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LAGRANGIAN SUPPORT VECTOR 
MACHINE 

2 
points using standard tools, thereby eliminating the need for 
complicated and costly optimization tools. This apparatus 
and method would need to be based on a simple reformulation 
of the problem ( e.g., an implicit Lagrangian formulation of This application claims the benefit of U.S. provisional 

application No. 60/299,099, filed Jun. 18, 2001. 
This invention was made with United States government 

support awarded by the following agencies: DODAF 
F-49620-00-1-0085. The United States has certain rights in 
this invention. 

5 the dual of a simple reformulation of the standard quadratic 
program of a linear support vector machine). This reformu­
lation would thereby minimize an unconstrained differen­
tiable convex function in an m-dimensional space where mis 
the number of points to be classified in a given n-dimensional 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 

10 input space. The necessary optimality condition for the 
unconstrained minimization problem would therefore be 
transformed into a simple symmetric positive definite 
complementary problem, thereby significantly reducing the 
computational resources necessary to classify the data. This invention relates to support vector machines for sepa­

rating data based on multiple characteristics. More particu- 15 

larly, it is directed to an apparatus and method for classifying 
millions of data points into separate classes using a linear or 
nonlinear separator using a Lagrangian support vector 
machine. 

SUMMARY OF THE INVENTION 

The present invention is directed to an apparatus and 
method for classifying data comprising the steps of defining 

2. Discussion of the Prior Art 
Support vector machines are powerful tools for data clas­

sification and are often used for data mining operations. Clas­
sification is based on identifying a linear or nonlinear sepa­
rating surface to discriminate between elements of an 
extremely large data set containing millions of sample points 
by tagging each of the sample points with a tag determined by 
the separating surface. The separating surface depends only 

20 an input matrix representing a set of data having an input 
space with a dimension of n, wherein n corresponds to a 
number of features associated with a data set, generating a 
support vector machine to solve a system oflinear equations 
corresponding to the input matrix, wherein the system of 

on a subset of the original data. This subset of data, which is 

25 linear equations is defined by a positive definite matrix, and 
calculating a separating surface with the support vector 
machine to divide the set of data into a plurality of subsets of 
data. 

all that is needed to generate the separating surface, consti­
tutes the set of support vectors. Mathematically, support vec- 30 

tors are data points corresponding to constraints with positive 
multipliers in a constrained optimization formulation of a 
support vector machine. 

Support vector machines have been used by medical insti­
tutions in making diagnostic and prognostic decisions as well 35 

as by financial institutions making credit and fraud detection 
decisions. For example, support vector machines are used to 
classify breast cancer patients using a criterion that is closely 
related to the decision whether a patient is prescribed to have 
chemotherapy treatment or not. This criterion is the presence 40 

of metastasized lymph nodes (node-positive) or their absence 
(node-negative). 

By using a linear support vector machine, a number of 
available features are selected to classify patients into node­
positive and node-negative patients. The total number offea- 45 

tures used to constitute then-dimensional space in which the 
separation is accomplished is made up of the mean, standard 
error and the maximum value of a certain number of cyto­
logical nuclear measurements of the size, shape and texture 
taken from a patient's breast along with the tumor size. A 50 

subset of the features is then used in a nonlinear support 
vector machine to classify the entire set of patients into three 
prognosis groups: good (node-negative), intermediate (1 to 4 
metastasized lymph nodes) and poor (more than 4 metasta­
sized lymph nodes). The classification method is used to 55 

assign new patients to one of the three prognostic groups with 
an associated survival curve and a possible indication of the 
utilization of chemotherapy or not. 

According to another aspect of the preferred embodiment 
of the present invention, a method of classifying data com­
prises the steps of defining an input matrix representing a set 
of data having an input space with a dimension of n, wherein 
n corresponds to a number of features associated with a data 
set, generating a support vector machine to solve a system of 
linear equations corresponding to the input matrix, wherein 
the system oflinear equations is defined by a positive definite 
matrix, and calculating a linear separating surface with the 
support vector machine to divide the set of data into a plurality 
of subsets of data. 

According to another aspect of the invention, a method of 
classifying data comprises the steps of defining an input 
matrix representing a set of data having an input space with a 
dimension of n, wherein n corresponds to a number of fea­
tures associated with a data set, generating a support vector 
machine to solve a system oflinear equations corresponding 
to the input matrix, wherein the system oflinear equations is 
defined by a positive definite matrix, and calculating a non­
linear separating surface with the support vector machine to 
divide the set of data into a plurality of subsets of data. 

According to yet a further aspect of the preferred embodi­
ment of the present invention, a method of determining a 
separating surface between features of a data set comprises 
the steps of defining an input matrix A representing the data 
set having an input space with a dimension of n, wherein n 
corresponds to a number of the features associated with the 
data set, constructing a support vector machine to define the 
separating surface by solving a system of linear equations 
corresponding to the input matrix A, wherein the system of 
linear equations is defined by a positive definite matrix with a 
dimension equal to (n+l), and dividing the data set into a 
plurality of subsets of data based on the separating surface 
calculated by the support vector machine. 

This classification and data mining process, however, is 
extremely resource intensive, slow and expensive given cur- 60 

rent classification tools. To separate the millions of sample 
points into different data sets, costly linear and quadratic and 
programming solvers are often used that are complicated and 
cost prohibitive. Unfortunately, these tools are also very slow 

According to yet another aspect of the preferred embodi­
ment of the present invention, a support vector machine 

65 includes an input module that generates an input matrix rep­
resenting a set of data having an input space with a dimension 
of n, wherein n corresponds to a number of features associ-

in processing and classifying the sample points. 
What is needed, therefore, is an apparatus and method for 

simply and quickly solving problems with millions of sample 
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kernel classification, handles any positive semidefinite ker­
nel, and is guaranteed to converge. 

In particular, Lagrangian support vector machine 10 
includes an input module 12, a Lagrangian support vector 

ated with a data set, a processor that receives an input signal 
from the input module representing the input matrix, wherein 
the processor calculates an output signal representing a solu­
tion to a system oflinear equations corresponding to the input 
signal, and the system of linear equations is defined by a 
positive definite matrix, and an output module that divides the 
set of data into a plurality of subsets of data based on the 
output signal from the processor that corresponds to a sepa­
rating surface between the plurality of subsets of data. 

5 processor 14 and an output module 16. Input module 12 
receives a data set 18 via a bus 20 and generates an input 
matrix representing data set 18. The input matrix has an input 
space with a dimension of n corresponding to the number of 
features associated with data set 18. 

