Developing New Types of Desalination Cells Using Bi as a CI-Storage Electrode

Tech Connect 2019

PI: Prof. Kyoung-Shin Choi, Department of Chemistry WARF IP:P170083US01 – Bismuth-based chloride-storage electrodes

Global water scarcity

- Currently, ~66% of the world's population (~4 billion people) lives without sufficient access to fresh water for at least one month per year
- Rapid growth in human population and development of industry and agriculture are continuing to exacerbate the problem of fresh water scarcity

Hoekstra, A.Y. et al. Sci. Adv. 2016, 1500323.

- In 2015, the total global desalination production capacity reached 92 million m³/day distributed across 18,611 plants globally
- Desalination market value 2015: \$12.8 billion total
- Expected desalination market value in 2020: \$19.9 billion total

[http://ida.enoah.com/portals/41/newsletter/issues/2015-11-12/article_4.html]

Conventional desalination methods

Distillation: High energy requirements limit commercial applications MSF (Multi-stage flash distillation) MED (Multi-effect distillation) VC (Mechanical vapor compression distillation)

Reverse Osmosis (RO): Operation of highpressure pumps and processes required to prevent membrane fouling keep the cost high **Electrodialysis (ED):** High voltage require ments limit applications to brackish water desalination

Requirements for desalination by RO

- Pre-treatments of water are required to prevent membrane fouling and protect chlorine-sensitive membranes
- The pressure required for desalination increases as the salt concentration increases
- > The use of RO is not favored for water at high temperature or with high bacterial activity
- Pre-treatment steps may represent as much a one-third of the operating and capital costs of an RO plant

Scheme from Roplant website

Cost comparison of various desalination methods

ED should be less expensive than RO for seawater desalination but high energy requirements of current ED systems limit its commercial use to brackish water desalination

Developing new electrochemical desalination methods

- Developing desalination methods that can manage energy, water, and salts differently from RO can be beneficial to provide more flexibility in complementarily advancing desalination systems
- ➢ In 2017, our group discovered that we can use Bi as a Cl-storage electrode, enabling the construction of new types of desalination cells

 $Bi + Cl^- + H_2O \rightleftharpoons BiOCl + 2H^+ + 3e^-$

 E° = 0.160 V vs. SHE

Nam. D.-H. et al. J. Am. Chem. Soc. 2017, 139, 11055-11063.

Technologies enabled by using Bi as a CI-storage electrode

1. Electrodialysis cell that can operate with a thermodynamic potential of 0 V

- Significantly decreases the potential required for desalination
 - ED may become competitive for seawater desalination
- Similarity between the configuration of our Bi/BiOCI cell and conventional ED cells means that ED systems may be easily modified by replacing the electrodes with Bi and BiOCI
 - Low commercialization barrier for our technology

2. Membrane-free desalination battery

- Couples energy storage and release with the removal and release of Na⁺ and Cl⁻
 - Energy consumed during charging is at least partially recovered during discharging
- Appropriate choice of Na-storage material allows for energy to be generated during desalination
 - Enables the construction of portable desalination devices
- Can operate without the use of a membrane, unlike RO
 - Reduction in cost and energy associated with pre- and post-treatments of water

Using Bi as a CI-storage electrode to develop an ED cell that operates with a lower energy requirement

Advantage of using a Bi/BiOCI ED cell

Conventional ED cell

ED cell using Bi/BiOCI electrodes

Thermodynamically required potential ~1.8 V

Thermodynamically required potential **0 V!**

CEM: cation exchange membrane **AEM:** anion exchange membrane

Performance of Bi/BiOCI ED cell

Photograph of Bi/BiOCI cell

Performance of Bi/BiOCI ED cell

Nam. D.-H. et al. ACS Sustainable Chem. Eng. 2018, 6, 15455-15462.

Performance of Bi/BiOCI ED cell

Energy

Energy required to remove NaCl in 1 L of 60 mM NaCl

_	Bi/BiOCI ED cell			
	Energy consumption (kWh/m³)	1.27		
required to remove 700 mg/L of salt from well water				
	Energy cons (kWh/n	umption n ³) Cost of water (\$/m ³)		
Commercia system [*]	I ED 4.2	0.25		
Bi/BiOCI ED	cell 0.42	0.17		

It should be noted that the cost of water from the commercial ED cell includes capital and labor costs while our calculation includes costs only for energy consumption and raw materials

*Singh, R. *Membrane Technology and Engineering for Water Purification: Application, Systems Design and Operation, 2nd Ed.*; Elsevier Ltd.: 2015.

Using Bi as a CI-storage electrode to construct a membrane-free desalination battery

Operating principle of desalination battery

CI-storage: Bi + Cl⁻ + H₂O \rightleftharpoons BiOCl + 2H⁺ + 3e⁻

Na-storage: There are many candidates for Na-storage electrodes because of work on Na-ion batteries

Performance of our desalination battery

By integrating the area of the potential-capacity plots we find that 76% of the energy required for salination is recovered during desalination

Nam. D.-H. et al. Chem. Mater. 2019, 31, 1460-1468.

Energy required to remove NaCl present in 1 L of 0.6 M NaCl

	Sea water RO (SWRO)	Desalination battery
Energy consumption (kWh/m³)	3.5-4.0	6.9

The energy consumption reported for SWRO does not take into account the energy required for pre- and post-treatments of water

Voutchkov, N. Energy Use for Membrane Seawater Desalination. *Desalination* **2018**, *431*, 2–14.

Summary

- The discovery of Bi as a CI-storage electrode enables the design of practical and efficient desalination technologies
- Using Bi and BiOCI electrodes for ED reduces the energy required for desalination of brackish water by a factor of ten
- Using Bi in combination with a Na-storage electrode to construct a desalination battery enables membrane-free desalination
- The desalination battery can also generate energy during desalination, providing a unique opportunity for the construction of portable desalination devices