
c12) United States Patent
Rajwar et al.

(54) CONCURRENT EXECUTION OF CRITICAL
SECTIONS BY ELIDING OWNERSHIP OF
LOCKS

(75) Inventors: Ravi Rajwar, Madison, WI (US);
James R. Goodman, Madison, WI
(US)

(73) Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 858 days.

(21) Appl. No.: 10/037,041

(22) Filed:

(65)

Oct. 19, 2001

Prior Publication Data

US 2003/0079094 Al Apr. 24, 2003

(51) Int. Cl.
G06F 12114 (2006.01)

(52) U.S. Cl. 711/150; 711/151; 711/152

(58) Field of Classification Search 711/150,
711/151, 152

See application file for complete search history.

I 1111111111111111 11111 1111111111 1111111111 111111111111111 IIIIII IIII IIII IIII

65

US007120762B2

(IO) Patent No.: US 7,120,762 B2
Oct. 10, 2006 (45) Date of Patent:

(56) References Cited

U.S. PATENT DOCUMENTS

5,421,022 A *
6,684,398 Bl *

2002/0178349 Al *
2003/0014473 Al*
2003/0014602 Al*

* cited by examiner

5/1995 McKeen et al 712/23
1/2004 Chaudhry et al. 718/106

11/2002 Shibayama et al. 712/235
1/2003 Ohsawa et al. 709/107
1/2003 Shibayama et al. 711/156

Primary Examiner-Pierre Bataille
Assistant Examiner-Sheng-Jen Tsai
(74) Attorney, Agent, or Firm-Boyle Fredrickson
Newholm Stein & Gratz S.C.

(57) ABSTRACT

Critical sections of multi-threaded programs, normally pro
tected by locks providing access by only one thread, are
speculatively executed concurrently by multiple threads
with elision of the lock acquisition and release. Upon a
completion of the speculative execution without actual con
flict as may be identified using standard cache protocols, the
speculative execution is committed, otherwise the specula
tive execution is squashed. Speculative execution with eli
sion of the lock acquisition, allows a greater degree of
parallel execution in multi-threaded programs with aggres
sive lock usage.

43 Claims, 3 Drawing Sheets

EXECUTE CRITICAL
SECTION, ELIDE
SILENT STORES

BUFFER RESULTS

66

COMMIT
SPECULATION

70 72

SQUASH
SPECULATION

82

WRITE
TO LOCK

74

U.S. Patent

18

20

14

12

16 p

L1

L2

CRITICAL
SECTION

Oct. 10, 2006 Sheet 1 of 3 US 7,120,762 B2

/10
12 ,,--17

24

22 16 p

25 c:::J FIG. 1 D
18

c:::J 19 D

40

) ~44

(1) Ll: ldl tO, O(t 1)
(2) bne tO, L1
(3) ldl.l tO O(t 1)
(4) bne tO, L1
(5) Ida to, HO) FIG. 2

42
(6) stl_c to, O(t 1)

((7) beq tO, L1

{ STORE LOCK--{(16) stl 0, O(t1)

PRIOR ART

U.S. Patent

17

FIG. 3
PRIOR ART

25

Oct. 10, 2006

SHARED
MEMORY

FIG. 4

17

Sheet 2 of 3

26a 26b 26c 26d

_ _r __ r ___ r

SHARED
MEMORY

: BLOCK I

: BLOCK -,--
25

I

I
I

I I
I 1
I 28CI

I

I

: 28d

US 7,120,762 B2

26c 26d

bad'

U.S. Patent Oct. 10, 2006

ELIDE LOCK ACQUIRE

EXECUTE CRITICAL
SECTION, ELIDE
SILENT STORES

BUFFER RESULTS

Sheet 3 of 3 US 7,120,762 B2

65

66

70 72

SQUASH
SPECULATION

WRITE
TO LOCK

ELIDE LOCK RELEASE 82

COMMIT
SPECULATION

84

74

FIG. 5

US 7,120,762 B2
1

CONCURRENT EXECUTION OF CRITICAL
SECTIONS BY ELIDING OWNERSHIP OF

LOCKS

2
This serialization can be reduced by using a number of
different locks associated, for example, with different small
portions of shared memory. In this way, the chance of
different threads waiting for a lock on a given portion of

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

5 shared memory is reduced.
Multiple locks increase the complexity of the program

ming process and thus creates a tradeoff between program
performance and program development time.

