Technologies

Information Technology

Most Recent Inventions

Physics ‘Office Hours’ educational learning platform

A physics education researcher at the University of Wisconsin-Green Bay has designed a novel and interactive app-based study aid platform for students in STEM disciplines. The platform’s interface is built around education research into how students conceptualize problems they do not understand. It is a novel tool to help students see why they are struggling with a particular problem, and what might help them solve it, rather than solving the problem for them. The team’s first working prototype, the Physics Office Hours app, has been designed for use in introductory-level college physics. The app is designed to mimic a scenario students might face during ‘office hours’ with a professor: Rather than offering an answer, the instructor guides the students through problems via a series of questions. A user-friendly online interface allows app content to be easily updated and changed over time and as more problem sets become available. In addition, the app architecture can easily be adapted to problem sets in other STEM disciplines and therefore serves as a platform technology.
T150035US01

Matrix Processor with Localized Memory to Increase Data Throughput

To address this challenge, Li’s team has developed computer architecture combining local memory elements and processing elements on a single integrated circuit substrate. In this way, data stored in a given local memory resource normally associated with a given processing unit is shared among multiple processing units. The sharing may be in a pattern following the logical interrelationship of a matrix calculation (e.g., along rows and columns in one or more dimensions of the matrix).

Sharing reduces memory replication (the need to store a given value in multiple local memory locations), thus reducing the need for local memory and unnecessary transfers of data between local memory and external memory. This permits high speed processing on local memories (on-chip) and reduces energy consumption associated with a calculation.
P160414US01

Detecting Seismic S Waves with Unprecedented Accuracy

UW–Madison researchers have developed an automatic and extremely accurate method for detecting features of interest in seismic data, including S waves and P waves. Unlike currently available (and error-prone) phase detection methods, the new software identifies potential picks in a single pass through the data without needing to estimate parameters or build a model. Seismic features are identified based on their similarity to a reference set of examples.

The software utilizes a k-nearest neighbors approach. This approach is based on a nonparametric time series classification method.
P140387US01

Mobile Tools for Autism & Communicative Disorders Therapy

A Researcher at University of Wisconsin Stevens Point has developed a suite of medically secure mobile application tools to instantly communicate, track and analyze behaviors and medical interventions for a variety of communication spectrum disorders, especially focusing on Autism therapies. In addition, this system is designed to increase the ability of organizations to train new therapeutic staff in the field through calculated suggestions from an artificial intelligence engine. The suite of apps consists of 1) a data entry, tracking and analysis tool 2) a video capture, sharing and behavior tagging tool, and 3) an artificial intelligence tool. An online Knowledge Automation Expert System (a type of Artificial Intelligence software) is used to track treatment, look for patterns in said treatment, and provide guidance on the next best steps based on each child’s needs. The applications are media rich and allow parents, therapists, and medical doctors to record, track, and observe actual behavior in real time through interactive charting, video sharing, and video conferencing. The video sharing and conferencing provide a way for therapists in the field to work in real-time with senior therapists remotely, thus increasing the level of training for field staff.

These apps are cross mobile platform compatible (Android, iOS and Blackberry) and have several levels of security ensuring patient record safety. This streamlined system of apps work together to capture all critical data from the medical treatments as well as the behavior therapy treatments and provide analysis tools to track and understand changes in the pattern of behavior and reduce subjective interpretation. The final product simplifies communication among parents, therapists and doctors, as well as providing an easy method for therapeutic organizations to efficiently train their staff in the field through direct access to senior therapists and their experience.
T120009US01

Computer Accelerator System Boosts Efficiency

UW–Madison researchers have developed a specialized memory access processor that takes over the job of feeding data to the accelerator. It is placed between the main processor and the accelerator.

The circuit is specialized for a narrow task, in this case performing memory access and address calculations. It is as fast as the main OOO processor yet more efficient. The main OOO processor – free from memory access duties – may switch to an energy conserving sleep mode until the accelerator is finished, or may move on to other tasks.
P140164US01

Most Recent Patents

More Efficient Laminate Analysis

UW–Madison researchers have developed a method for analyzing composite laminate structures that combines the generality of 3-D FEA and efficiency of 2-D FEA whenever it is applicable. The new method works by substituting the laminate layers with much simpler virtual material models having matching characteristics (e.g., overall material properties and relationship between stresses and strains). The updated model can then by analyzed via fully automated 3-D FEA.

The virtual models may be referred to as ABD-equivalent models, as they result in the same ABD stiffness matrices as the real laminate and can act as substitutes if plate-shell assumptions apply.
P140408US01

New Isogeometric Analysis Software for Seamless Integration of Design and Analysis

UW–Madison researchers have developed a new method for creating a CAD-compatible mesh during an isogeometric analysis process. Unlike existing techniques, the method creates meshes without any approximation and delivers optimal convergence rates.

In essence, the researchers have developed a smoothing step that prevents inconsistencies from being introduced into the meshing process as a geometric map of the object is being refined.
P150209US01

Memory Processing Unit Boosts Performance, Cuts Energy Usage

UW–Madison researchers have developed a system to dramatically improve the benefits of 3-D die-stacking memory. Their system allows a host processor to efficiently offload entire pieces of computation for faster processing with reduced power consumption.

More specifically, memory processing unit cores are tightly coupled with sections of stacked memory layers, combined as memory ‘vaults’ in hardware. Application code is segmented into discrete partitions (‘shards’) in software for storage in the vaults. As a result, an application program is effectively broken up for execution among multiple processing cores in close proximity to memory.
P140414US01