Technologies

New Patents

Controlling Motion Effects in MRI

UW–Madison researchers have developed a method for overcoming motion effects in MRI images. The new method makes dynamic contrast enhanced imaging less susceptible to a patient’s respiratory movement.

In essence, a sliding slice acquisition strategy is used to sample k-space in a pseudorandom manner relative to the trajectories extending between the center and peripheral areas of k-space. A two-dimensional (2-D) slice may be slid from one position to another faster than the patient is breathing/moving. This allows motion artifacts to be reflected as geometric distortions that do not detract from the clinical utility of the images.
(Dec 25, 2018) P150149US01

Virtual Touch Screens: New Input for Smaller Devices

UW–Madison researchers have developed a new virtual touch screen technology utilizing unused space to the side of a device display. The technology is a low-cost passive finger localization system based on visible light sensing. It provides a simple and convenient interface that does not require additional external equipment such as a sensor attached to the finger.

A sensor system on the edge of a mobile device uses photodetectors and a light source to track finger motion based on reflected light signals within the narrow light-sensing plane of the virtual touch screen. The signals are converted to orthogonal coordinates and subsequently output to the graphics display screen.
(Dec 18, 2018) P160021US01

Imaging Technique for Recognizing Hand Gestures & Other Micromotions in 3-D

UW–Madison researchers have developed a new imaging technique that analyzes speckle patterns to track extremely small 3-D motions on the order of 10-100 microns. This technique enables, for the first time, precise 3-D measurement of multiple moving objects using low-cost, off-the-shelf components.
(Dec 11, 2018) P170202US01

Organic Polymers with Ultra-Small Pores for Carbon Dioxide Separation, Capture, and Conversion

Researchers at the University of Wisconsin – Platteville have synthesized an array of chemically and thermally stable organic polymers comprised of ultra-small pores capable of separating out and capturing carbon dioxide molecules from a mixture of gases. These include phenazine linked polymers (PLPs), glyoxal‐derived polymers (GDPs), benzoxazole‐linked polymers (BOLPs), and benzothiazole‐linked polymers (BTLPs) with each having nitrogen-rich functionality to attract CO2. The single component adsorption isotherms demonstrated that the polymers have exceptionally high CO2 capture ability over CH4 and N2 with maximum adsorption selectivity of 35 times greater and 140 times greater, respectively, at 25°C. Such polymers have utility in the formation of membrane composites for use in membrane gas separation technology. Additionally, the researchers have been able to combine these polymers with silver metal resulting in the catalytic conversion of carbon dioxide molecules to useful chemical compounds.
(Dec 11, 2018) T160005US02

Biomarkers for Detecting Prostate Cancer

UW–Madison researchers have identified eight genetic markers, or biomarkers, for prostate cancer. They can be detected in histologically normal prostate samples and/or the bodily fluids of men with no history of prostate cancer.

The biomarkers act as red flags, exhibiting abnormal methylation levels when cancer is present in peripheral prostate tissue (this is called cancer ‘field defect’). These changes are believed to represent early stages of the cancer process.

The biomarkers are associated with the genes CAV1, EVX1, MCF2L, FGF1, WNT2, NCR2, EXT1 and SPAG4.
(Nov 20, 2018) P130258US03

Single MRI Scan Acquires Multiple Sets of Inversion Recovery Data

UW–Madison researchers have developed a method that expedites inversion recovery by acquiring data after each IR radiofrequency pulse. In this way, both single IR and DIR data can be obtained in a single, condensed scan.

In the method, each IR pulse is followed by an excitation pulse and data acquisition. Any suitable data acquisition scheme can be employed, such as VIPR (vastly undersampled isotropic projection reconstruction). Multiple images of the subject are reconstructed from this data. Data after the first image can produce a traditional T1-weighted image, while data after the second inversion produces a traditional DIR image.
(Nov 20, 2018) P130278US01

Generic Drug to Treat and Prevent Macular Degenerative Diseases

UW–Madison researchers have identified a new treatment option for a number of macular degenerative diseases including AMD, Stargardt’s disease and juvenile macular dystrophy.

The researchers found that a class of compounds called acid sphingomyelinase inhibitors can be used to fight retinal disorders associated with abnormal accumulations of lipofuscin (a cellular waste product), cholesterol or increased inflammation. One such inhibitor, generic name desipramine, is currently sold on the market as an antidepressant. Other acid sphingomyelinase inhibitors also may be suitable.
(Nov 13, 2018) P140282US02

Dense Polymer Brush Growth with New Copolymer

UW–Madison researchers have developed a novel crosslinkable random copolymer and film. The film can be used as a grafting substrate to grow polymer brushes via SI-ATRP.

The copolymers are synthesized by standard techniques. They consist of a styrene or acrylate-based inimer for initiating ATRP and a monomer for crosslinking. Once the copolymers have been formed, they can be crosslinked into films by applying heat and/or light. This step can be carried out on different surfaces using spin-coating methods.

After the crosslinked films have been prepared, they can be used as grafting substrates for SI-ATRP growth of polymer and copolymer brushes. During SI-ATRP, a reaction generates a polymer brush composed of multiple polymer chains attached to the film.
(Oct 23, 2018) P130169US02

Increasing Memory Bandwidth

UW–Madison researchers have developed a system to substantially increase memory bus bandwidth by combining a parallel memory bus with a high-speed serial memory bus. A serial memory bus normally introduces too much latency (data delay) for general computer processors, but this can be accommodated using special processors like GPUs or streaming processors.

By selectively steering some memory traffic to the serial memory bus, total memory bandwidth is significantly increased while still providing low latency when needed via the parallel memory bus.
(Oct 23, 2018) P140155US01

Optimized Nanoresonator Design Signals Breakthroughs in Spectrometry and Device Efficiency

UW–Madison researchers have developed a new method and structure for increasing the cross section of nanoresonators, thereby improving the concentration ratio of light (or other electromagnetic radiation) and device performance. The key to their approach is that the nanoresonator is surrounded by a material that provides increased light concentration.
(Oct 23, 2018) P160052US01