According to yet another aspect of the preferred embodi- 10 

ment of the present invention, a method of classifying patients 
comprises the steps of defining an input matrix representing a 
set of patient data having an input space with a dimension of 
n, wherein n corresponds to a number of features associated 
with each patent in the set of patient data, generating a support 15 

vector machine to solve a system of linear equations corre­
sponding to the input matrix, wherein the system of linear 
equations is defined by a positive definite matrix, and calcu­
lating a separating surface with the support vector machine to 
divide the set of patient data into a plurality of subsets of data. 20 

Processor 14 receives an input signal transmitted from 
input module 12 via a bus 22 representing the input matrix 
and calculates an output signal representing a solution to a 
system oflinear equations corresponding to the input signal. 
A positive definite matrix defines the system oflinear equa­
tions. Output module 16 receives the output signal via a bus 
24 and generates a separating surface 26 to divide the set of 
data into two subsets of data based on the output signal from 
processor 14. Separating surface 26 is a linear or nonlinear 
surface. 

LSVM processor 14 constructs the separating surface 26 
by using each sample point in the set of data based on an 
implicit Lagrangian formulation of the dual of a simple refor­
mulation of the standard quadratic program of a linear sup­
port vector machine. This leads to the minimization of an 
unconstrained differential convex function in an m-dimen­
sional space where mis the number of points to be classified 
in a given n dimensional input space. The necessary optimal­
ity condition for this unconstrained minimization problem is 
transformed into a simple symmetric positive definite com-

These and other objects, features, and advantages of the 
invention will become apparent to those skilled in the art from 
the following detailed description and the accompanying 
drawings. It should be understood, however, that the detailed 
description and specific examples, while indicating preferred 25 

embodiments of the present invention, are given by way of 
illustration and not of limitation. Many changes and modifi­
cations may be made within the scope of the present invention 
without departing from the spirit thereof, and the invention 
includes all such modifications. 30 plimentary problem. 

BRIEF DESCRIPTION OF THE DRAWINGS 

A preferred exemplary embodiment of the invention is 
illustrated in the accompanying drawings in which like ref­
erence numerals represent like parts throughout, and in 
which: 

FIG.1 is a diagram ofa Lagrangian support vector machine 
according to the present invention; 

FIG. 2 is a flow chart of a method using a Lagrangian 
support vector machine to classify sample points into subsets 
of data according to the present invention; 

FIG. 3 is a graph of the bounding planes and separating 
plane generated by the Lagrangian support vector machine 
according to the present invention; and 

FIG. 4 is an illustration of applying a Lagrangian support 
vector machine to a training set of data according to the 
present invention. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

FIG. 2 illustrates the linearly convergent iterative 
Lagrangian support vector machine (LSVM) method for 
solving the minimization problem. In particular, LSVM pro­
cessor 14 requires the solution, once, of a system of linear 

35 equations defined by a positive definite matrix of the order of 
the dimensionality of the original input space plus one: (n+ 1 ), 
followed by an iterative method for solving an optimization 
problem. Therefore, processor 14 can solve problems with 
millions of sample points and requires only standard process-

40 ing without any optimization tools such as linear or quadratic 
programming solvers. 

In a step 28, an input matrix is defined representing the set 
of data having an input space with a dimension of n corre­
sponding to the number of features associated with the data 

45 set. Thereafter, in a step 30, support vector machine 10 is 
generated by using a step 32 and solving the system oflinear 
equations corresponding to the input matrix. Machine 10 then 
calculates the separating surface in a step 34 and uses it to 
classify new data in a step 36. 

50 Referring to FIG. 3, Lagrangian support vector machine 10 
is different than a standard linear support vector machine in 
that a margin (distance) 38 between a set of parallel bounding 
planes 40 dividing sample points 42 is maximized with 
respect to both orientation (w) as well as location relative to 

55 the origin (y). In the preferred embodiment of the present 
invention, this difference results in a considerably simpler 
positive definite dual problem with nonnegative constraints 
only. 

FIG. 1 illustrates a support vector machine 10 (of FIG. 1) 
based on an implicit Lagrangian for the dual of a simple 
reformulation of the standard quadratic program of machine 
10. This reformulation results in the minimization of an 
unconstrained differentiable convex function in a space of 
dimensionality equal to the number of classified points. 
Lagrangian support vector machine 10 is a simple linearly 60 

convergent machine that requires the inversion at the outset of 
Notation 

a single matrix of the order of the much smaller dimension­
ality of the original input space plus one. In the preferred 
embodiment of the present invention, Lagrangian support 
vector machine 10 does not require any specialized optimi- 65 

zation tools such as linear or quadratic programming solvers. 
Lagrangian support vector machine 10 also solves nonlinear 

All vectors described in this specification are colunm vec­
tors unless transposed to a row vector by a prime'. For a vector 
x in then-dimensional real space Rn, x+ denotes the vector in 
Rn with all of its negative components set to zero. This cor­
responds to projecting x onto the nonnegative orthant. The 
base of the natural logarithms is denoted by E, and for a vector 
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yin Rm, E-y denotes a vector in Rm with components E-y\ i= 
1, ... , m. The notation AER mxn signifies a real mxn matrix. 
For such a matrix, A' denotes the transpose A, A, denotes the 
i-th row of A, andA1 denotes the j-th column of A. A vector 
of ones or zeroes in a real space of arbitrary dimension is 5 

denoted bye or 0, respectively. The identity matrix of arbi­
trary dimension is denoted by I. For two vectors x andy in Rn, 
x_l_y denotes orthogonality, that is x'y=O. Additionally, :=de­
notes definition. The 2-norm of a vector x and a matrix Q are 
denoted by llxll and IIQII respectively. A separating plane 44 10 

(FIG. 3), with respect to two given point sets A and Bin Rn, 
is a plane that separates Rn into two halfspaces such that each 
open halfspace contains points mostly of A or B. In this 
regard, output module 16 generates separating plane 44 using 
a special case of the Sherman-Morrison-Woodbury (SMW) 15 

identity: 

6 
margin". That is, planes 40 bound each set approximately 
with some error determined by the nonnegative error variable 
y: 

(5) 

Traditionally the I-norm of the error variable y is minimized 
parametrically with weight v in (2) resulting in an approxi­
mate separation as illustrated in FIG. 3. The dual to the 
standard quadratic linear SVM (2) is the following: 

min 1 
-u' DAA' Du- e'us.t. e' Du= 0, 0::;; u::;; ve. 

UE ~ 2 

(6) 

The variables (w,y) of the primal problem (2) which deter­
mine separating surface 44 are obtained from the solution of 

where vis a positive number and His an arbitrary mxkmatrix. 
This identity, easily verifiable by premultiplying both sides 
by 

20 the dual problem (6). In this regard, matrix DAA'D appearing 
in the dual objective function (6) is not positive definite in 
general because typically m>>n. Also, there is an equality 
constraint present, in addition to bound constraints, which for 
large problems necessitate special computational procedures. 

(f +HH'), 

enables inversion of a large mxm matrix by merely inverting 
a smaller kxk matrix. 

