Technologies

Materials & Chemicals

Most Recent Inventions

Organic Polymers with Ultra-Small Pores for Carbon Dioxide Separation, Capture, and Conversion

Researchers at the University of Wisconsin – Platteville have synthesized an array of chemically and thermally stable organic polymers comprised of ultra-small pores capable of separating out and capturing carbon dioxide molecules from a mixture of gases. These include phenazine linked polymers (PLPs), glyoxal‐derived polymers (GDPs), benzoxazole‐linked polymers (BOLPs), and benzothiazole‐linked polymers (BTLPs) with each having nitrogen-rich functionality to attract CO2. The single component adsorption isotherms demonstrated that the polymers have exceptionally high CO2 capture ability over CH4 and N2 with maximum adsorption selectivity of 35 times greater and 140 times greater, respectively, at 25°C. Such polymers have utility in the formation of membrane composites for use in membrane gas separation technology. Additionally, the researchers have been able to combine these polymers with silver metal resulting in the catalytic conversion of carbon dioxide molecules to useful chemical compounds.
T160005US02

Perovskites for Stable, High Activity Solid Oxide Fuel Cell Cathodes and Related Technologies

Using high-throughput computing and informatics to screen thousands of candidates, UW–Madison researchers have identified doped perovskite compounds that exhibit both high catalytic activity and thermodynamic stability under ORR operating conditions. These improvements are believed to enable lower-temperature operation of SOFCs and improve device lifetime.

In total, approximately 1950 distinct perovskite compositions were simulated. The most active predicted compounds were found to contain alloys of transition metals and redox-inactive dopant elements (ex., Zr, Hf, Nb, Re and Ta) that can enhance stability.
P160222US01

Perovskites as Ultralow Work Function Cathode Materials

Using high-throughput computing and informatics to screen thousands of candidates, UW–Madison researchers have identified a perovskite oxide, SrVO3, with a lower predicted work function than current state-of-the-art cathodes.

SrVO3 exhibited one of the lowest calculated work functions (1.86 eV) out of 18 perovskite materials investigated (~ 40 compositionally distinct surfaces). Non-volatile barium doping was used to further lower the work function (1.07 eV) and was more stable than on tungsten or scandium surfaces, indicating that Ba will reside on SrVO3 orders of magnitude longer than on other widely explored thermionic cathode material surfaces.
P160033US02

Boron- and Nitride-Containing Catalysts for Oxidative Dehydrogenation of Small Alkanes and Oxidative Coupling of Methane

UW–Madison researchers have developed improved ODH catalysts for converting short chain alkanes to desired olefins (e.g., propane to propene and ethene) with unprecedented selectivity (>90 percent).

The new catalysts contain boron and/or nitride and minimize unwanted byproducts including CO and CO2. They contain no precious metals, reduce the required temperature of the reaction and remain active for extended periods of time with no need for costly regenerative treatment.

In addition to driving ODH reactions, the new catalysts can be used to produce ethane or ethene via oxidative coupling of methane (OCM).
P150387US02

“Green” Catalytic Systems for Solvent-Free Alcohol Oxidations

Research from the University of Wisconsin-La Crosse has led to the discovery and development of a novel suite of catalytic systems for industrially-relevant green oxidations including the oxidative conversion of primary and secondary alcohols to value-added aldehydes and ketones. Similar systems have been developed for the oxidation of olefins to produce important epoxides, and for the oxidation of alkanes to produce alcohols. Specifically the team has developed a series of iron-based catalysts known as ‘helmet’ phthalocyaninaoto complexes of iron(III). Preliminary studies have focused on the use of what is commonly referred to as the ‘diiPc’ iron(III) system. Notably, the team has shown that this system is capable of catalytically oxidizing a diverse array of substrates including five non-benzylic alcohols (1-pentanol, 2-pentanol and cyclohexanol as well as 2,4-dimethyl-3-pentanol and 5-hydroxymethylfurfural) in the absence of added organic solvent. The presence of water as the monodentate axial ligand in the diiPc complex allows for markedly increased solubility in non-aromatic alcohols, making it an ideal catalyst for use with a much wider and more diverse range of substrates under solvent free conditions. It is envisaged that modification of the diiPc and related ligands will be undertaken to impart further enhancements to catalyst solubility in substrates or water, and/or superior stability in substrate alcohols. In addition to the diiPc system, the team have also developed a means of forming derivatized catalysts utilizing what is commonly referred to as a “helmet naphthalocyaninato” iron(III) complex. Specifically, a sulfonated version has been produced that possesses excellent solubility in water due to the added hydrophilic groups. To date, the sulfonated helmet naphthalocyaninato complex has been shown to provide for efficient formation of acetone from isopropanol as well as conversion of 2-pentanol to 2-pentanone using hydrogen peroxide as the primary oxidant. As such we anticipate that the same system would also be effective in the oxidation of 2-butanol to produce methyl ethyl ketone (MEK), an important commodity scale industrial chemical, and in many other commercially important transformations. Furthermore, preliminary studies have shown this molecule can be immobilized on various solid supports including anion-exchange resins, thereby resulting in a heterogeneous catalyst that can be utilized in the development of catalytic transformations that occur under flow conditions. Additionally, we now know that the sulfonated catalyst efficiently catalyzes the oxidation of phenol with hydrogen peroxide to produce para-benzoquinone. This transformation, along with other related reactions, is very important in the treatment of wastewater.
T150040US03

Most Recent Patents

Synthesizing Natural Products to Treat High Blood Cholesterol

UW–Madison researchers have developed an efficient method to synthesize indole compounds, specifically polysubstituted dimeric indoles. These compounds have potential health benefits because they are able to reduce the amount of PCSK9 in cells. PCSK9 is an enzyme known to play a major role in controlling the concentration of LDL cholesterol in the bloodstream.

Some of the compounds have been tested in vitro for their ability to increase the secretion of a potent blood sugar hormone in the body called glucagon-like peptide 1 (GLP-1). Others have the ability to selectively inhibit the secretion of interleukin-17 (IL-17), which is essential in many autoimmune diseases including arthritis, multiple sclerosis, psoriasis and inflammatory bowel disease.

The synthesis process involves a cascade reaction with transition metal catalysts. The resulting compounds can be further functionalized to yield more substituted indoles.
P150023US03

Modified E. coli for Enhanced Production of Pyruvate, Ethanol

UW–Madison researchers have developed a variety of new E. coli strains capable of producing pyruvate up to 95 percent of the maximum theoretical yield from renewable sources under aerobic conditions. This exceeds the highest previously reported yields of 78 percent.

The researchers used a genome-scale metabolic model of E. coli to identify multiple gene deletion targets that couple growth rate with pyruvate production. Further engineering of these new strains enabled them to produce ethanol at near maximum theoretical yields.
P140301US02

Polymer Coating for Cell Culture Substrates

UW–Madison researchers have developed a new crosslinkable polymer coating for cell culture substrates. The nanometer-thin coating is made of glycidyl groups and azlactone groups distributed randomly along the copolymer backbone.

The coating is substrate independent and can be applied to a wide variety of organic and inorganic materials including plastic, silicon, glass and gold.
P150079US01