Technologies

Materials & Chemicals

Most Recent Inventions

Novel Transparent Dilatant Materials Comprised of Single Chemical Component

Research from the University of Wisconsin-Stevens Point has resulted in the synthesis of a series of materials exhibiting a range of dilatant properties. The materials show good transparency and are chemically uniform (e.g. consisting of a single chemical component). The degree of dilatancy is easily controlled by adjusting the compositions of the materials. Due to the range of dilatant properties, good transparency, and single chemical component nature of the dilatant samples, these materials show significant promise for novel uses in protective equipment and other areas related to impact protection, especially where transparency is desirable.
T170056US01

Boron- and Nitride-Containing Catalysts for Oxidative Dehydrogenation of Small Alkanes and Oxidative Coupling of Methane

UW–Madison researchers have developed improved ODH catalysts for converting short chain alkanes to desired olefins (e.g., propane to propene and ethene) with unprecedented selectivity (>90 percent).

The new catalysts contain boron and/or nitride and minimize unwanted byproducts including CO and CO2. They contain no precious metals, reduce the required temperature of the reaction and remain active for extended periods of time with no need for costly regenerative treatment.

In addition to driving ODH reactions, the new catalysts can be used to produce ethane or ethene via oxidative coupling of methane (OCM).
P150387US02

“Green” Catalytic Systems for Solvent-Free Alcohol Oxidations

Research from the University of Wisconsin-La Crosse has led to the discovery and development of a novel suite of catalytic systems for industrially-relevant green oxidations including the oxidative conversion of primary and secondary alcohols to value-added aldehydes and ketones. Similar systems have been developed for the oxidation of olefins to produce important epoxides, and for the oxidation of alkanes to produce alcohols. Specifically the team has developed a series of iron-based catalysts known as ‘helmet’ phthalocyaninaoto complexes of iron(III). Preliminary studies have focused on the use of what is commonly referred to as the ‘diiPc’ iron(III) system. Notably, the team has shown that this system is capable of catalytically oxidizing a diverse array of substrates including five non-benzylic alcohols (1-pentanol, 2-pentanol and cyclohexanol as well as 2,4-dimethyl-3-pentanol and 5-hydroxymethylfurfural) in the absence of added organic solvent. The presence of water as the monodentate axial ligand in the diiPc complex allows for markedly increased solubility in non-aromatic alcohols, making it an ideal catalyst for use with a much wider and more diverse range of substrates under solvent free conditions. It is envisaged that modification of the diiPc and related ligands will be undertaken to impart further enhancements to catalyst solubility in substrates or water, and/or superior stability in substrate alcohols. In addition to the diiPc system, the team have also developed a means of forming derivatized catalysts utilizing what is commonly referred to as a “helmet naphthalocyaninato” iron(III) complex. Specifically, a sulfonated version has been produced that possesses excellent solubility in water due to the added hydrophilic groups. To date, the sulfonated helmet naphthalocyaninato complex has been shown to provide for efficient formation of acetone from isopropanol as well as conversion of 2-pentanol to 2-pentanone using hydrogen peroxide as the primary oxidant. As such we anticipate that the same system would also be effective in the oxidation of 2-butanol to produce methyl ethyl ketone (MEK), an important commodity scale industrial chemical, and in many other commercially important transformations. Furthermore, preliminary studies have shown this molecule can be immobilized on various solid supports including anion-exchange resins, thereby resulting in a heterogeneous catalyst that can be utilized in the development of catalytic transformations that occur under flow conditions. Additionally, we now know that the sulfonated catalyst efficiently catalyzes the oxidation of phenol with hydrogen peroxide to produce para-benzoquinone. This transformation, along with other related reactions, is very important in the treatment of wastewater.
T150040US03

Nylon-3 Polymers Active Against Clostridium Difficile

UW–Madison researchers and collaborators at Emory Medical School have developed nylon-3 polymers and copolymers active against C. difficile. The polymers have been shown to inhibit outgrowth/growth of the bacteria in spore and vegetative form.
P150214US02

Slippery Antifouling Surfaces with Health, Environmental and Consumer Applications

UW–Madison researchers have developed a new approach for fabricating and functionalizing SLIPS on objects of arbitrary shape, size and topology (e.g., inside a hollow tube, etc.). The new SLIPS have greater control over how fluids behave when they come in contact. For example, they can be designed with oil-free regions to immobilize fluid droplets and/or control how they slide across the surface.

The new SLIPS are antifouling to bacteria, fungi and mammalian cells, and may be used for the controlled release of antibiotics and to prevent thick liquids or dirt from building up on a surface. They are fabricated via the infusion of oils into reactive polymer multilayers.
P150342US02

Most Recent Patents

Polymer Coating for Cell Culture Substrates

UW–Madison researchers have developed a new crosslinkable polymer coating for cell culture substrates. The nanometer-thin coating is made of glycidyl groups and azlactone groups distributed randomly along the copolymer backbone.

The coating is substrate independent and can be applied to a wide variety of organic and inorganic materials including plastic, silicon, glass and gold.
P150079US01

Microbes Produce High Yields of Fatty Alcohols from Glucose

UW–Madison researchers have developed a method to produce fatty alcohols such as 1-dodecanol and 1-tetradecanol from glucose using genetically engineered microorganisms. The organism, e.g., a modified E. coli strain, overexpresses several genes (including FadD and a recombinant thioesterase gene, acyl-CoA synthetase gene and acyl-CoA reductase gene). Other gene products are functionally deleted to maximize performance.

The strain is cultured in a bioreactor in the presence of glucose.
P140076US02

Highly Foamed Plastic Parts Are Stronger and Cheaper to Produce

UW–Madison researchers have developed a new method of fabricating highly foamed, injection-molded plastic parts. Firstly, a thermoplastic material like LDPE is heated along with supercritical nitrogen or carbon dioxide to produce a gas-polymer solution in an extruder, and then the melt is extruded and quenched into gas-laden pellets. These pellets are plasticized in an injection molding machine, and then injected into a mold to produce lightweight parts with fine foamed structure and/or improved part surface.

Compared with the conventional method, this method requires much lower equipment cost and process complexity, no modification to the injection molding machines is needed, and all the same benefits that the conventional method offers can be achieved.
P130051US01