Technologies

Pluripotent Cells

Pluripotent Cells Portfolios

Most Recent Inventions

Xeno-Free Protocol for Generating Endothelial Cells from Human Pluripotent Stem Cells

UW–Madison researchers have developed a fully defined and xenogenic material-free method of producing and expanding clinically relevant human ECs for therapeutic and tissue modelling applications. Populations of up to 80 percent CD31+ ECs are generated from both human embryonic and induced pluripotent stem cells.

Like existing protocols, the new method uses factors including Bone Morphogenetic Protein (BMP), Activin A and a TGF-Beta 1 inhibitor.
P140372US02

Human Pluripotent Stem Cell-Based Models for Neural Toxicity Screening

UW–Madison researchers have developed 3-D vascularized neuronal tissue models for screening neurotoxic agents. The new constructs are highly uniform and the first to contain every major component of the developing brain: neuronal cells (GABAergic and Glutamatergic), glial cells (astrocytes and oligodendrocytes), interconnected vasculature and mature microglia.

Combined with the modular nature of tunable hydrogels and the power of machine learning tools, the new testing platform enables large-scale, quantitative throughput applications.
P140400US02

Derivation of Human Microglia from Pluripotent Stem Cells

UW–Madison researchers have discovered a primitive, macrophage-like cell type of the hematopoietic lineage that has the capability to develop ramified human microglia when added to a neural tissue construct. Accordingly, they have developed the first known protocol of its kind for differentiating and expanding microglia suitable for clinically relevant therapeutic applications.
P140410US02

Mesenchymal Stem Cell-Educated Macrophages to Treat Radiation Damage and More

UW–Madison researchers have discovered that mesenchymal stem cell-educated macrophages (MEMs) have potent tissue regenerative properties that can minimize tissue damage from radiation and increase survival in clinically significant ways.

They have demonstrated in a relevant preclinical model that their new method is much superior to other forms of cellular therapy, including use of mesenchymal stem cells, for preventing and treating radiation-induced morbidity and mortality, GVHD and other conditions associated with uncontrolled inflammation. They purport that allogenic or autologous MEMs can be administered to exposed or damaged organs to treat acute, subacute or chronic radiation-induced disorder.
P140399US02

Generating Human Heart Cells via Lineage Reprogramming

UW–Madison researchers have developed a method to reprogram human (or other mammalian) somatic cells to iCPCs by defined factors. The factors include several early cardiac transcription factors and a chromatin remodeling factor. They may be introduced into the cell via standard vector techniques. Successfully reprogrammed cells are separated from the others and cultured in a proliferative state.
P140116US02

Most Recent Patents

Regulating Stem Cell Behavior with High Throughput Mineral Coatings

UW–Madison researchers have developed methods of non-viral cell transfection and regulating cell behavior using mineral coatings. The coatings bind polynucleotides and provide a source of calcium and phosphate ions to enhance transfection.

More specifically, a mineral coating is formed by incubating a substrate in a simulated body fluid (SBF). The substrate then is loaded with a polynucleotide (e.g., plasmids, mRNA or proteins), which binds to the coating. Next, a solution of cells is deposited and cultured until a desired level of transfection occurs.
P110350US01

Xenogen-Free Culture Medium for Stem Cells

UW–Madison researchers have developed a chemically defined, xenogen-free culture system for differentiating human pluripotent stem cells into mesoderm, endothelial and hematopoietic progenitor cells. The new culture system can be used to produce these types of cells from human pluripotent stem cells growing in completely defined E8 medium, thus providing an opportunity to manufacture clinical grade cells.

In the new method, the stem cells (human embryonic or human induced pluripotent stem cells) are seeded as a single cell suspension on a substrate comprising a layer of Tenascin C and IF9S culture medium supplemented with BMP4, Activin A, FGF2 and LiCl. The medium also comprises various hematopoietic cytokines. The stem cells are exposed to the mixture under hypoxic conditions for about two days.
P130178US02

Generating Vasculogenic Cell Populations from Human Stem Cells

UW–Madison researchers have developed a method for generating substantially pure populations of vasculogenic cells (i.e., pericytes and smooth muscle cells) from induced pluripotent stem cells following their differentiation into mesenchymal colony-forming progenitors, called mesenchymoangioblasts (MABs).

The process includes culturing the progenitors in a serum-free medium under conditions that promote differentiation to MABs. Subsequently, the MABs are cultured in medium containing PDGFBB to obtain pericytes, or sphingosylphosphorylcholine (SPC) and transforming growth factor beta (TGFβ) to obtain smooth muscle cells.
P130364US02