Linear Support Vector Machines 

Processor 14 classifies m points in then-dimensional real 
space Rn, represented by the mxn matrix A, according to 
membership of each point A, in the class A+ or A- as specified 
by a given mxm diagonal matrix D with plus ones or minus 
ones along its diagonal. For this problem, a standard support 
vector machine with a linear kernel is given by the following 
quadratic program with parameter v>O: 

min 1 
1 

ve'y+-w'ws.t.D(Aw-ey)+y;a:e,y;a:0. 
(w, y, y) E Rn+ +m 2 

(2) 

wherein w is the normal to the bounding planes 40: 

x'w=y±l (3) 

25 Furthermore, a one-dimensional optimization problem must 
be solved in order to determine the locator y of separating 
surface 44. 

In order to overcome all these difficulties as well as that of 
dealing with the necessity of having to essentially invert a 

30 very large matrix of the order of mxm, the preferred embodi­
ment of the present invention includes critical modifications 
to the standard support vector machine formulation. 

Lagrangian Support Vector Machine 
35 

In the preferred embodiment of the present invention, 
Lagrangian support vector machine 10 is generated by chang­
ing the I-norm of y to a 2-norm squared which makes the 
constraint y~O redundant. The term y2 is also appended to 

40 w'w, thereby maximizing margin 38 between the parallel 
bounding planes 40 with respect to both wand y (e.g., with 
respect to both orientation and location of the planes, rather 
that just with respect to w which merely determines the ori­
entation of the plane). Therefore, Lagrangian support vector 

45 machine 10 in the present invention is defined by: 

IY 1 m 
min v-

2 
+-

2
(w'w+y2)s.t.D(Aw-ey)+y;a:e. 

(w,y,y)ERn+l+m 

50 

for which the dual is: 
and y determines their location relative to the origin (FIG. 3). 
Bounding plane 40 defined by x'w=y+ 1 bounds the class A+ 

55 
points, possibly with some error, and the bounding plane 40 
defined by x'w =y-1 bounds the class A-points, also possibly 
with some error. The linear separating surface is plane 44 
defined by: 

1 '(/ ' ' ) ' min -
2

u -+D(AA +ee)Du=eu. 
O~uERm V 

(8) 

The variables (w,y) of the primal problem which determine 
separating surface 44 are recovered directly from the solution 
of the dual (8) above by the relations: 

x'w=y, (4) 60 

midway between the bounding planes 40. The quadratic term 
in (2) is twice the reciprocal of the square of the 2-norm 
distance 2/llwlb between the two bounding planes 40 (FIG. 3). 
This term maximizes this distance that is often called "mar- 65 

gin" 38. If the classes are linearly inseparable, as depicted in 
FIG. 3, then planes 40 bound the two classes with a "soft 

w = A' Du, y = ~. y = -e' Du. (9) 
V 
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The matrix appearing in the dual objective function is 
positive definite and there is no equality constraint and no 
upper bound on the dual variable u. The only constraint 
present is a nonnegativity constraint. Based on these facts, 
Lagrangian support vector processor 14 implements an itera- 5 

tive method (FIG. 2) that requires the solution of a single 
system of linear equations, determined by an (n+l)x(n+l) 
matrix, at the beginning of the method followed by a straight­
forward linearly convergent iterative scheme that requires no 
optimization package. 10 

Operation Of Lagrangian Support Vector Machine 

8 

-continued 
1 1 

u~l), 2u' Qu- e'u + ~(11(-a:u + Qu- e\11 2 
- IIQu- ell2

). 

Processor 14 sets the gradient with respect to u of this 
convex and differentiable Lagrangian to zero so that: 

1 1 (18) 
(Qu- e) + ~(Q- a:l)((Q- a:l)u- eJ+ - ~Q(Qu - e) = 0, 

The following two matrices are defined to simplify nota-
tion: 

15 
or equivalently: 

(aJ-Q)((Qu-e)-((Q-a.I)u-e).)~0 (19) 

H = D[ A -e], Q = ~ + HH'. 
V 

(!OJ that is equivalent to the optimality condition (14) under the 
assumption that a is positive and not an eigenvalue of Q. 

20 Lagrangian support vector machine 10 achieves global 

With these definitions, the dual problem (8) becomes 
linear convergence of iteration (15) under condition (16) 
given as follows: 

1 
min f(u) := -u'Qu- e'u. 

O~uERm 2 

Let Q in Rmxm be the symmetric positive definite matrix 
defined by (10) and let (16) hold. Starting with an arbitrary 

(11) 25 u0
E Rm, the iterates u' of (15) converge to the unique solution 

u of (11) at the linear rate: 

The single time that Q- 1 is computed at the outset of the 
method illustrated in FIG. 2, SMW identity (1) is used. There- 30 

fore, only a (n+l)x(n+l) matrix is inverted. 
Necessary and sufficient optimality conditions for the dual 

problem (11) generate: 

IIQu'•1-Qull:"'III-aQ-1ll·IIQu'-Qull- (20) 

In the preferred embodiment of the present invention, 
LSVM processor 14 generates the linear and nonlinear sepa­
rators by implementing the method illustrated in FIG. 2 using 
standard scientific mathematical software packages (e.g., 
MATLAB™, a product trademarked by Math Works). 

For example, using (15) with standard MATLAB™ com-0:"'u_iQu-e"':0. (12) 

Therefore, by using an established identity between any 
two real numbers ( or vectors) a and b: 

(13) 

35 mands, processor 14 solves problems with millions of sample 
points using only MATLAB™ commands. The input param­
eters, besides A, D and v of (10), which define the problem, 
are: itmax, the maximum number of iterations and to!, the 

wherein the optimality condition (12) can be then written in 40 

the following equivalent form for any positive a: 

Qu-e~( (Qu-e )-au) •. (14) 

These optimality conditions lead to processor 14 implement­
ing the following simple iterative scheme that constitutes the 45 

method illustrated in FIG. 2: 

(15) 

for which global linear convergence is established from any 50 
starting point under the condition: 

2 
0 <a:<-. 

(16) 

tolerated nonzero error in llu'+1-u'II at termination. The quan­
tity llu'+1-u'II bounds from above: 

IIQll-1·11Qu'-e-((Qu'-e)-au').II, (21) 

which measures the violation of the optimality criterion (14). 
It follows that llu'+1-u'II also bounds llu'-ull, and by (9) it also 
bounds llw'-wll and lly'-yll, where (w,y,y) is the unique solu­
tion of the primal SVM (7). 

