Technologies

Drug Discovery

Most Recent Inventions

S1mplex: A New Tool for Precision Gene Editing

UW–Madison researchers have developed a modular RNA aptamer-streptavidin strategy, termed S1mplex, to ‘sharpen the scalpels’ used in genome surgery. In the new approach, CRISPR-Cas9 RNPs are complexed with a nucleic acid donor template, as well as other biotinylated molecules (e.g., quantum dots).

In human pluripotent stem cells, tailored S1mplexes increased the ratio of precisely edited to imprecisely edited alleles up to 18-fold higher than standard gene editing methods, and enriched cell populations containing multiplexed precise edits up to 42-fold.

These advances with versatile, preassembled reagents could greatly reduce the time and cost of in vitro/ex vivo gene editing applications in precision medicine and drug discovery, and aid in the development of increased and multiple dosing regimens for somatic gene editing in vivo.
P170309US02

Genetic Testing for Acquired Peripheral Neuropathy in Dogs

UW–Madison researchers have identified a single nucleotide polymorphism (SNP) that is predictive of APN syndrome in dogs, based on a genome-wide association study. Using a population of Labrador retrievers (56 cases and 26 controls), the researchers have shown that a SNP on CFA1 tags the causal variant for APN in the Labrador retriever breed.
P160048US02

Research Tool for Protein Conformation Analysis

UW–Madison researchers have developed a method and easy-to-operate device that uses plasma to perform hydroxyl radical footprinting. The device tags the outer surface of the protein and allows the user to study its 3-D conformation via mass spectrometry.

The new technique, which is workable on a benchtop, applicable to a range of protein concentrations and sizes and generates µs bursts of hydroxyl radicals without added chemicals or reagents, has been developed and the results benchmarked. It is useful for quickly performing epitope mapping or assessing protein structural characteristics such as unfolding and conformational changes. The method can be used with two or more distinct proteins to map binding events, which enables pharmaceutical and R&D labs to image proteins in their natural state.

The researchers believe this tool will enable much quicker turnaround (on the order of hours) than X-ray crystallography and more reliable data than Hydrogen-Deuterium Exchange (HDX). It can be manufactured alone or in conjunction with mass spectrometry systems.
P160180US02

Rhinovirus-C Peptide for Development of Vaccines and Antivirals

UW–Madison researchers have identified novel immunogenic peptides from RV-C that are useful targets for therapeutic antibodies.

Recent advances in microscopy enabled the researchers to determine (with atomic resolution) the structure of an RV-C strain, both in its full, infectious form and as native empty particles. The structures highlighted immunogenic surfaces that could be used to design antivirals or vaccines against RV-C.
P160341US02

Enhanced Endotoxin Detection: New Advantages in Liquid Crystal Assays for Gram-Negative Pathogens

UW–Madison researchers have now demonstrated enhanced endotoxin detection in the presence of masking agents in their previous liquid crystal system.

Unlike the LAL assay, the LC-based method does not suffer from LER or any loss of sensitivity due to the presence of cations (e.g., Ca2+ or Mg2+), buffers (e.g., citrate), surfactants (e.g., SDS), chelating agents (e.g., EDTA), proteins or nucleic acids (e.g., DNA or RNA). Thus, the LC-based method provides faster and cheaper detection of endotoxin when compared to existing methods, such as the LAL assay.
P160072WO01

Most Recent Patents

Enhancing Cell Penetration to Improve Drug Delivery

UW–Madison researchers have developed a method for enhancing cellular uptake of a cargo molecule by covalently bonding fluorenyl groups to it. The fluorenylated molecule is then contacted with the cell or tissue. Cellular uptake may be in vivo or in vitro and includes at least partial penetration into the cytosol.
P150031US02

Adapted Rhinovirus C for Maximum Virus Yield

Building on their work, the researchers have now developed a mutated RV-C strain that induces strong cytopathic effect and replicates vigorously in the HeLa-E8 cells, yielding more than a log higher level of infectious rhinovirus particles compared to the parental clinical isolate.
P160050US02

Enhanced Drug Delivery Across the Blood-Brain Barrier: pH-Dependent Antibodies Targeting the Transferrin Receptor

UW–Madison researchers have developed several new single-chain antibody fragments to the transferrin receptor which exhibit increased dissociation at pH 5.5. Such targeting antibodies could have immense potential for drug delivery into and across target cells including cancer cells and the BBB.

Unlike other anti-TfR antibodies in development for cancer or brain delivery, the new antibodies have been endowed with pH-sensitivity resulting in differential trafficking and increased intracellular accumulation up to 2.6 times their wild-type parent.
P150370US02