

Radiopharmaceutical for CA9+ cancers

John Nagel
Director of Business Development
jnagel@warf.org
763-645-2563

Our goal: develop a best-in-class radiopharmaceutical for CA9+ cancers

- WARF Therapeutics is developing a radiopharmaceutical for the treatment of CA9+ cancers
- Our molecules are highly potent and selective with superior off-rates
- This resulted in **greater tumor uptake, and longer tumor retention times** compared other CA9+ radiotherapeutics under development
- This led to higher doses delivered to the tumor driving superior efficacy
- Interim animal efficacy results confirm our hypothesis
- We are seeking a partner that can continue the development and commercialize this radiopharmaceutical so that we can help the patients that need it the most

Partnering opportunity for CA9 targeting radiopharmaceutical

Program WT-735

- Target: Carbonic Anhydrase 9 (CA9)
- Primary indications: non small cell lung cancer and metastatic clear cell renal cell carcinoma
 - Secondary indications include prostate, bladder, breast, ovarian, pancreatic, and head and neck cancers
- Modality: Small molecule radiolabeled with a beta-emitter (Lu-177)
- **Development stage:** Lead optimization
- Progress to date
 - Therapeutic and imaging lead candidates identified
 - In vitro and in vivo PoC in ccRCC mouse models
 - Interim efficacy data in mouse model
 - Efficacy study to be complete in July

There is a large unmet need in CA9+ NSCLC and metastatic ccRCC

	5-year relative survival	United States Incidence for CA9+	Worldwide Incidence for CA9+	Worldwide Market 2023
NSCLC	28%	54,636	411,400	\$31.5B
Metastatic ccRCC	18%	11,398	47,769	\$10.1B

Additional indications include prostate, bladder, breast, ovarian, pancreatic, and head and neck cancers

³ JCO Oncology Practice, Volume 18, Number 3 Worldwide includes North America, EU, China, Japan and S. Korea

¹ EvaluatePharma

² Medicine (2019) 98:31(e16684)

Radiopharmaceuticals are the future for metastatic ccRCC therapy

Radiopharmaceuticals Programs in Development for ccRCC

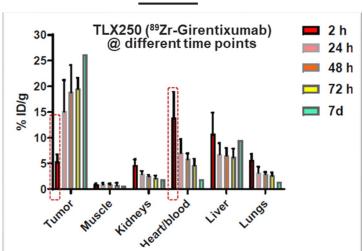
Company	Name	Compound	Stage	Mechanism of Action	Indication
Telix	TLX250	Lu-girentuximab	Phase II (STARLITE 1 & 2)	Immune system "primer" in combo with Cabometyx + Opdivo for 1st line and with Opdivo for 2 nd line treatment	ccRCC (1 st line and 2 nd line)
Telix / ATONCO	α-TLX250	²¹¹ At-girentuximab	Preclinical	Alpha radiation emitter (astatine-211)	Bladder cancer (potential for ccRCC)
RayzeBio	RAYZ-15710	Small molecule with radiation emitter	Preclinical	Radiation emitter	ccRCC
DebioPharm	Debio 0228	Peptide with Lu	Phase II	Radiation emitter	Metastatic ccRCC
WARF Therapeutics	WT 735-0626 WT 735-0729	Small molecule with radiation emitter	Preclinical	Radiation emitter	ccRCC

WT candidates are highly potent and selective for CA9

Biophysical Profile:	WT-735-0626	WT-735-0729
SPR KD (nM) / $t_{1/2}$ (min)		
CA9	0.03 / 490	0.05 / 220
CA4	11 / 10	6 / 13
CA12	9 / 31	3 / 34
CA14	4 / 15	2 /22
Cell Membrane Binding (nM):		
CA9 (nM) (CaSki)	0.8	0.4
CA12 (nM) (A498)	32	19
SK-RC-52 (nM)	0.2	3
Solubility and in vitro DMPK:		
Solubility (μM)	300	260
logD	-1.1	-2.1
Mouse PPB (%)	77	70
Mouse microsomal CL (ml/min/kg)	0	0