Implementation for Classifier Solution Using 
Matlab™ Commands 

function [it, opt, w, gamma]~ svml (A, D, nu, itmax, tol) 
% lsvm with SM\V for min ½*u'*Q*u-e'*u s.t. u=>0, 

V 55 % Q~I/nu+H*H', H~D[A-e] 

In the preferred embodiment of the present invention, this 
condition is implemented as a= 1.9/v, wherein vis the param­
eter of the SVM formulation (7). As a result, the optimality 
condition (14) is also the necessary and sufficient condition 60 

for the unconstrained minimum of the implicit Lagrangian 
associated with the dual problem (11): 

% Input: A, D, nu, itrnax, tol; Output: it, opt, w, gamma 
% [it, opt, w, gaunna] ~ svml (A, D, nu, itmax, tol); 

end; 

[m,n] ~size (A); alpha~l.9/nu; e~ones (m,1); H~D* [A-e]; it~0; 
S~H*inv ( (speye (n+l) /nu+H'*H)); 
u~nu* (1-S* (H' *e) ); oldu~u+l; 
while it<itmax & norm ( oldu-u) >tol 

z~ (l+pl ( ( (u/nu+H* (H' *u)) -alpha*u) -1)); 
oldu=u; 
u~nu* (z-S* (H' *z)); 
it=it+l; 

min L(u, a:)= 
uERm 

opt=norm(u-oldu) ;w=A' *D*u;garnma=-e' *D*u; 
(17) 65 function pl~ pl (x); pl~ (abs (x) +x) /2; 
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Lagrangian Support Vector Machines for Nonlinear 
Kernels 

Lagrangian support vector machine 10 is also used to solve 
classification problems with positive semidefinite nonlinear 
kernels. The method implemented by processor 14 as illus­
trated in FIG. 2 using, for example, the MATLAB™ com­
mands defined above and its convergence is extended for the 
following nonlinear kernels described below which generate 
a nonlinear classifier. 

10 
semi definiteness of the nonlinear kernel K(G, G') is needed in 
order to ensure the existence of a solution to both (25) and 
(26). 

The above-referenced results remain valid, with Q rede-
5 fined as above for any positive semidefinite kernel K. This 

includes the iterative scheme (15) and the convergence result 
given under the above MATLAB™ commands. However, 
because the Sherman-Morrison-Woodbury identity for a non­
linear kernel is not used, the MATLAB™ commands used to 

10 generate a solution for a nonlinear solution are different than 
commands to generate the linear solution. In this regard, problems with large datasets are handled 

using the Sherman-Morrison-Woodbury (SMW) identity (1) 
only if the inner product terms of the kernel (3) are explicitly 
known. In this regard, LSVM processor 14 is a useful tool for 
classification with nonlinear kernels because of the following 15 

implementation as also illustrated, for example, using MAT­
LAB™ commands and not making use of the Sherman-Mor­
rison-Woodbury identity or any optimization package. 

For AERmxn and BERnxl, the kernel K(A, B) maps Rmcnx 

Implementation for Nonlinear Classifier Using 
Matlab™ Commands 

function [it, opt,u] = svmlk (nu,itmax,tol,D,KM) 

Rnxl into, Rmxl. A typical kernel is the Gaussian kernel 20 

E-µIIA'i-B)I i,j=l, ... , m,l=m, where E is the base of natural 
logarithms, while a linear kernel is K(A,B)=AB. For a col­
unm vectorxinRn, (x',A') is arowvectorinRm, and the linear 
separating surface ( 4) is replaced by the nonlinear surface 

% lsvm with nonlinear kernel for min ½*u'*Q*u-e'*u s.t. u=>0 
% Q=l/nu+DK(G,G')D, G= [A-e] 
% Input: nu, itmax, tol, D, KM=K(G,G') 
% [it, opt, u) = svmlk (nu,itmax,tol,D,KM) ; 

m=size (KM,1); alpha =1.9/nu;e=ones(m,1) ;l=speye(m) ;it=0; 
Q=l/nu+D*KM*D;P=inv(Q); 
u=P*e;oldu=u+ 1; 

25 

K([x' -1], [~~'])nu= 0, 
(22) 

while it<itmax & norm( oldu-u) >tol 
oldu=u; 

end; 

u=P* (l+pl (Q*u-1-alpha*u)); 
it=it+l; 

opt=norm(u-oldu) ; [it opt] 

30 function pl= pl (x); pl= (abs (x) +x) /2; 

where u is the solution of the dual problem (11) with Q 
re-defined for a general nonlinear kernel as follows: 

G = [ A -e ], Q = ~ + DK(G, G')D. 
(23) 35 

V 

The nonlinear separating surface (22) degenerates to the lin-

The implementation of the method illustrated in FIG. 2 by 
processor 14 is straightforward and fast as described above. 
For example, applying the method of FIG. 2 to randomly 
generated problems to test the speed and effectiveness of 
LSVM processor 14 on large problems using a Pentium III 
500 MHz notebook with 384 megabytes of memory (and 
additional swap space) on 2 million randomly generated 
points in R 10 with 

ear one (4) ifK(G, G')=GG' and (9) is utilized. 40 

The dual problem for a linear kernel (8) is written in the 
following equivalent form: 1 1.9 

v=-anda:=-
m V 

min ~u'(~ +DGG'D)u-e'u. 
(24) 45 

O~uERm 2 V 

and the linear kernel GG' is replaced by a general nonlinear 
positive semidefinite symmetric kernel K(G, G') to obtain: 

1 '( / ' ) ' min -u - + DK(G, G )Du - e u. 
O~uERm 2 V 

(25) 

This is the formulation given above in (23). The Karush­
Kuhn-Tucker necessary and sufficient optimality conditions 
for this problem are: 

(26) 

which is the basis for a nonlinear support vector machine with 
a positive semidefinite kernel K(G, G'). The positive 

resulted in LSVM processor 14 solving the problem in 6 
iterations in 81.52 minutes to an optimality criterion of 
9.398e-5 on a 2-norm violation of (14). The same problem 
was solved in the same number of iterations and to the same 

50 accuracy in 6.74 minutes on a 250 MHz UltraSPARC II 
processor with 2 gigabytes of memory. 

Additional experiments were conducted using a 400 MHz 
Pentium II Xeon processor and a maximum of2 Gigabytes of 
memory available for each process. The computer used Win-

55 dows NT Server 4.0, with MATLAB 5.3.1. A set of experi­
ments comparing LSVM processor 14 to SVMlight were run 
on a 250 MHz UltraSPARC II processor with a maximum of 
8 Gigabytes of memory available running MATLAB 5.3.0 

60 

under an experimental version of Solaris 5.6. 
Table 1 below illustrates experimental results indicating 

that the reformulation of the standard vector machine as 
implemented by processor 14 and described above performs 
similarly to SVM-QP, the conventional SVM. Results are also 
shown for an active set SVM (ASVM) method. For six data 

65 sets, tenfold cross validation was performed in order to com­
pare test set accuracies between the methods. Moreover, a 
tuning set for each algorithm was utilized to find the optimal 
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value of the parameter v. For both LSVM and ASVM, an 
optimality tolerance of0.001 was used to determine when to 
terminate. SVM-QP was implemented using the high-per­
forming CPLEX barrier quadratic prograrmning solver with 
its default stopping criterion. Altering the CPLEX default 5 

stopping criterion to match that of LSVM did not result in 
significant change in timing relative to LSVM, but did reduce 
test set correctness for SVM-QP. The results in Table 1 
include both normalized data (by subtracting the mean and 
dividing by the standard deviation) and unnormalized data. 

