Information Technology

Most Recent Inventions

Physics ‘Office Hours’ educational learning platform

A physics education researcher at the University of Wisconsin-Green Bay has designed a novel and interactive app-based study aid platform for students in STEM disciplines. The platform’s interface is built around education research into how students conceptualize problems they do not understand. It is a novel tool to help students see why they are struggling with a particular problem, and what might help them solve it, rather than solving the problem for them. The team’s first working prototype, the Physics Office Hours app, has been designed for use in introductory-level college physics. The app is designed to mimic a scenario students might face during ‘office hours’ with a professor: Rather than offering an answer, the instructor guides the students through problems via a series of questions. A user-friendly online interface allows app content to be easily updated and changed over time and as more problem sets become available. In addition, the app architecture can easily be adapted to problem sets in other STEM disciplines and therefore serves as a platform technology.

Virtual Touch Screens: New Input for Smaller Devices

UW–Madison researchers have developed a new virtual touch screen technology utilizing unused space to the side of a device display. The technology is a low-cost passive finger localization system based on visible light sensing. It provides a simple and convenient interface that does not require additional external equipment such as a sensor attached to the finger.

A sensor system on the edge of a mobile device uses photodetectors and a light source to track finger motion based on reflected light signals within the narrow light-sensing plane of the virtual touch screen. The signals are converted to orthogonal coordinates and subsequently output to the graphics display screen.

Optimized Nanoresonator Design Signals Breakthroughs in Spectrometry and Device Efficiency

UW–Madison researchers have developed a new method and structure for increasing the cross section of nanoresonators, thereby improving the concentration ratio of light (or other electromagnetic radiation) and device performance. The key to their approach is that the nanoresonator is surrounded by a material that provides increased light concentration.

New Software Algorithm Advances Measurement Technology in Agribusiness

UW–Madison researchers have developed a new scanning algorithm for use in assessing yield and quality of crop production.

To determine characteristics such as kernel loading on an ear of corn and ear size, researchers scan up to three ears at a time using a common flatbed scanner. To measure 100 kernel weight, another common yield measurement, researchers weigh a handful of individual kernels and scatter them on the scanner. The resulting images are then analyzed using the algorithm to quickly provide yield data.

The algorithm uses a thresholding technique to separate the ears from the background and a Fourier transform to more accurately estimate kernel length. It also corrects for individual kernels clustering together.

Architecture for Speculative Parallel Execution Improves Performance, Simplifies Programming

UW–Madison researchers have developed a system that permits speculative execution of program tasks prior to determining data dependency. Before commitment of the tasks in a sequential execution order, data dependencies are resolved through a token system that tracks read and write access to data elements accessed by the program portions.

Eliminating the need to wait until late in the program execution to detect or resolve dependencies helps improve processor utilization. Advancing the execution of tasks that ultimately do not experience data dependency problems may have a ripple-through effect, reducing later data dependencies as well.

Most Recent Patents

Database Engine for Faster Analytics

UW–Madison researchers have developed “Widetable,” a query processing method that provides a faster and more efficient means for scanning data across multiple tables.

The method accelerates queries by denormalizing multiple tables of a relational database into a smaller number of “wide row” tables using an outer join function. Such denormalization substantially increases the amount of data that must be stored to represent the database. While this might be expected to slow scan rates, speed is gained by eliminating other time-consuming operations.

Improved Gate Design for Quantum Computers

UW–Madison researchers have developed quantum dots with a novel tunnel barrier gate design. The structure consists of a quantum well layer with three 2DEG regions separated by three tunnel barriers.

An electrode is patterned on a dielectric layer (instead of directly on the dot surface) above the first tunnel barrier. The various electrodes formed on the dielectric layer are arranged to define quantum dot regions within which the energy level and spin of electrons can be manipulated.

The multiple layers of the structure can be made using conventional deposition systems or lithography techniques.

New MIMO Transceiver Cuts Costs, Complexity

UW–Madison researchers have designed a MIMO transceiver for improved interference suppression. The new design eliminates the need for a phase-coherent local oscillator.

More specifically, the new architecture – called differential MIMO or D-MIMO – enables linear interference suppression between multiple spatially multiplexed and differentially encoded data streams. In particular, it is based on a novel approach to quasi-coherent channel measurement from differential measurements that do not require phase coherence between transmitter and receiver. A number of system architectures – with different tradeoffs – are enabled by the invention.