Inventions, Patents and Portfolios - WARF
Technologies

Medical Imaging

Medical Imaging Portfolios

Most Recent Inventions

Monomeric Fluorescent Protein-Ligand Complexes with Strong Fluorescence in the Far-Red Region

Research from the University of Wisconsin-Washington County in collaboration with the Institute for Stem Cell Biology and Regenerative Medicine in India, has resulted in the development of monomeric variants of the naturally occurring Sandercyanin Fluorescent Protein (SFP) using site-directed mutagenesis. This work has stemmed from earlier research focused on development of the tetrameric form of SFP, a biliverdin-binding lipocalin protein originally isolated from the mucus of the blue walleye fish, Sander vitreus. Monomeric variants of SFP (mSFPs) have been found to possess the same non-covalent, bili-binding characteristics of the tetramer but are one-quarter the size (~18.6kDa) and do not oligomerize. They are therefore anticipated to be more useful in a host of biotechnology applications. Like the tetrameric form, the mSFPs have a large stokes shift (375nm/675nm) and fluoresce in the far-red or near infrared region, which is advantageous for a wide range of applications including investigation of protein-protein interactions, spatial and temporal gene expression, assessing cell biology distribution and mobility, studying protein activity and protein interactions in vivo, as well as cancer research, immunology, and stem cell research and sub-cellular localization. In addition, the newly developed mSFP’s far-red fluorescence is particularly advantageous for in vivo, deep-tissue imaging.
T150029WO01

Long-Lived Gadolinium-Based Agents for Tumor Imaging and Therapy

UW–Madison researchers have synthesized the first long-lived tumor-specific contrast agents for general broad spectrum tumor imaging and characterization. The new, gadolinium (Gd)-labeled analogs utilize an alkylphosphocholine carrier backbone. Their formulation properties render them suitable for injection while retaining tumor selectivity.
P160146US02

High Accuracy Angle Measuring Device for Industrial, Medical, Scientific or Recreational Use

A UW-Stout researcher has developed a high-accuracy angle measurement system that addresses the problems inherent to commercially available systems. In this novel device, a high accuracy rotary optical encoder is controlled by a microprocessor. The encoder consists of rotating optical disks and sensors that are precisely formed and placed to read angles with 0.001 arc second sensitivity (average) and better than ±0.1 arc second accuracy (single readings), which is comparable to the accuracy of the high-end commercial encoders currently on the market. This accuracy is maintained with strategies that combat the mechanical sources of error that are known disadvantages of other devices. The system can also be adjusted to compensate for any asymmetrical shifts that may occur. Mechanical sources of error and noise are further minimized by precision placement of disks and sensors, as well as low-friction reference points that keep components centered and level during rotation. In addition, multiple sensor heads eliminate major readout errors and remove the need for recalibration. All of these features and benefits are contained within a design that is both compact and portable. Beyond high accuracy and portability, the cost of this new angle measurement system is substantially lower than a high-end commercial system because it is easily constructed from readily available industrial grade components, bringing the production cost to roughly $2,000. Strikingly, this cost is comparable to the advertised price of other rotary position encoders that are less than one tenth as accurate. Its high accuracy, low cost, and portability make this new angle measurement system a strong option for use in virtually any of the current applications for absolute rotary encoders.
T130018US02

Robust Chemical Shift MRI Using Magnetization Transfer

A UW–Madison researcher has developed a method that significantly reduces fat-water separation errors using a fat-insensitive field map for calibration. The field map is generated by exploiting the magnetization transfer effect and its lack of influence on fat.

The new method acquires a static magnetic field map (B0) before application of the IDEAL algorithm using a fast prescan with a special radiofrequency pulse and post processing, which reduces separation errors without prolonged or intensive computation.
P160247US01

Rapid MRI Gradient Calibration Using Single-Point Imaging

UW–Madison researchers have developed a dynamic SPI-based method for MRI systems that allows simple, rapid and robust measurement of k-space trajectory.

To enable gradient measurement, they utilized the variable field-of-view (FOV) property of dynamic SPI, which is dependent on gradient shape. In the process, one-dimensional (1-D) dynamic SPI data are acquired from a targeted gradient axis, and then relative FOV scaling factors between 1-D images or k-spaces at varying encoding times are found. These relative scaling factors are the relative k-space position that can be used for image reconstruction.

The gradient measurement technique also can be used to estimate the gradient impulse response function for reproducible gradient estimation as a linear time invariant system.
P160026US01

Most Recent Patents

Improved Phantom for Iron and Fat Quantification MRI

UW–Madison researchers have designed a phantom that accurately reflects in vivo MRI signal behavior in the presence of both fat and iron. The key innovation is that the new phantom is constructed using a lipid emulsion substrate with superparamagnetic iron oxide (SPIO) particles that are proportionately larger than the fat particles, such that the field from those particles encompasses the entirety of the fat signals.
P150328US01

Faster, Distortion-Free MRI Near Metallic Implants

Improving upon their earlier work, UW–Madison researchers have developed a method to accelerate MRI scans performed near metal. The new method can work with existing techniques such as MAVRIC.

The new method efficiently measures coil sensitivities across a broad off-resonance spectrum, enabling the use of externally calibrated PMRI techniques. The method saves significant time by eliminating the need to obtain fully sampled calibration regions for all of the acquisitions at different resonance frequency offsets.
P150006US01

Detecting Iron Overload with MRI

UW–Madison researchers have developed a method for measuring iron and other substances in tissue using an MRI system, based on estimating tissue magnetic susceptibility.

The method acquires chemical-shift-encoded, water-fat separated data from a scanned region of interest. From this data a magnetic field inhomogeneity map of the system can be obtained. The field map enables estimation of the magnetic susceptibility of tissue to determine concentration of iron or other substances, such as gadolinium.
P120356US01