TABLE 1 

Normalized 

Dataset Training Testing Time Training 
mxn Algorithm Correctness Correctness (CPU sec) Correctness 

Liver SVM-QP 70.69% 66.95% 9.89 70.69% 
Disorders ASVM 70.21% 68.68% 0.03 70.24% 
345 X 6 LSVM 70.21% 68.68% 0.10 70.24% 
Cleveland SVM-QP 87.84% 85.20% 5.06 87.84% 
Heart ASVM 86.12% 85.91% 0.03 87.06% 
287 X 13 LSVM 86.12% 85.91% 0.01 87.06% 
Pima Diabetes SVM-QP 77.91% 77.21% 166.29 77.94% 
768 X 8 ASVM 78.02% 77.99% 0.09 78.05% 

LSVM 78.02% 77.99% 0.03 78.05% 
Ionosphere SVM-QP 90.25% 87.18% 1.23 90.25% 
351 X 34 ASVM 94.05% 89.17% 0.94 94.05% 

LSVM 94.02% 89.17% 0.90 94.02% 
Tic Tac Toe SVM-QP 65.34% 65.34% 178.63 65.34% 
958 X 9 ASVM 70.32% 69.72% 0.05 70.17% 

LSVM 70.32% 69.72% 0.02 70.17% 
Votes SVM-QP 97.55% 95.85% 59.02 97.55% 
435 X 16 ASVM 95.30% 94.70% 0.08 95.27% 

LSVM 95.30% 94.70% 0.07 95.27% 

Table 1: Comparison of LSVM with SVM-QP and ASVM. 35 

LSVM Test Correctness is Comparable to that of SVM-QP, 
but Much Faster, e.g. 8900 Times Faster than SVM-QP on 
Normalized Tic-Tac-Toe. 

The results outlined above in Table 1 illustrate that the 
method of FIG. 2 as implemented by LSVM processor 14 40 

performs comparably to SVM-QP with respect to generaliz­
ability but is considerably faster. Additionally, the method 
implemented by LSVM processor 14 is dramatically simpler 
than SVM-QP andASVM (another support vector machine 
method). 45 

Table 2 compares the method implemented by LSVM pro­
cessor 14 with SVMlight on the Adult dataset, which is com­
monly used to compare standard SVM methods. The results 
below demonstrate that for the largest training sets, the 

50 
method of FIG. 2 as implemented by LSVM processor 14 
performs faster than SVMlight with similar test set accuracies. 
SVMlight defines an iteration as solving an optimization prob­
lem over a small number, or "chunk," of constraints. LSVM, 

Training Set 
Size 

2265 

3185 

Not Normalized 

Testing 
Correctness 

68.41 % 
67.24% 
67.24% 
85.20% 
85.20% 
85.20% 
77.21% 
77.99% 
77.99% 
87.18% 
89.17% 
89.17% 
65.34% 
69.61% 
69.61% 
95.85% 
95.16% 
95.16% 

Training Set 
Size 

4781 

6414 

11221 

16101 

22697 

32562 

12 

TABLE 2-continued 

Test Set 
CPU Sec Iterations Accuracy 
SVM1ight SVM1ight SVMlight 

3.6 299 84.38% 
5.0 40 84.66% 
5.1 401 84.22% 

Time 
(CPU sec) 

8.00 
0.04 
0.14 
4.76 
0.05 
0.17 

138.40 
0.09 
0.54 
1.16 
0.94 
0.89 

173.71 
0.05 
0.02 

46.02 
0.08 
0.07 

TABLE 2-continued 

Test Set 
CPU Sec Iterations Accuracy 
SVM1ight SVM1ight SVMlight 

8.1 43 84.55% 
7.2 574 84.33% 

13.4 46 84.55% 
13.5 729 84.47% 
18.8 47 84.68% 
25.5 1154 84.58% 
38.9 50 84.84% 
49.2 1831 84.81% 
60.5 52 85.01% 
95.6 2622 85.16% 
92.0 54 85.35% 

178.3 4497 85.02% 
140.9 55 85.05% 

on the other hand, defines an iteration as a matrix calculation 
55 

that updates all the dual variables simultaneously. These two 
numbers are not directly comparable, and are included here 
only for purposes of monitoring scalability. 

Table 2: Comparison of LSVM with SVMlight on an Adult 
Dataset. LSVM Test Correctness is Comparable to that of 
SVMlight, but is Faster on Large Datasets. (v=0.03) 

TABLE2 

Training Set CPU Sec Iterations 
Size SVMlight SVM1ight 

LSVM LSVM 
1605 2.0 149 

3.3 38 

Test Set 
Accuracy 
SVM1ight 

LSVM 
84.05% 
84.27% 

Table 3 illustrates results from running the method in FIG. 
2 as implemented by LSVM processor 14 on a massively 

60 sized dataset. The results demonstrate that the LSVM method 

65 

solves massive problems quickly. For these experiments, all 
of the data was brought into memory. As such, the running 
time reported consists of the time used to actually solve the 
problem to termination excluding I/O time. This is consistent 
with the measurement techniques used by those skilled in the 
art. 
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# of 
Points 

2million 

# of 
Attributes 

10 

13 

TABLE3 

Training 
Iterations Correctness 

81 69.80% 

Time 
Testing (CPU 

Correctness min) 5 

69.44% 33.6 

Table 3: Performance of ASVM on NDC Generated Dataset. 
(v=0.1) 

10 

Additional experiments demonstrate the effectiveness of 
the method of FIG. 2 as implemented by LSVM processor 14 
in solving nonlinear classification problems through the use 
of kernel functions. One highly nonlinearly separable but 15 
simple example is the checkerboard classification generated 
by LSVM and illustrated in FIG. 4, which is typically used to 
demonstrate the effectiveness of nonlinear kernel methods on 
a dataset for which a linear separation clearly fails. The 
checkerboard dataset 46 contains 1000 points randomly 20 
sampled from a checkerboard. These points are used as a 
training set for LSVM processor 14 to try to reproduce an 
accurate rendering of a checkerboard. The following Gauss­
ian kernel is applied to this problem: 

14 
numerical data set and each row belongs to either class 
A+ or A-, and further wherein the numerical data set 
represents medical data; 

generating a support vector machine by solving a quadratic 
programming problem corresponding to the input 
matrix, wherein the quadratic programming problem is 
defined by a positive definite matrix Q: 

I 
Q= - +HH', 

V 

wherein H=D[A-e], H' is the transpose ofH, I is an identity 
matrix, e is a vector of ones, Dis a diagonal matrix of plus and 
minus ]'s wherein a value ona diagonal of the D matrix is +1 
if the corresponding row of the A matrix is in the class of A+ 
and-1 if the correspondina row of the A matrix is in the class 
of A-, and vis a parameter associated with a distance between 
a pair of parallel bounding planes; 

calculating a linear separating surface with the support 
vector machine by iteratively calculating a value u 
defined by: 

u;• 1~Q-1(e+((Qu;-e)-au;).),i~0,l, ... 

