New Inventions

Platform for High-Throughput Analysis of Microbial Interactions

UW–Madison researchers have developed a research tool for large-scale mapping of interactions in microbiomes. Their method employs gene sequencing in a microfluidic system to increase throughput by several orders of magnitude (1,000-10,000 times).

Specifically, the researchers mixed groups of several species of bacteria in culture. They encapsulated cells into millions of picoliter droplets dispersed in an oil phase. The droplets were incubated to allow the microbes to interact, assemble into a community and perform functional activities. After incubation, the composition of the community within the droplet was analyzed using fluorescence microscopy or next-generation DNA sequencing.

The presence or absence of microbes in a drop can be indicative of different species preferentially interacting with other species in the bulk culture or droplet, and can be used to reconstruct the microbiome’s ecological network.
(Oct 25, 2019) P190033US02

Semiconductor Quantum Dot Computer-Aided Engineering (CAE) Simulation Tool

A Professor of Electrical Engineering at the University of Wisconsin – Platteville has developed a software simulation tool for the computer aided engineering (CAE) of Quantum Dots. The CAE simulation tool accepts input of the QD parameters and then computes and returns the resulting optical and electronic properties. This includes QD structures with an InAs core and a GaAs matrix, and can be extended to any III-IV materials. The CAE tool simulates the most popular pyramidal and half-ellipsoidal QD shapes and can be extended to any arbitrary geometric shape. Compared with the often-incomplete results reported in the literature, this CAE simulation tool returns all possible electronic states within the QD. The CAE simulation results also supported the experimental data for the corresponding QD. The simulation tool currently runs as an application in the COMSOL platform and does not require a supercomputer for calculations and processing.
(Oct 22, 2019) T180055US02

Novel Catalysts for Improved Remediation of Sulfur-Containing Pollutants

A professor of chemistry at the University of Wisconsin-La Crosse has developed a versatile suite of iron-based catalysts with the potential to promote rapid, efficient oxidation of deleterious sulfur-containing compounds present in crude oil, natural gas, and/or aqueous waste streams. With these novel catalysts, there is no need for corrosive base, elevated temperatures, expensive or dangerous oxidants, or high pressures.
(Aug 20, 2019) T190005WO01

App for Stratifying Autism Spectrum Disorders

UW–Madison researchers have developed a software test to differentiate ASD participants into two distinct types of contextual learners. The first group resembles a “Typically Developing” (TD) learning profile, and the second group does not modulate with context, indicating that they are not able to learn the embedded context.

Participants viewed a monitor divided into four quadrants and were asked to search for a visual target, then indicate the quadrant in which the target was located. Unbeknownst to the participants, contextual information about the target location was manipulated across sessions by varying the number of off-targets and the probability of the target being present in that quadrant. Search time as a function of the proportion of informative cues in the target quadrant was used as a measure of contextual learning.
(Jul 29, 2019) P190304US01

Health Monitoring and Imaging System for Concrete Structures

An assistant professor in civil engineering at the University of Wisconsin-Platteville in partnership with an electrical engineer from New Mexico State University, has developed a comprehensive monitoring system capable of identifying interior defects and stress in concrete structures such as bridges. By combining sensor technology with an ultrasound signal generator, multi-channel data acquisition and proprietary data processing algorithms, the interior conditions in any cross section of a bridge can be visualized in 3D. With this technology, small stress changes in the order of 0.1Mpa and cracks as thin as a human hair are detected. Such a combined system provides competitive advantage over existing methods that solely measure stress changes and rely on installation of strain gauges on the surface or inside concrete structures. These methods only provide for measurement of stress changes at the locations where sensors are placed, creating gaps in the evaluation of stress change. In addition, with current technology, holes must be drilled and patched for sensor placement and bridges must be taken out of service during testing. The proposed technology provides for a more absolute evaluation of not only changes in stress but also identification of cracks, does not require drilling of holes and can be used on in-service bridges, saving time, money and providing a more comprehensive assessment of bridge health.
(Jul 29, 2019) T180044WO01

Production of Medium-Chain Fatty Acids from Biorefinery Residue

UW–Madison researchers led by Profs. Daniel Noguera and Timothy Donohue have developed a method for converting unreacted chemical components in stillage to valuable medium-chain fatty acids, such as hexanoic and octanoic acids, using a mixture of microbes (e.g., anaerobic microbiome).

