Technologies

Medical Devices

Most Recent Inventions

Reusable Enzyme-Free Glucose Sensor Offers Greater Stability, Longer Shelf-Life and Easier Fabrication

An assistant professor of analytical chemistry and inventor from the University of Wisconsin Oshkosh has developed a non-enzymatic glucose sensing device using composite materials made of conductive polymers and metal nanoparticle catalysts. For routine blood glucose analysis, this sensor has the potential to offer several benefits over its enzymatic counterparts, including increased stability, reusability, easier fabrication and lower cost. The device also has the potential to overcome limitations of less ideal pH and temperature conditions, making it suitable for monitoring other body fluids as well as environmental and food production samples.
T180023US01

A Low-Cost, Dosimeter Accessory Kit Enabling the Collection of Accurate Sound Level Measurements from within the Ear Canal

Researchers from the University of Wisconsin – Whitewater in partnership with the Center for Device Design and Development at UW-Fox Valley, have developed a set of low-cost, dosimeter attachments that allow for sound levels to be measured in the ear canal. By combining these novel attachments with commercially available dosimeters, a more accurate reading can be obtained that reflects the true exposure level of potentially harmful noise to the individual. With the current accessory kit, one of three attachments comfortably fits in the user’s ear and connects to a standard dosimeter. Field tests have demonstrated that higher sound levels were recorded at the level of the ear canal using these attachments compared with the traditional method using a shoulder mounted dosimeter.
T150024US02

Improved System for Stroke Therapy and Rehabilitation

UW-Madison researchers have developed an improved system for stroke therapy and rehabilitation.  This system collects movement intention signals from the brain in real-time via EEG and initiates functional electrical stimulation (FES) of the appropriate muscle(s) to assist the neurons in regrowing their connections from the brain to the muscles along the correct pathways.  Additional general sensory stimulation may be added to this therapy to further encourage proper neuron regrowth. 
P09245US02

Perivascular Drug Delivery System Inhibits Restenosis

UW–Madison researchers have developed a new device and method for perivascular delivery of drugs to treat and prevent restenosis.

The device consists of a sheath made from a bioresorbable polymer. An anti-proliferative drug is loaded into the sheath. When the sheath is placed around the outside of the blood vessel, the drug is delivered to the vessel over time.
P150048US02

Most Recent Patents

Foot Harness for Patients Relearning to Walk

UW–Madison researchers have developed a first-of-its-kind foot strap that can attach to training equipment. The strap fits easily and securely around a patient’s own shoe without impeding his or her normal stride. The strap features a safety release mechanism and electronic sensor to stop the exercise if the patient loses balance.
P150292US01

Growth Factor Regulation in Blood Products for Improved Wound Healing

UW–Madison researchers have developed hydrogel microspheres for sequestering problematic growth factors, specifically VEGF, in patient-derived blood products. The degradable microspheres are functionalized with peptide ligands that selectively bind and remove unwanted VEGF from platelet rich plasma and other blood products before they are used in clinical procedures.
P160179US01

Biomarkers for Detecting Prostate Cancer

UW–Madison researchers have identified eight genetic markers, or biomarkers, for prostate cancer. They can be detected in histologically normal prostate samples and/or the bodily fluids of men with no history of prostate cancer.

The biomarkers act as red flags, exhibiting abnormal methylation levels when cancer is present in peripheral prostate tissue (this is called cancer ‘field defect’). These changes are believed to represent early stages of the cancer process.

The biomarkers are associated with the genes CAV1, EVX1, MCF2L, FGF1, WNT2, NCR2, EXT1 and SPAG4.
P130258US03