K(G, G)~exp(-2·10-4IIG';-G)I/), ij~l, ... ,m (27) 25 wherein 

FIG. 4 clearly demonstrates that the LSVM processor 14 
demonstrates superior generalization capability on dataset 46 
when compared to standard support vector machine methods. 
The time to solve the checkerboard problem using LSVM 30 

processor 14 with the above Gaussian kernel was 2.85 hours 
on the University of Wisconsin Locop2 Pentium II Xeon 
machine. 

Therefore, the method of FIG. 2 implemented by LSVM 
processor 14 is a fast and simple method that results in 35 

decreased coding time, thereby significantly decreasing the 
amount of programming resources necessary to solve prob­
lems with very large data sets. Processor 14 classifies datasets 
with millions of sample points using standard inexpensive 
mathematical and scientific programming packages. For a 40 

linear kernel, LSVM processor 14 is an iterative method that 
requires nothing more complex than the inversion of a single 
matrix of the order of the input space plus one, therefore 
having the ability to handle massive problems. For a positive 
semidefinite nonlinear kernel, LSVM processor 14 inverts a 45 

single matrix in the space of dimension equal to the number of 
classified points. 

2 
0 <a:< -

V 

and the + subscript replaces negative components by zeros; 
and 
dividing the set of numerical data into a plurality of subsets of 
data using the linear separating surface in then-dimensional 
x space: x'w=r, where x' is the transpose of a vector x, w is 
orthogonal to the separating surface and y locates the sepa­
rating surface relative to an origin, wherein the plurality of 
subsets include at least a good prognostic set of medical data 
and a poor prognostic set of medical data that are located on 
opposite sides of the separating surface. 

2. A method according to claim 1, wherein a dimension of 
the positive definite matrix is equal to the dimension of (n+ 1 ). 

3. A method according to claim 1, wherein the linear sepa­
rating surface is midway between the pair of parallel bound­
ing planes 

x'w7 + 1 and x'w~y-1. 

The scope of the application is not to be limited by the 
description of the preferred embodiments described above 
but is to be limited solely by the scope of the claims tha~ 
follow. For example, having all the data in memory is simpler 

4. A method according to claim 1, further comprising the 

50 step of solving the following quadratic programming prob­
lem: 

to code and results in faster running times. However, it is not 
a fundamental requirement of the method illustrated in FIG. 
2. Block matrix multiplications, incremental evaluations of 
the method illustrated in FIG. 2-block matrix multiplica- 55 

tions, incremental evaluations of Q- 1 using the Sherman­
Morrison-Woodbury identity, and indices on the dataset can 
also be used to create an efficient disk-based version of the 
method implemented by LSVM processor 14. 

What is claimed is: 
1. A computer-implemented method of classifying numeri­

cal data sets comprising the steps of: 

60 

defining an input matrix A with m rows and n columns 
representing a set of m numerical data points having an 65 

input space with a dimension of n, wherein n corre­
sponds to a number of features associated with the 

min f(u):=~u'Qu-e'u. 
O~uERm 2 

where u' is the transpose ofu and e' is the transpose of e. 
5. A method according to claim 1, wherein the vector w that 

is normal to the linear separating surface is given by: 

w~A'Du. 

where A' is the transpose of A. 
6. A method according to claim 1, wherein the locator 

coordinate y that locates the linear separating surface relative 
to the origin is given by: 

y~-e'Du. 

where e' is the transpose of e. 
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7. A method according to claim 1, wherein dividing the set 
16 

13. A method according to claim 10, wherein the kernel 
K(A,B) maps RmxnxRnxk into Rmxk for AERmxn and BERnxk_ of numerical data comprises dividing the set of numerical 

data into the good prognostic set of medical data and the poor 
prognostic set of medical data to prescribe a course of treat­
ment for the patient. 

14. A method according to claim 13, wherein the kernel 

5 
K(A,B) is a Gaussian kernel. 

8. A method according to claim 1, wherein dividing the set 
of numerical data comprises dividing the set of numerical 
data into the good prognostic set of medical data and the poor 
prognostic set of medical data to predict an effectiveness of 
chemotherapy. 

9. A method according to claim 1, wherein dividing the set 
of numerical data comprises dividing the set of numerical 
data into the good prognostic set of medical data and the poor 
prognostic set of medical data to associate a patient with a 
survival curve. 

10. A computer-implemented method of classifying a 
numerical data set comprising the steps of: 

10 

15 

15. A method according to claim 10, further comprising the 
step of solving the quadratic programming problem: 

where u' is the transpose ofu and e' is the transpose of e. 

16. A method according to claim 10, wherein the nonlinear 
separating surface is defined by: 

defining an input matrix A with m rows and n colunms 
representing a set of m numerical data points having an 
input space with a dimension of n, wherein n corre- 20 

sponds to a number of features associated with the 
numerical data set and each row belongs to either class 
A+ or A-, and further wherein the numerical data set 
represents medical data; 

where x' is the transpose of an n-dimensional vector x, A' is 

25 
the transpose of A and e' is the transpose of e. 

generating a support vector machine by solving a quadratic 
programming problem corresponding to the input 
matrix, wherein the quadratic programming problem is 
defined by a positive definite matrix Q: 

17. A method according to claim 10, wherein dividing the 
set of numerical data comprises dividing the set of numerical 
data into the lymph node-positive set of data and the lymph 
node-negative set of data for diagnosing breast cancer within 

30 a patient. 

I 
Q = - + DK(G, G')D, 

V 

wherein G=[A-e], G' is the transpose ofG, vis a parameter 35 

associated with a distance between a pair of parallel bounding 
surfaces, I is an identity matrix, e is a vector of ones, D is a 
diagonal matrix of plus and minus 1 's wherein a value on a 
diagonal of the D matrix is +1 if the corresponding row of the 
A matrix is in the class of A+ and -1 if the corresponding row 40 

of the A matrix is in the class of A-, and K is a mathematical 
kernel; 

calculating a nonlinear separating surface with the support 
vector machine by iteratively calculating a value u 
defined by: 45 

wherein 

2 
0 < a:< -

V 

50 

18. A method according to claim 10, wherein the set of 
numerical data comprises a set of data indicating presence of 
metastasized lymph nodes. 

19. A computer-implemented method of classifying a 
numerical data set comprising the steps of: 

defining an input matrix A with m rows and n colunms 
representing a set of m numerical data points having an 
input space with a dimension of n, wherein n corre­
sponds to a number of features associated with the data 
set and each row belongs to either class A+ or A-, and 
further wherein the numerical data set represents finan­
cial data; 

generating a support vector machine by solving a quadratic 
programming problem corresponding to the input 
matrix, wherein the quadratic prograniming problem is 
defined by a positive definite matrix Q: 

Q= ~ +HH', 
V 

:~~the+ subscript replaces negative components by zeros; 55 wherein H=D[A-e], H' is the transpose ofH, I is an identity 

dividing the set of numerical data into a plurality of subsets 
of data using the nonlinear separating surface, wherein 
the plurality of subsets of data include at least a lymph 
node-positive set of medical data and a lymph node­
negative set of medical data that are located on opposite 
sides of the nonlinear separating surface. 

