New Inventions

W8405-1R: A Red Skin White Flesh Potato for the Fresh Market

UW–Madison researchers have developed W8405-1R, a red potato variety with very smooth and uniform tubers, round-oval shape, shallow eyes and attractive coloring that maintains well in storage.

The new variety is available through the Wisconsin Crop Improvement Association.
(Jan 2, 2020) P120384US01

Platform for High-Throughput Analysis of Microbial Interactions

UW–Madison researchers have developed a research tool for large-scale mapping of interactions in microbiomes. Their method employs gene sequencing in a microfluidic system to increase throughput by several orders of magnitude (1,000-10,000 times).

Specifically, the researchers mixed groups of several species of bacteria in culture. They encapsulated cells into millions of picoliter droplets dispersed in an oil phase. The droplets were incubated to allow the microbes to interact, assemble into a community and perform functional activities. After incubation, the composition of the community within the droplet was analyzed using fluorescence microscopy or next-generation DNA sequencing.

The presence or absence of microbes in a drop can be indicative of different species preferentially interacting with other species in the bulk culture or droplet, and can be used to reconstruct the microbiome’s ecological network.
(Oct 25, 2019) P190033US02

Semiconductor Quantum Dot Computer-Aided Engineering (CAE) Simulation Tool

A Professor of Electrical Engineering at the University of Wisconsin – Platteville has developed a software simulation tool for the computer aided engineering (CAE) of Quantum Dots. The CAE simulation tool accepts input of the QD parameters and then computes and returns the resulting optical and electronic properties. This includes QD structures with an InAs core and a GaAs matrix, and can be extended to any III-IV materials. The CAE tool simulates the most popular pyramidal and half-ellipsoidal QD shapes and can be extended to any arbitrary geometric shape. Compared with the often-incomplete results reported in the literature, this CAE simulation tool returns all possible electronic states within the QD. The CAE simulation results also supported the experimental data for the corresponding QD. The simulation tool currently runs as an application in the COMSOL platform and does not require a supercomputer for calculations and processing.
(Oct 22, 2019) T180055US02

Novel Catalysts for Improved Remediation of Sulfur-Containing Pollutants

A professor of chemistry at the University of Wisconsin-La Crosse has developed a versatile suite of iron-based catalysts with the potential to promote rapid, efficient oxidation of deleterious sulfur-containing compounds present in crude oil, natural gas, and/or aqueous waste streams. With these novel catalysts, there is no need for corrosive base, elevated temperatures, expensive or dangerous oxidants, or high pressures.
(Aug 20, 2019) T190005WO01

App for Stratifying Autism Spectrum Disorders

UW–Madison researchers have developed a software test to differentiate ASD participants into two distinct types of contextual learners. The first group resembles a “Typically Developing” (TD) learning profile, and the second group does not modulate with context, indicating that they are not able to learn the embedded context.

Participants viewed a monitor divided into four quadrants and were asked to search for a visual target, then indicate the quadrant in which the target was located. Unbeknownst to the participants, contextual information about the target location was manipulated across sessions by varying the number of off-targets and the probability of the target being present in that quadrant. Search time as a function of the proportion of informative cues in the target quadrant was used as a measure of contextual learning.
(Jul 29, 2019) P190304US01

Health Monitoring and Imaging System for Concrete Structures

An assistant professor in civil engineering at the University of Wisconsin-Platteville in partnership with an electrical engineer from New Mexico State University, has developed a comprehensive monitoring system capable of identifying interior defects and stress in concrete structures such as bridges. By combining sensor technology with an ultrasound signal generator, multi-channel data acquisition and proprietary data processing algorithms, the interior conditions in any cross section of a bridge can be visualized in 3D. With this technology, small stress changes in the order of 0.1Mpa and cracks as thin as a human hair are detected. Such a combined system provides competitive advantage over existing methods that solely measure stress changes and rely on installation of strain gauges on the surface or inside concrete structures. These methods only provide for measurement of stress changes at the locations where sensors are placed, creating gaps in the evaluation of stress change. In addition, with current technology, holes must be drilled and patched for sensor placement and bridges must be taken out of service during testing. The proposed technology provides for a more absolute evaluation of not only changes in stress but also identification of cracks, does not require drilling of holes and can be used on in-service bridges, saving time, money and providing a more comprehensive assessment of bridge health.
(Jul 29, 2019) T180044WO01

