Technologies

New Patents

Enhanced Blood-Brain Barrier Model Outperforms All Others

UW–Madison researchers have developed a more realistic, reproducible in vitro model of the BBB. The model uses either human embryonic or induced pluripotent stem cells as a source of BMECs.

These cells are treated with retinoic acid to produce further BBB maturation and improve barrier properties. They are purified and co-cultured with other types of neurovascular cells, including pericytes, astrocytes and differentiated neural progenitor cells (NPCs).
(Mar 17, 2020) P130017US02

Computer Accelerator System Boosts Efficiency

UW–Madison researchers have developed a specialized memory access processor that takes over the job of feeding data to the accelerator. It is placed between the main processor and the accelerator.

The circuit is specialized for a narrow task, in this case performing memory access and address calculations. It is as fast as the main OOO processor yet more efficient. The main OOO processor – free from memory access duties – may switch to an energy conserving sleep mode until the accelerator is finished, or may move on to other tasks.
(Mar 17, 2020) P140164US01

Vernier Permanent Magnet Machines with High Torque Density

UW–Madison researchers have developed a VPM rotor geometry that improves torque density and power factor by routing the stator flux in a way that boosts it. The new, single barrier design comprises an iron section with an air barrier near the rotor core to guide the stator magnet flux in a desirable path. This was created for the spoke-type configuration topology, where the magnets are aligned similar to the spokes of a bicycle wheel in the rotor. This design solution boosts the flux without compromising performance or cost.
(Mar 17, 2020) P170230US01

Golf Technique Improvement Aid Trains for Proper Club Alignment Throughout the Swing

A former professional golfer and University of Wisconsin-Green Bay graduate has developed a novel training aid that improves golf performance by keeping a golfer’s arms and club aligned properly throughout the swing. This innovative tool attaches to a golf club and can be adjusted to fit users with varied grip styles and forearm sizes. It is designed with a unique offset hinge system that enables the golfer to experiment with a continuous range of variations in the arm-to-club relationship during the swing and gives feedback when incorrect motion occurs.
(Mar 17, 2020) T170043US02

Bioreversible Protein Esterification

UW–Madison researchers have developed an efficient new method for esterifying proteins using certain diazo compounds. The compounds convert protein carboxyl groups into esters in buffered water. The modification is removed by enzymes that reside in all human cells, making the method bioreversible.

Diazo compounds have the general formula R2C=N2, but not all are effective. They must have a basicity within a certain range.
(Mar 3, 2020) P130148US02

Food & Drug Safety: Time-Temperature Indicator for Perishables

UW–Madison researchers have developed nanoreactors that can detect exposure of a perishable good to an undesired temperature. The device comprises a metal precursor in a stabilizing carrier such as gelatin or chitosan. Upon exposure to heat, the metal precursor forms nanoparticles that can be detected visually or spectroscopically by a change in color, peak wavelength or peak absorbance, as well as the size, number or shape of the nanoparticles that form. The nanoreactors could be applied to product packaging and ‘switched on’ to begin temperature tracking.
(Mar 3, 2020) P150240US02

Perovskites for Stable, High Activity Solid Oxide Fuel Cell Cathodes and Related Technologies

Using high-throughput computing and informatics to screen thousands of candidates, UW–Madison researchers have identified doped perovskite compounds that exhibit both high catalytic activity and thermodynamic stability under ORR operating conditions. These improvements are believed to enable lower-temperature operation of SOFCs and improve device lifetime.

In total, approximately 1950 distinct perovskite compositions were simulated. The most active predicted compounds were found to contain alloys of transition metals and redox-inactive dopant elements (ex., Zr, Hf, Nb, Re and Ta) that can enhance stability.
(Mar 3, 2020) P160222US01

Next-Generation Electronics: Realizing 2-D Hole Gas in Oxide Materials

UW–Madison researchers have developed the first known method for realizing 2DHG in an oxide material, and for achieving both 2DHG and 2DEG in the same system.

The researchers designed an oxide heterostructure with alternating layers of strontium oxide and titanium dioxide as the base, a polar layer of lanthanum oxide and aluminum oxide, followed by a non-polar layer of strontium oxide and titanium dioxide on the top. The hole gas forms at the interface of the layers on the top, while the electron gas forms at the interface of the layers on the bottom. Both gas layers are thin with highly mobile and concentrated electrons/holes, respectively.
(Mar 3, 2020) P170256US01

Safer, More Satisfying Beverage Standards for Swallowing Disorder

UW–Madison researchers have developed the first objective criteria that can be used to produce safe and palatable beverages for dysphagia patients.

The researchers asked patient panels to test numerous fluids and rate attributes such as stickiness and mouth coating. Using this feedback, the researchers were able to define a set of standards based on several properties, including apparent viscosity, consistency and flow.
(Feb 25, 2020) P120042US02

Research Tool for Protein Conformation Analysis

UW–Madison researchers have developed a method and easy-to-operate device that uses plasma to perform hydroxyl radical footprinting. The device tags the outer surface of the protein and allows the user to study its 3-D conformation via mass spectrometry.

The new technique, which is workable on a benchtop, applicable to a range of protein concentrations and sizes and generates µs bursts of hydroxyl radicals without added chemicals or reagents, has been developed and the results benchmarked. It is useful for quickly performing epitope mapping or assessing protein structural characteristics such as unfolding and conformational changes. The method can be used with two or more distinct proteins to map binding events, which enables pharmaceutical and R&D labs to image proteins in their natural state.

The researchers believe this tool will enable much quicker turnaround (on the order of hours) than X-ray crystallography and more reliable data than Hydrogen-Deuterium Exchange (HDX). It can be manufactured alone or in conjunction with mass spectrometry systems.
(Feb 25, 2020) P160180US02