Technologies

New Patents

Enhanced Biomass Digestion with Wood Wasp Bacteria

UW–Madison researchers have derived preparations from ActE secretions that highly degrade lignocellulose. The bacteria can be obtained from Sirex noctilio wasps and grown on a substrate containing mostly cellulose, hemicelluloses, xylan, wood or non-wood biomass, and chitin. The substrate may be pretreated for better results. The ActE are grown aerobically to maximize the secretion of both oxidative and hydrolytic enzymes capable of rapid deconstruction of matter. The secretions can be purified and added directly to biomass slurry.
(Feb 26, 2019) P110314US03

Invertebrate Models for Studying Traumatic Brain Injury

UW–Madison researchers have developed a method for inflicting closed head TBI in invertebrates. The method can be used to screen candidate therapeutic agents for treating TBI.

Specifically, the researchers created a device that mechanically induces TBI in organisms such as Drosophila melanogaster (fruit flies), which respond to impact trauma in many of the same ways as humans. Subjecting these organisms to a controlled impact and dosing with test agents could help identify the biological pathways associated with the consequences of TBI as well as enable screens for therapeutic compounds.

The device consists of a spring attached to a vial containing up to 100 flies. The spring is pulled back and then released, striking the vial against a rubber pad to inflict brain trauma as the flies collide with the bottom and walls of the vial. The device can be adjusted to inflict injury at differing severities.
(Feb 19, 2019) P130267US02

Producing Linear Alpha Olefins from Biomass

UW–Madison researchers have developed a method for producing LAOs cheaply from biomass. In the process, an inexpensive solid acid catalyst is used in a reaction that converts the carboxylic acids and lactones present in the feedstock. The catalyst features Lewis acid catalytic sites and no precious metal components.
(Feb 19, 2019) P130275US01

Architecture for Speculative Parallel Execution Improves Performance, Simplifies Programming

UW–Madison researchers have developed a system that permits speculative execution of program tasks prior to determining data dependency. Before commitment of the tasks in a sequential execution order, data dependencies are resolved through a token system that tracks read and write access to data elements accessed by the program portions.

Eliminating the need to wait until late in the program execution to detect or resolve dependencies helps improve processor utilization. Advancing the execution of tasks that ultimately do not experience data dependency problems may have a ripple-through effect, reducing later data dependencies as well.
(Feb 19, 2019) P140373US01

Hydrogel Arrays for Screening Cell-Substrate Interactions

UW–Madison researchers developed a new method for forming patterned hydrogel arrays featuring any number of test spots possessing different characteristics, such as shape and chemical composition. The arrays can be used to culture a range of cell types and rapidly analyze their behavior (e.g., attachment, spreading, proliferation and differentiation).

The arrays are prepared using a hydrogel precursor solution containing a polymer and crosslinker. The solution is sandwiched between stenciled SAM layers containing hydrophilic (‘water-loving’) and hydrophobic (‘water-hating’) regions, then polymerized and released.

As a result of the process, the array features hydrophilic spots surrounded and isolated by hydrophobic regions, preventing any mixing of contents. The spots can have any desired shape, size and chemical composition.
(Feb 5, 2019) P140097US01

Precise Restarts for Handling Interrupts in Parallel Processing

UW–Madison researchers have developed an easier method for capturing the precise architectural state of a multiprocessor system. Their approach uses computation checkpoints that hold simplified information sufficient for ‘precisely restarting’ after an interrupt, even though the checkpoints may not technically represent the actual state of the system at the time of interrupt.

Specifically, as the multiple processors execute different parts of a program, the method enforces a consistent order in the commitment of their results. An architectural state is determined by marking interrupts with respect to this commitment order. For example, all preceding executions in the order may be committed, while all later executions are squashed. In this way, ‘precise restartability’ rather than interruptability is used to reflect a total ordering of instructions that is consistent with data flow and sequence.

After an interrupt is handled, execution of the parallel portions is resumed from the architectural state.
(Jan 22, 2019) P130018US01

New Software Algorithm Advances Measurement Technology in Agribusiness

UW–Madison researchers have developed a new scanning algorithm for use in assessing yield and quality of crop production.

To determine characteristics such as kernel loading on an ear of corn and ear size, researchers scan up to three ears at a time using a common flatbed scanner. To measure 100 kernel weight, another common yield measurement, researchers weigh a handful of individual kernels and scatter them on the scanner. The resulting images are then analyzed using the algorithm to quickly provide yield data.

The algorithm uses a thresholding technique to separate the ears from the background and a Fourier transform to more accurately estimate kernel length. It also corrects for individual kernels clustering together.
(Jan 22, 2019) P140371US02

Foot Harness for Patients Relearning to Walk

UW–Madison researchers have developed a first-of-its-kind foot strap that can attach to training equipment. The strap fits easily and securely around a patient’s own shoe without impeding his or her normal stride. The strap features a safety release mechanism and electronic sensor to stop the exercise if the patient loses balance.
(Jan 22, 2019) P150292US01

Modified Cyanobacteria for Competitive Sugar Production

UW–Madison researchers have developed strains of Synechococcus sp. Strain PCC 7002 with the highest reported glycogen or starch production rate of any cyanobacteria or algae. The strains are genetically modified to overexpress a glucose-1-phosphate adenylyltransferase.
(Jan 22, 2019) P160039US02

Green Method for Producing 1,5-Pentanediol Slashes Catalyst Cost 10,000-fold

Seeking a commercially viable alternative, UW–Madison researchers have developed a new route for producing 1,5-PD from biomass-derived THFA. Their three-step process is orders of magnitude cheaper than competing methods, green and exceeds 90 percent overall yields.

More specifically the new method includes hydration of THFA to dihydropyran, conversion to 2-hydroxy-tetrahydropyran (no need for a mineral acid catalyst) and subsequent production of 1,5-PD. The entire method can be conducted entirely in the absence of noble metal catalysts.
(Jan 22, 2019) P160103US01