11. A method according to claim 10, wherein a dimension 
of the positive definite matrix is equal to the dimension of 

matrix, v is a parameter associated with a distance between a 
pair of parallel bounding planes, e is a vector of ones, and D 
is a diagonal matrix of plus and minus 1 's wherein a valve on 

60 
a diagonal of the D matrix is -1 if the corresponding row of 
the A matrix is in the class of A+ and -1 if the corresponding 
row of the A matrix is in the class of A-; 

(n+l). 65 

calculating a linear separating surface with the support 
vector machine by iteratively calculating a value u 
defined by: 

12. A method according to claim 10, wherein the kernel K 
is a positive semidefinite kernel. u;+I =Q-1 (e+( (Qu;-e )-au;).),i~0,1, ... ,; 
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wherein 
18 

diagonal matrix of plus and minus l's wherein a value on a 
diagonal of the D matrix is+ 1 if the corresponding row of the 
A matrix is in the class of A+ and -1 if the corresponding row 
of the A matrix is in the class of A-, and K is a mathematical 2 

0 < a:< -
V 5 kernel; 

and the + subscript replaces negative components by zeros; 
and 

dividing the set of financial data into at least two subsets of 
data using the linear separating surface in the n-dimen- 10 

sional x space: x'w=r, where x' is the transpose ofx, w is 
orthogonal to the separating surface and y locates the 
separating surface relative to an origin, wherein the two 
subsets of data are located on opposite sides of the sepa­
rating surface and include at least two subsets of data to 15 

make one of a fraud detection decision and a credit 
decision. 

20. A method according to claim 19, wherein a dimension 

calculating a nonlinear separating surface with the support 
vector machine using a value u iteratively calculated by: 

wherein 

2 
0 <a:< -

V 

and the + subscript replaces negative components by zeros; 
and 

of the positive definite matrix is equal to the dimension of(n+ 
1 ). 20 dividing the set of financial numerical data into at least two 

21. A method according to claim 19, wherein the separat­
ing surface is a linear surface. 

subsets of data using the nonlinear separating surface, 
wherein the two subsets of data are located on opposite 
sides of the nonlinear separating surface and include at 
least two subsets of data to make one of a fraud detection 

22. A method according to claim 19, wherein the linear 
separating surface is midway between the pair of parallel 
bounding planes x'w=r+ 1 and x'w1 - l. 25 decision and a credit decision. 

27. A method according to claim 26, wherein the kernel K 
is a positive semidefinite kernel function. 

23. A method according to claim 19, further comprising the 
step of solving the following quadratic programming prob­
lem: 

28. A method according to claim 26, wherein the kernel 
30 K(A,B) maps RmxnxRnxk into Rmxk for AERmxn and BERnxk_ 

min f(u) := ~u'Qu-e'u, 
O~uERm 2 

where u' is the transpose ofu and e' is the transpose of e. 
24. A method according to claim 19, wherein the vector w 

that is normal to the linear separating surface is given by: 

w~A'Du, 

35 

where A' is the transpose of A. 
40 

25. A method according to claim 19, wherein the locator 
coordinate y that locates the linear separating surface relative 
to the origin is given by: 

y~-e'Du, 

where e' is the transpose of e. 
26. A computer-implemented method of classifying a 

numerical data set comprising the steps of: 

45 

defining an input matrix A with m rows and n colunms 
representing a set of m numerical data points having an 

50 
input space with a dimension of n, wherein n corre­
sponds to a number of features associated with the data 
set and each row belongs to either class A+ or A-, and 
further wherein the numerical data set represents finan­
cial data; 

generating a support vector machine by solving a quadratic 
programming problem corresponding to the input 
matrix, wherein the quadratic programming problem is 
defined by a positive definite matrix Q: 

Q = ~ + DK(G, G')D, 
V 

55 

60 

wherein G=D[A-e], G' is the transpose ofG, vis a parameter 65 

associated with a distance between a pair of parallel bounding 
surfaces, I is an identity matrix, e is a vector of ones, D is a 

29. A method according to claim 28, wherein the kernel 
K(A,B) is a Gaussian kernel. 

3 0. A method according to claim 26, further comprising the 
step of solving the quadratic programming problem: 

where u' is the transpose ofu and e+ is the transpose of e. 

31. A method according to claim 26, wherein the nonlinear 
separating surface is defined by: 

K([x' - 1], [~~'])nu= 0, 

where x' is the transpose of an n-dimensional vector x, A' is 
the transpose of A and e' is the transpose of e. 

32. A support vector computing machine to classify a 
numerical data set comprising: 

an input module that generates an input matrix A with m 
rows and n colunms representing a set of m numerical 
data having an input space with a dimension of n, 
wherein n corresponds to a number of features associ­
ated with the numerical data set and each row belongs to 
either class A+ or A-; 

a processor that receives an input signal from the input 
module representing the numerical data, wherein the 
processor calculates an output signal representing a 
solution to a quadratic programming problem corre­
sponding to the input signal, and the quadratic program­
ming problem is defined by a positive definite matrix Q: 
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I 
Q= - +HH', 

V 

19 20 
pair of parallel bounding planes, e is a vector of ones, and D 
is a diagonal matrix of plus and minus 1 's wherein a value on 
a diagonal of the D matrix is +1 if the corresponding row of 
the A matrix is in the class of A+ and -1 if the corresponding 

5 row of the A matrix is in the class of A-; 
calculating a separating surface with the support vector 

machine using a value u iteratively calculated by: 

u;• 1~Q-1(e+((Qu;-e)-au;).),i~0,l, ... ,; 

wherein H=D[A-e], H' is the transpose ofH, I is an identity 
matrix, v is a parameter associated with a distance between a 
pair of parallel bounding surfaces, e is a vector of ones, and D 
is a diagonal matrix of plus and minus 1 's wherein a value on 
a diagonal of the D matrix is +1 if the corresponding row of 
the A matrix is in the class of A+ and -1 if the corresponding 
row of the A matrix is in the class of A-, and further wherein 
the processor calculates the solution to the quadratic pro­
gramming problem using a value u iteratively calculated by: 

10 wherein 

u;+I =Q- 1( e+((Qu;-e )-au;).),i~0,1, ... ,; 

wherein 

2 
0 < a:< -

V 

15 

20 

2 
0 <a:< -

V 

and the + subscript replaces negative components by zeros; 
and 

dividing the set of patient data into a plurality of subsets of 
data using the calculated separating surface wherein the 
plurality of subsets are located on opposite sides of the 
separating surface and include at least two subsets of 
data to diagnose a medical condition of a patient. 

the + subscript replaces negative components by zeros; and 
an output module that divides the set of numerical data into 

a plurality of subsets of numerical data based on the 
output signal from the processor that corresponds to a 
separating surface calculated using the computed value 

37. A method according to claim 36, wherein a dimension 
of the positive definite matrix is equal to the dimension of 

25 (n+l). 

of u, wherein the plurality of subsets of data are located 
on opposite sides of the separating surface and include at 
least two subsets of data to one of diagnose a medical 30 

condition of a patient, provide a medical prognosis for 
the patient, make fraud detection decisions and make 
credit decisions. 