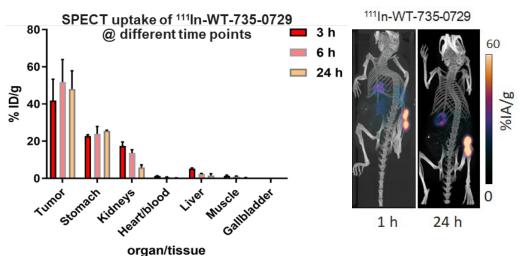
Mouse PK

PK parameters	Unit	0626 Mean	0729 Mean
Cl_obs	mL/min/kg	8.42	22
T _{1/2}	h	1.45	2.10
C_0	umol/L	4.71	3.00
AUC_{Inf}	h*umol/L	1.90	1.90
V_{ss} obs	L/kg	0.315	0.65

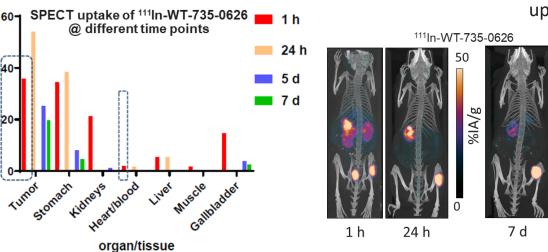

WT candidates demonstrated

- Excellent CA9 binding affinity with long residence times
- > 100-fold selectivity vs. other CAs
- Excellent in vitro and in vivo mouse PK profile

WT candidates show greater tumor uptake and faster blood clearance than Telix's TLX250


Telix

Telix250 demonstrated


- Slow tumor uptake that peeks @ day 7
- Significant concentrations in other organs at previous time points

WARF Therapeutics

- WT-0626 shows outstanding tumor uptake (~38% ID/g)
 @ 1hr
- WT candidates show between ~3.2x to ~3.5x greater tumor uptake @24h compared to TLX250
- Rapid blood clearance with reduced uptake in liver, lungs and heart compared to TLX250
- Variable/tunable "on-target" uptake in stomach

%IA/g

TLX250 89Zr-Girentixumab

% ID/g

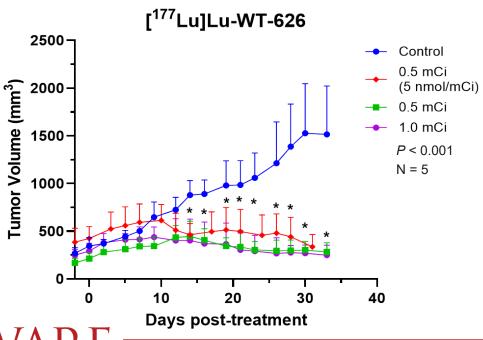
WT candidates have best in class potential

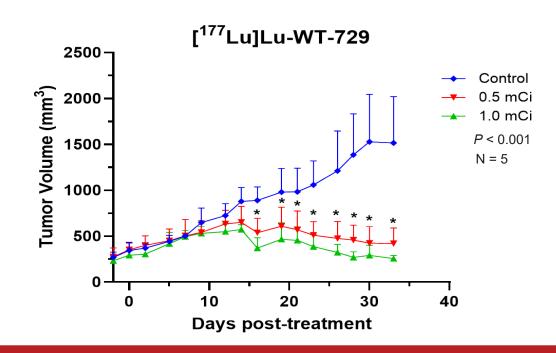
WT vs. RayzeBio and DebioPharm

WT candidates have comparable selectivity with superior off-rates, greater tumor uptake, longer tumor retention and improved dosimetry (~3 Gy/MBq)

	CA9 potency	CA12 selectivity / off-rate (min)	% of dose in tumor		¹⁷⁷ Lu therapeutic	
	(nM) / off-rate (min)		24 h	7 d	dose (mCi)	Potential Tox
WT-735-0626	0.03 / 490	300 / 31	55%	18%	0.5	stomach
WT-735-0729	0.05 / 220	120 / 34	54%	Data pending	0.5	stomach
RAYZ-15710	0.09 / 27	1500 / NR	6%	<3%	3.0	Kidney/stomach
DPI-4452	0.25 / 99	NR	10% (4 h)	NR	3.0	Kidney/stomach

