Technologies

Materials & Chemicals

Most Recent Inventions

Novel Transparent Dilatant Materials Comprised of Single Chemical Component

Research from the University of Wisconsin-Stevens Point has resulted in the synthesis of a series of materials exhibiting a range of dilatant properties. The materials show good transparency and are chemically uniform (e.g. consisting of a single chemical component). The degree of dilatancy is easily controlled by adjusting the compositions of the materials. Due to the range of dilatant properties, good transparency, and single chemical component nature of the dilatant samples, these materials show significant promise for novel uses in protective equipment and other areas related to impact protection, especially where transparency is desirable.
T170056WO01

Slippery Liquid-Infused Porous Surfaces (SLIPS) with Improved Antifouling Properties, Small Molecule Release

Building on their work, the researchers have now developed SLIPS capable of preventing adhesion and colonization by bacterial/fungal pathogens, and also killing and/or attenuating non-adherent pathogens in surrounding media. The new approach exploits the polymer and liquid oil phases of the slippery materials to sustain the release of small molecule compounds.

This controlled release approach improves the inherent antifouling properties of SLIPS, has the potential to be general in scope and expands the potential utility of slippery, non-fouling surfaces in diverse contexts.
P160308US02

Perovskites for Stable, High Activity Solid Oxide Fuel Cell Cathodes and Related Technologies

Using high-throughput computing and informatics to screen thousands of candidates, UW–Madison researchers have identified doped perovskite compounds that exhibit both high catalytic activity and thermodynamic stability under ORR operating conditions. These improvements are believed to enable lower-temperature operation of SOFCs and improve device lifetime.

In total, approximately 1950 distinct perovskite compositions were simulated. The most active predicted compounds were found to contain alloys of transition metals and redox-inactive dopant elements (ex., Zr, Hf, Nb, Re and Ta) that can enhance stability.
P160222US01

Nylon-3 Polymers Active Against Clostridium Difficile

UW–Madison researchers and collaborators at Emory Medical School have developed nylon-3 polymers and copolymers active against C. difficile. The polymers have been shown to inhibit outgrowth/growth of the bacteria in spore and vegetative form.
P150214US02

Slippery Antifouling Surfaces with Health, Environmental and Consumer Applications

UW–Madison researchers have developed a new approach for fabricating and functionalizing SLIPS on objects of arbitrary shape, size and topology (e.g., inside a hollow tube, etc.). The new SLIPS have greater control over how fluids behave when they come in contact. For example, they can be designed with oil-free regions to immobilize fluid droplets and/or control how they slide across the surface.

The new SLIPS are antifouling to bacteria, fungi and mammalian cells, and may be used for the controlled release of antibiotics and to prevent thick liquids or dirt from building up on a surface. They are fabricated via the infusion of oils into reactive polymer multilayers.
P150342US02

Most Recent Patents

Improved Manufacture of Porous Materials for Catalysis and More

A UW–Madison researcher has developed a new method for manufacturing porous metal-oxygen based materials. The method achieves structures with controlled porosity and shape based on air oxidation.

In brief, the materials are produced from metal alloys via an oxidative dealloying process that selectively removes one or more elements from the alloy and converts remaining elements into a stable metal-oxygen matrix having a controlled porosity. Once fabricated, the porous matrices are post-treated to render them suitable for various downstream applications.
P160073US01

Superabsorbent, Sustainable Aerogels

UW–Madison researchers have developed organic aerogels with excellent absorbent properties. They are made by combining a water soluble polymer and cellulose nanocrystals/nanofibers (CNFs) derived from biomass. The polymer, such as PVA (polyvinyl alcohol), is cross-linked to form a gel and then water is removed by freeze-drying. The surface of the aerogel is coated with an organosilane, making it highly water repellent and superoleophilic (‘oil loving’).
P140038US02

Generating Medical Isotopes with Safer Vessel and Materials

Wisconsin researchers have developed a ring-shaped, or annular, fissile solution vessel for generating medical isotopes.

The assembly holds three nested chambers. Ions are first directed into an internal target chamber containing a gas. The neutrons that are generated pass outward, through a cooling jacket, into the surrounding fissile solution vessel. This vessel contains an aqueous composition of nuclear material and is shaped to increase heat transfer area to volume. Neutrons strike the nuclear material, generating isotopes and additional neutrons. The solution vessel is separated by another cooling jacket from an outer chamber that reflects neutrons.
P120047US01