Single Sweep Whiteboard Eraser

An Alumni from the University of Wisconsin – Platteville has developed a single sweep whiteboard eraser that can be installed and retrofitted to any traditional whiteboard. Spanning the entire height of the board, this eraser can clear all written material in a single pass and in a fraction of the time it takes with a handheld eraser alone. This eraser also has the capability to lift away from the board and relocate to any location while preserving any desired content during the transition. As an example, an instructor can work in a left to right manner, lift the eraser, and return to the beginning to erase the oldest material while still allowing the students time to copy the newly written material. Attached to the eraser is an added holder for markers and an additional holder for a small handheld eraser to fix minor mistakes. This ensures anything the user needs will be nearby as they work across the board. A stage 2 prototype, “1Swipe”, has been developed and tested in a University classroom setting.
(Jul 25, 2019) T180062US02

Stimuli-Responsive Smart Block Copolymers Improve Dispersion of Titanium Dioxide in Architectural Coatings

An associate professor of materials science and engineering at the University of Wisconsin-Eau Claire has synthesized a series of stimuli-responsive block copolymer dispersants optimized for use in architectural coating applications. These novel polymer dispersants are currently being developed as additives to existing coatings for improved dispersion of TiO2. Dispersant properties are tunable through modification of the polymer composition as a function of pH and temperature. Initial data shows that the addition of these polymers can decrease settling rate, control viscosity, and control interfacial activity, all of which are important for greater dispersant effectiveness and stability over time. In addition, these polymers have demonstrated the ability to interface with pigment particles, such as TiO2, resulting in improved dispersion of the pigment. Lastly, initial testing shows reduced TiO2 concentration while maintaining zero shear viscosity and shear thinning properties, which prevents drips in the coatings, and is comparable to commercially available formations. New methods of synthesis to allow for the scaled-up production of polymers are completed and new purification methods are in progress. Further development will also focus on maintaining additional properties like coverage and opacity, and testing of additional polymer compositions and particle surface coatings.
(Jul 22, 2019) T200004US01

Carbon Nanotube Vacuum Field Emission Transistor Design for Large-Scale Manufacturing

Inventors from the Department of Engineering Physics at the University of Wisconsin-Platteville have created novel transistors by incorporating etched carbon nanotubes into a planar design that is compatible with existing fabrication techniques. In previous studies by others, aligned carbon nanotube transistors have been demonstrated to achieve saturation current that is 1.9 times higher than those that are silicon-based, at an equivalent charge density. In the optimal embodiment of this invention, carbon nanotubes are aligned and feature precise gaps that act as channels to allow the efficient transport of electrons without the need for a vacuum. The anticipated output of this approach will be nanoscale transistors that resist heat and radiation and operate at low voltage and high frequency. To address current challenges with large-scale VFET manufacturing, this technology offers three advantages – the carbon nanotubes can be prefabricated using methods that are already in place, the selective etching process for creating electron channels uses conventional integrated circuit techniques, and the planar design can integrate with existing wafer-based manufacturing methods.
(Apr 16, 2019) T170007US02

Porous Silicon Nanomembranes for the Rapid Separation of Macromolecules by Size and Shape

Researchers at the University of Wisconsin-Platteville have developed a unique nanomembrane for the separation of biomolecules based on their three-dimensional geometries. These “macromolecular sieves” are produced from laser-etched silicon nanomembranes. The pores in these membranes have openings in the sub-micron range but are designed to significantly reduce the flow impedance of the filtered solution. This design feature allows for faster filtration time when compared with traditional membranes. Nanomembranes with square and rectangular geometries have been produced. Desirable characteristics of the square opening membrane include a high open area of 45% and low standard deviation in opening size (less than 5%). Additionally, the fabricated membranes have been tested with vacuum pumps and show no signs of damage after repeated filtrations with 15 psi of applied pressure differential. Currently, reducing opening size below 100 nm and introducing openings of varying geometries is under development. Further efforts are also underway to decrease the manufacture time and increase the overall scalability of the membrane patterning process.
(Apr 11, 2019) T180038WO01