Operationally, a portion of the stillage stream is separated and fed to a bioreactor containing the mixture of microbes, which transforms a fraction of the stillage to MCFAs. The other fraction of the stillage can be sent on to the anaerobic digester to generate electricity (similar to existing biorefineries).
(May 10, 2019) P170271US04

Carbon Nanotube Vacuum Field Emission Transistor Design for Large-Scale Manufacturing

Inventors from the Department of Engineering Physics at the University of Wisconsin-Platteville have created novel transistors by incorporating etched carbon nanotubes into a planar design that is compatible with existing fabrication techniques. In previous studies by others, aligned carbon nanotube transistors have been demonstrated to achieve saturation current that is 1.9 times higher than those that are silicon-based, at an equivalent charge density. In the optimal embodiment of this invention, carbon nanotubes are aligned and feature precise gaps that act as channels to allow the efficient transport of electrons without the need for a vacuum. The anticipated output of this approach will be nanoscale transistors that resist heat and radiation and operate at low voltage and high frequency. To address current challenges with large-scale VFET manufacturing, this technology offers three advantages – the carbon nanotubes can be prefabricated using methods that are already in place, the selective etching process for creating electron channels uses conventional integrated circuit techniques, and the planar design can integrate with existing wafer-based manufacturing methods.
(Apr 16, 2019) T170007US02

Porous Silicon Nanomembranes for the Rapid Separation of Macromolecules by Size and Shape

Researchers at the University of Wisconsin-Platteville have developed a unique nanomembrane for the separation of biomolecules based on their three-dimensional geometries. These “macromolecular sieves” are produced from laser-etched silicon nanomembranes. The pores in these membranes have openings in the sub-micron range but are designed to significantly reduce the flow impedance of the filtered solution. This design feature allows for faster filtration time when compared with traditional membranes. Nanomembranes with square and rectangular geometries have been produced. Desirable characteristics of the square opening membrane include a high open area of 45% and low standard deviation in opening size (less than 5%). Additionally, the fabricated membranes have been tested with vacuum pumps and show no signs of damage after repeated filtrations with 15 psi of applied pressure differential. Currently, reducing opening size below 100 nm and introducing openings of varying geometries is under development. Further efforts are also underway to decrease the manufacture time and increase the overall scalability of the membrane patterning process.
(Apr 11, 2019) T180038WO01

One-Step Process to Generate Lignin-Derived Aromatics from Raw Biomass

UW–Madison researchers have developed a one-step, “lignin-first” method for generating lignin-derived aromatics from raw biomass. The new approach uses transition metal-based heterogeneous catalysts under neutral pH conditions with O2 as the oxidant. Compared to traditional biomass deconstruction approaches, which first isolate lignin from the feedstock before further processing for recovery of sugars, the lignin-first method avoids the cumbersome and destructive lignin extraction process.

While not optimized for sugar recovery, the carbohydrate residues are not degraded and remain intact for further processing.
(Mar 6, 2019) P190134US01

Simplified Optical Traps for Quantum Computing

A UW–Madison researcher has developed a novel method and hardware to create optical traps for neutral atom quantum computing. The new design is a simple yet efficient method for creating large arrays of bright or dark optical patterns for particle trapping and for arrays of atomic qubits for quantum computing.

Rather than using a relatively complex arrangement of optical elements, the new approach requires only lenses and circular apertures. Compared to prior designs, this approach is cheaper to implement and has improved technical characteristics for efficient utilization of laser light and improved localization of the trapped particles.
(Jan 4, 2019) P190053US01