like infections can be digitally imaged and computer-processed for automated quantification of the spread of viral infection.
P06165US