New Patents

Bottom-Up Patterning of Smooth Graphene Microstructures and Nanostructures

UW–Madison researchers have developed methods for growing patterned, single-crystalline graphene microstructures and nanostructures. Desired features and dimensions are shaped using a growth barrier ‘mask.’

First, a mask of suitable material (such as metal or metal oxide) is deposited in a desired pattern onto a substrate via any lithographic method. Graphene then is grown around the boundaries of the mask by chemical vapor deposition. The method can be used to produce a single layer or multilayer graphite.
(Oct 31, 2017) P110245US02

Bedside Diagnosis of Swallowing Disorders

UW–Madison researchers have developed software that helps clinicians more easily analyze HRM data. Using a specially adapted manometer inserted through the nasal tract, a series of pressure measurements can be made at different points along the pharynx and esophagus. A computer program uses pattern recognition software to identify changes in pressure when the patient swallows. This data is output as diagnostic values indicating swallowing function.
(Oct 10, 2017) P130237US01

Polymer Coating for Cell Culture Substrates

UW–Madison researchers have developed a new crosslinkable polymer coating for cell culture substrates. The nanometer-thin coating is made of glycidyl groups and azlactone groups distributed randomly along the copolymer backbone.

The coating is substrate independent and can be applied to a wide variety of organic and inorganic materials including plastic, silicon, glass and gold.
(Oct 3, 2017) P150079US01

Hardware Blends Compute/Storage Capabilities, Increases Efficiency

A UW–Madison researcher has developed a versatile new computer architecture using interconnected tiles that can alternate between memory and computation functions. More specifically, each tile can be configured as a (i) multibit nonvolatile memory, (ii) logic gate array or (iii) routing switch. The ability to dynamically change the function of any of the tiles allows precise tailoring to workload and reduces data transfer costs.
(Oct 3, 2017) P150232US01

Faster, Higher Quality Medical Imaging

UW–Madison researchers have developed a reconstruction technique that uses a non-patient-specific signal model (e.g., a physical or physiological model) to improve image quality without compromising accuracy.

While other methods make use of such analytical models in the post-processing stage, the new technique utilizes the model earlier in the process, yielding clinically useful images from highly undersampled data. The reconstruction process is designed to accommodate deviations from the model when appropriate.
(Sep 26, 2017) P150024US01

Yeast-Based Intein Platform for Drug Production

UW–Madison researchers have engineered non-self-cleaving Mxe GyrA inteins shown to significantly improve the production of fusion proteins from Saccharomyces cerevisiae. The novel inteins were developed through directed evolution, and they enhance fusion protein display (up to 3x) and secretion levels (up to 30x) compared to the wild type intein. The new yeast-based platform provides a robust alternative to bacterial intein expression systems.
(Sep 26, 2017) P150056US02

Albumin-Free Protocol Cuts Cost, Supports Large-Scale Cardiomyocyte Production

UW–Madison researchers have developed a method for generating high yield, high purity cardiomyocytes/progenitors from PSCs under defined, albumin-free conditions. Their discovery that albumin is not necessary, and may even be deleterious, for cardiomyocyte differentiation dramatically reduces the cost of production.
(Sep 19, 2017) P150011US02

Stable Collagen Mimics

UW-Madison researchers have developed several new collagen mimics that use steric, rather than stereoelectronic, effects to achieve increased stability. The collagen mimics consist of a tripeptide unit with the formula (Xaa-Yaa-Gly)n, where either Xaa or Yaa is a bulky, non-electron withdrawing, 4-substituted proline derivative that contains an alkyl or thiol group, and n is a positive integer of at least 3.

Replacing a proline derivative at the Xaa or Yaa position results in steric effects that increase the stability of the helix. Specifically, three collagen variants that are more stable than native collagen are (Pro-Mep-Gly)7, (mep-Pro-Gly)7 and (mep-Mep-Gly)7, where Mep is (2S,4S)-4-methylproline and mep is (2S,4R)-4-methylproline. In addition, a fluoroproline may be substituted at the Xaa or Yaa position to further increase the strength and stability of the collagen.
(Sep 12, 2017) P06406US

Improved Mobile User Localization

A UW–Madison researcher has developed a localization method using sparse angle-delay channel signatures. The new method exploits both LoS and non-LoS propagation paths for improved performance.

Using measured channel signatures, a statistical pattern classifier is designed to determine a device’s location from the signals that it sends to the base station. Pattern matching is performed on the signal received at the base station using a database of statistical classifier information, and finally a location is computed. The database is based on various ‘cells’ or ‘regions’ that are used to decrease complexity during the pattern matching.
(Sep 12, 2017) P140393US01

Zinc Oxide Thin Films Have Higher Electron Mobility

UW–Madison researchers have developed a room-temperature, solution-based surface treatment that improves the properties of zinc oxide film. The treatment uses molecules that bind to the film’s surface to increase electron mobility and conductivity.

In the process, a nanometer-thick film of polycrystalline zinc oxide or an alloy is disposed over a supporting substrate and a layer of organic carboxylic acid-containing molecules. The molecules can be derivatives of saturated fatty acids or photosensitizing dye. They bind to the surface of the film via their linkage groups.

The process is compatible with techniques for manufacturing large area electronics on flexible substrates.
(Sep 5, 2017) P130004US02