Technologies

Medical Devices

Most Recent Inventions

Digital Otoscope for Optimal Access, Visualization

UW–Madison researchers have designed an otoscope featuring a small camera that is mounted on a narrow tip and able to ‘look around’ obstructions such as earwax. The narrow tip also permits other medical instruments to be inserted into the ear while the otoscope is being used (e.g., a curette for removing earwax or foreign objects). A remarkable view of the tympanic membrane is achieved, facilitating proper diagnosis.

Notable features include a disposable, light-conducting speculum sleeve with distal tip smaller than 2 mm. In addition, images may be captured directly from the device and stored in the patient record in compliance with Federal law.
P150259US01

Minimally Invasive Microwave Ablation Antennas

UW–Madison researchers have developed two minimally invasive, balun-free antenna designs that are small enough to treat cancers otherwise out of the reach of microwave ablation.

The first design can take any base-fed monopole, spiral or bent wire configuration. Alternatively, the antenna can use a structure more suitable for higher frequencies (five GHz to 30 GHz). This design uses cable shielding over a balanced two-wire transmission line. The design protects surrounding tissue and eliminates the need for baluns.
P140132US01

Most Recent Patents

Improved System for Stroke Therapy and Rehabilitation

UW-Madison researchers have developed an improved system for stroke therapy and rehabilitation.  This system collects movement intention signals from the brain in real-time via EEG and initiates functional electrical stimulation (FES) of the appropriate muscle(s) to assist the neurons in regrowing their connections from the brain to the muscles along the correct pathways.  Additional general sensory stimulation may be added to this therapy to further encourage proper neuron regrowth. 
P09245US02

‘Smart’ Cerebrospinal Fluid Shunt

UW–Madison neurological surgeons and their collaborators have developed a ‘smart’ shunt that is self-regulating and overcomes the issue of over-drainage associated with all commercially available systems.

The new system features continuous intracranial pressure sensing and a novel valve design actuated by a piezoelectric lever. An external wireless transmitter (e.g., RFID device) connected to a computer enables physicians to control the shunt, to set parameters or thresholds for the valve.

By monitoring intracranial pressure and continuously alternating between opened/closed valve position, the system prevents fluid from constantly draining. This allows the surrounding tissue to rebound from the catheter holes, allows the brain to retain its normal shape, and mitigates blockage concerns.
P170214US01

Slippery Liquid-Infused Porous Surfaces (SLIPS) with Improved Antifouling Properties, Small Molecule Release

Building on their work, the researchers have now developed SLIPS capable of preventing adhesion and colonization by bacterial/fungal pathogens, and also killing and/or attenuating non-adherent pathogens in surrounding media. The new approach exploits the polymer and liquid oil phases of the slippery materials to sustain the release of small molecule compounds.

This controlled release approach improves the inherent antifouling properties of SLIPS, has the potential to be general in scope and expands the potential utility of slippery, non-fouling surfaces in diverse contexts.
P160308US02