Technologies

Medical Devices

Most Recent Inventions

Improved System for Stroke Therapy and Rehabilitation

UW-Madison researchers have developed an improved system for stroke therapy and rehabilitation.  This system collects movement intention signals from the brain in real-time via EEG and initiates functional electrical stimulation (FES) of the appropriate muscle(s) to assist the neurons in regrowing their connections from the brain to the muscles along the correct pathways.  Additional general sensory stimulation may be added to this therapy to further encourage proper neuron regrowth. 
P09245US02

Growth Factor Regulation in Blood Products for Improved Wound Healing

UW–Madison researchers have developed hydrogel microspheres for sequestering problematic growth factors, specifically VEGF, in patient-derived blood products. The degradable microspheres are functionalized with peptide ligands that selectively bind and remove unwanted VEGF from platelet rich plasma and other blood products before they are used in clinical procedures.
P160179US01

Perivascular Drug Delivery System Inhibits Restenosis

UW–Madison researchers have developed a new device and method for perivascular delivery of drugs to treat and prevent restenosis.

The device consists of a sheath made from a bioresorbable polymer. An anti-proliferative drug is loaded into the sheath. When the sheath is placed around the outside of the blood vessel, the drug is delivered to the vessel over time.
P150048US02

More Stable Collagen Mimetic Peptides for Wound Healing

UW–Madison researchers have developed a superior linkage between CMP strands that substantially improves their structural stability. The new linkage uses homocysteine in place of cysteine in one of the strands. The resulting bond reduces strain and can therefore be used to enhance CMP-based biomaterials and enable previously inaccessible molecular designs.
P140407US02

Digital Otoscope for Optimal Access, Visualization

UW–Madison researchers have designed an otoscope featuring a small camera that is mounted on a narrow tip and able to ‘look around’ obstructions such as earwax. The narrow tip also permits other medical instruments to be inserted into the ear while the otoscope is being used (e.g., a curette for removing earwax or foreign objects). A remarkable view of the tympanic membrane is achieved, facilitating proper diagnosis.

Notable features include a disposable, light-conducting speculum sleeve with distal tip smaller than 2 mm. In addition, images may be captured directly from the device and stored in the patient record in compliance with Federal law.
P150259US01

Most Recent Patents

Bedside Diagnosis of Swallowing Disorders

UW–Madison researchers have developed software that helps clinicians more easily analyze HRM data. Using a specially adapted manometer inserted through the nasal tract, a series of pressure measurements can be made at different points along the pharynx and esophagus. A computer program uses pattern recognition software to identify changes in pressure when the patient swallows. This data is output as diagnostic values indicating swallowing function.
P130237US01

Algorithm for Selective Enhancement of Speech Signals

UW-Madison researchers have developed an audio signal enhancement system and method for speech processing, recognition and/or enhancement. Unlike traditional systems, this algorithm recognizes that contrast enhancement, when applied to non-pathological or unimpaired regions of the frequency spectrum, can actually impede a listener’s ability to understand the underlying speech. The system’s contrast enhancement algorithm and selective control mechanism provide a method to selectively manipulate or augment portions of an audio signal and allow other portions to be unenhanced or enhanced differently. As a result, this system can be used to preserve the ability of a listener to process the unenhanced or differently-enhanced portions of the audio signal.

The enhancement process is accomplished by dividing an input auditory signal into a plurality of spectral channels, and either performing or not performing enhancement on established subsets of the channels. Then the enhanced and unenhanced signals are combined to form a selectively enhanced output auditory signal.
P100334US01

Algorithm Improves Resolution of Time-Frequency Analysis for Medical Diagnostics, Telecommunications

UW-Madison researchers have developed a pseudo-wavelet algorithm known as the “damped-oscillator oscillator detector” (DOOD). This algorithm is unique among all wavelet and pseudo-wavelet algorithms in that it is the only algorithm that is explicitly based on modeling data as a “driving force” that interacts with a hypothetical set of mathematical oscillators. In the DOOD algorithm, an entirely new spectral density can be defined as the time rate of change in the energy specifically due to interaction with the data driving force, referred to as the data power. The data power measure is more sensitive to the presence or absence of data oscillators than traditional energy measures.

The DOOD algorithm allows an enormous frequency range to be spanned over as many orders of magnitude as desired. The instantaneous phase of oscillation and correlation functions can be calculated easily. The inverse of the DOOD transform is accomplished readily, which means that the DOOD algorithm also can be used to compress data. Any time-frequency or correlation analysis that can be accomplished by conventional means also can be accomplished using the DOOD algorithm, with the advantages of greater flexibility in defining the frequency range and better time resolution.
P100227US01