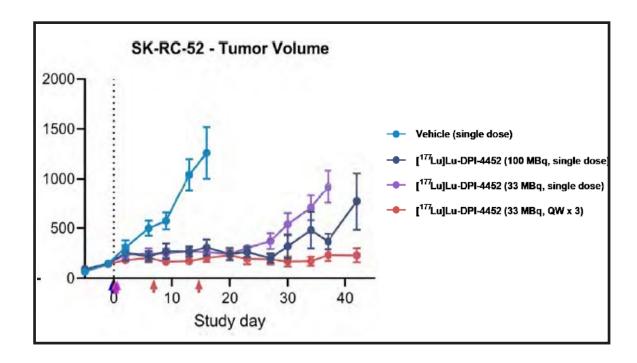
Animal proof of concept for 626 and 729


- 8 cohorts of 5 mice per cohort
 - 3 conditions for 626, 2 for 729, and 2 for cG250
 - All cohorts will be repeated with 5 additional mice
- Implant tumors in mice on day 1
- Allow tumors to grow for 14 days
- Divide mice into treatment (Lu177) and placebo groups and give a single dose on day 15
- Monitor tumor size, survival (out 120 days), and treatment related toxicity
- WT-735-0626 and 0729 dosed on January 10, 2024



Efficacy study with WT drugs 626 & 729

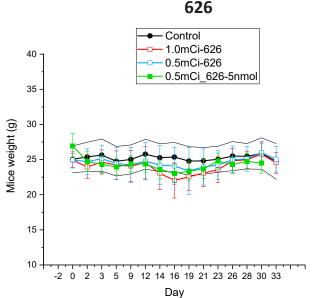
- Mice were dosed with 0.5 to 1.0 mCi of ¹⁷⁷Lu-WT-626 and ¹⁷⁷Lu-WT-729
- Mice dosed with placebo showed tumor progression of ~350% over 28 days
- Mice treated with either agent showed tumor regression starting on day 9-12
- Statistical significance was achieved at day 12-16 after dosing
- Survival tracking ongoing

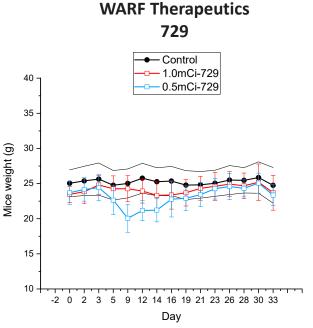


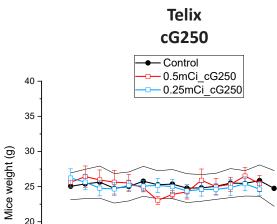
Efficacy studies for Debiopharm ¹⁷⁷Lu-dpi-4452

Key results

- Mice receiving placebo (vehicle) grew ~1,500 mm³ after 20 days
- Mice given 3 mCi ¹⁷⁷Lu-DPI-4452 **(6X higher than 626)** achieved only temporary tumor response
- Tumors progressed after day 20 at the same initial growth rate
- To improve response multiple injections of ¹⁷⁷Lu were required




Mice body weights were unaffected by the treatments


Dosimetry data estimates that ~90 Gy of radiation can be safely delivered to the tumor without off target effects in the stomach

WARF Therapeutics 626

Treatment vs. control

Day

- Mouse 3 @ 1.0mCi 626 group excluded from every measurement/dataset (tumor not visible from day 12 to day 26)
- Mouse 1 @ 0.5mCi cG250 group excluded from every measurement/dataset (mouse died on 01/29/24 @ day 17)
- Group 0.5mCi 729 sick with visible C. Bovis on 01/19/24 @ day 9

Next steps

- ccRCC model
 - Dose & schedule optimization
 - Isotope exploration
- Toxicology in normal mice
- Non-human primate biodistribution imaging
- Initiate NSCLC tumor models
- GMP production and IND enabling studies

CA9 radiopharmaceutical opportunity

NSCLC and metastatic ccRCC are large indications with high unmet need

 Upside potential with secondary indications such as bladder, breast, ovarian, prostate, pancreatic, and head and neck cancers

WT candidates show best in class potential

- Single dose, mouse efficacy study demonstrates superior efficacy compared to RayzeBio's
 ¹⁷⁷Lu-15170 and DebioPharm's ¹⁷⁷Lu-DPI-4452
- Candidates have comparable selectivity with superior off-rates, greater tumor uptake, longer tumor retention and improved dosimetry compared to RayzeBio's ¹⁷⁷Lu-15170 & DebioPharm's ¹⁷⁷Lu-DPI-4452
- Candidates show greater tumor uptake and faster blood clearance than Telix's TLX250

Single dose, efficacy data in mice with Lu-177 will be complete by 2Q 2024

WT is seeking a partner to continue the development and commercialize this asset

- Worldwide, exclusive rights are available
- We are open to various deal structures such as licensing, co-development, build to buy or startup formation

For more information contact John Nagel at inagel@warf.org