38. A method according to claim 36, wherein the separat­
ing surface is a linear surface. 

39. A method according to claim 36, wherein the separat­
ing surface is a nonlinear surface. 

40. A method according to claim 36, wherein the plurality 
of subsets of data include a lymph node-positive set of medi­
cal data and a lymph node-negative set of medical data to 
diagnose the medical condition of the patient. 

33. A machine according to claim 32, wherein a dimension 
of the positive definite matrix is equal to the dimension of 
(n+l). 

41. A method according to claim 36, wherein the set of 
35 patient data comprises a set of data indicating presence of 

metastasized lymph nodes. 

34. A machine according to claim 32, wherein the separat­
ing surface is in then-dimensional x space: x'w=r, where w is 
orthogonal to the separating surface and y locates the sepa­
rating surface relative to an origin, and further wherein the 40 

vector w that is normal to the separating surface is given by 
w=A'Du and the locator coordinate y that locates the separat­
ing surface relative to the origin is given by y=-e'Du , where 
x' is the transpose of a vector x, A' is the transpose of A and e' 
is the transpose of e. 45 

35. A machine according to claim 32, wherein the separat­
ing surface is a linear surface. 

36. A computer-implemented method of classifying a set of 
patient data comprising the steps of: 

defining an input matrix A with m rows and n colunms 
50 

representing a set of m patient data points having an 
input space with a dimension of n, wherein n corre­
sponds to a number of features associated with each 
patient in the set of patient data and each row belongs to 
either class A+ or A-; 

55 

42. A computer-implemented method of classifying a 
numerical data set comprising the steps of: 

defining an input matrix A with m rows and n colunms 
representing a set of m numerical data points having an 
input space with a dimension of n, wherein n corre­
sponds to a number of features associated with the 
numerical data set and each row belongs to either class 
A+ or A-, and further wherein the numerical data set 
represents medical data; 

generating a support vector machine by solving a quadratic 
programming problem corresponding to the input 
matrix, wherein the quadratic prograniming problem is 
defined by a positive definite matrix Q: 

I 
Q = - + DK(G, G')D, 

V 

wherein G=D[A-e], G' is the transpose ofG, vis a parameter 
associated with a distance between a pair of parallel bounding 
surfaces, I is an identity matrix, e is a vector of ones, D is a 
diagonal matrix of plus and minus l's wherein a value on a 

generating a support vector machine by solving a quadratic 
programming problem corresponding to the input 
matrix, wherein the quadratic programming problem is 
defined by a positive definite matrix Q: 

I 
Q = - +HH', 

V 

60 
diagonal of the D matrix is -1 if the corresponding row of the 
A matrix is in the class of A+ and -1 if the corresponding row 
of the A matrix is in the class of A-, and K is a mathematical 
kernel; 

wherein H=D[A-e], H' is the transpose ofH, I is an identity 
matrix, v is a parameter associated with a distance between a 

65 

calculating a nonlinear separating surface with the support 
vector machine by iteratively calculating a value u 
defined by: 
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wherein 

2 
0 < a:< -

V 

21 

and the + subscript replaces negative components by zeros; 
and 

dividing the set of numerical data into a plurality of subsets 10 

of data using the nonlinear separating surface, wherein 
the plurality of subsets include at least a good prognostic 
set of medical data and a poor prognostic set of medical 
data that are located on opposite sides of the separating 15 
surface. 

43. A computer-implemented method of classifying a 
numerical data set comprising the steps of: 

defining an input matrix A with m rows and n colunms 
20 

representing a set of m numerical data points having an 
input space with a dimension of n, wherein n corre­
sponds to a number of features associated with the 
numerical data set and each row belongs to either class 
A+ or A-, and further wherein the numerical data set 25 

represents medical data; 

generating a support vector machine by solving a quadratic 
programming problem corresponding to the input 
matrix, wherein the quadratic programming problem is 30 
defined by a positive definite matrix Q: 

I 

22 
and the + subscript replaces negative components by zeros; 
and 

dividing the set of numerical data into a plurality of subsets 
of data using the nonlinear separating surface, wherein 
the plurality of subsets are located on opposite sides of 
the separating surface and include at least two subsets of 
data to diagnose a medical condition of a patient. 

44. A support vector computing machine to classify a 
numerical data set comprising: 

an input module that generates an input matrix A with m 
rows and n colunms representing a set of m numerical 
data having an input space with a dimension of n, 
wherein n corresponds to a number of features associ­
ated with the numerical data set and each row belongs to 
either class A+ or A-; 

a processor that receives an input signal from the input 
module representing the numerical data, wherein the 
processor calculates an output signal representing a 
solution to a quadratic programming problem corre­
sponding to the input signal, and the quadratic program­
ming problem is defined by a positive definite matrix Q: 

I 
Q = - + DK(G, G')D, 

V 

wherein G=D[ A -e ], G' is the transpose ofG, vis a parameter 
associated with a distance between a pair of parallel bounding 
surfaces, I is an identity matrix, e is a vector of ones, D is a 
diagonal matrix of plus and minus l's wherein a value on a 
diagonal of the D matrix is+ 1 if the corresponding row of the 
A matrix is in the class of A+ and -1 if the corresponding row 
of the A matrix is in the class of A-, and K is a mathematical 

Q = - + DK(G, G')D, 
V 

wherein G=D[ A -e ], G' is the transpose ofG, vis a parameter 
associated with a distance between a pair of parallel bounding 
surfaces, I is an identity matrix, e is a vector of ones, D is a 
diagonal matrix of plus and minus 1 's wherein a value on a 
diagonal of the D matrix is +1 if the corresponding row of the 

35 kernel and further wherein the processor calculates the solu­
tion to the quadratic programming problem using a value u 
iteratively calculated by: 

A matrix is in the class of A+ and -1 if the corresponding row 
of the A matrix is in the class of A-, and K is a mathematical 
kernel; 

calculating a nonlinear separating surface with the support 
vector machine by iteratively calculating a value u 
defined by: 

wherein 

2 
0 < a:< -

V 

40 wherein 

45 

50 

55 

2 
0 <a:< -

V 

the + subscript replaces negative components by zeros; and 

an output module that divides the set of numerical data into 
a plurality of subsets of numerical data based on the 
output signal from the processor that corresponds to a 
separating surface calculated using the computed value 
of u, wherein the plurality of subsets of data are located 
on opposite sides of the separating surface and include at 
least two subsets of data to one of diagnose a medical 
condition of a patient, provide a medical prognosis for 
the patient, make a fraud detection decision and make a 
credit decision. 

* * * * * 
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