Ideally, a software tool might be created that could review
CROSS-REFERENCE TO RELATED

APPLICATIONS
10 and correct for overly aggressive use of lock variables by

reviewing critical sections in all threads and determining
whether a more narrowly defined locking might be
employed. The capability of any such a software tool,
however, is limited to static analysis of the software and

BACKGROUND OF THE INVENTION 15 carmot detect locking that is unnecessary during dynamic
execution of the software.

The present invention relates to computers with shared
memory architectures and, in particular, to architectures
providing a lock mechanism preventing conflicts when
multiple program threads execute a common, critical pro- 20
gram section.

Multi-threaded software provides multiple execution
"threads" which act like independently executing programs.
An advantage to such multi-threaded software is that each
thread can be assigned to an independent processor, or to a 25
single processor that provides multi-threaded execution so
that the threads may be executed in parallel for improved
speed of execution. For example, a computer server for the
Internet may use a multi-threaded server program where
each separate client transaction runs as a separate thread. 30

Each of the threads may need to modify common data
shared among the threads. For example, in the implemen
tation of a transaction based airline reservation system,
multiple threads handling reservations for different custom-
ers may read and write common data indicating the number 35

of seats available. If the threads are not coordinated in their

SUMMARY OF THE INVENTION

A key insight to the present invention is that it may be
possible to execute a critical program section correctly
without acquisition of the lock. In many situations a critical
section may be executed by multiple threads simultaneously
with no actual conflict. This can be for a number of reasons,
including the possibility that the different threads are updat
ing different fields of the shared memory block aggregated
under a single lock variable, or the store operations in the
critical section are conditional and frequently do not require
actual conflicting store operations.

In such cases, the steps of acquiring and releasing the lock
are unnecessary and can be elided. The critical section can
be speculatively executed, assuming there will be no con
flict, and in those cases where an actual conflict does occur,
the conflict can be detected automatically by existing cache
protocol methods and execution of the critical section can be
re-performed.

Specifically then, the present invention provides a method
of coordinating access to common memory by multiple
program threads. Each given program thread first detects the

use of the common data, serious error can occur. For
example, a first thread may read a variable indicating an
airline seat is available and then set that variable indicating
that the seat has been reserved by the thread's client. If a
second thread reads the same variable prior to its setting by
the first thread, the second thread may, based on that read,
erroneously set that variable again with the result that the
seat is double booked.

40 beginning of a critical section of the given program thread
in which conflicts to access of the common memory could
occur resulting from execution of other program threads.
The given thread then speculatively executes the critical
section. The speculative execution is committed only if there

45 has been no conflict, and is squashed if there has been a
conflict.

To avoid these problems, it is common to use synchro
nizing instructions for portions of a thread (often called
critical sections) where simultaneous execution by more
than one thread would be a problem. A common set of
synchronizing instructions implement a lock, using a lock
variable having one value indicating that it is owned by a 50

thread and another value indicating that it is available. A
thread must acquire the lock before executing the critical
section and does so by reading the lock variable and if it is
not held, writing a value to it indicating that it is held. When
the critical section is complete, the thread again writes to the 55

lock variable a value indicating that the lock is available
again.

Typically, the instructions used to acquire the lock are
"atomic instructions", that is, instructions that cannot be
interrupted once begun by any other thread or quasi-atomic 60

instructions that can be interrupted by another thread, but
that make such interruption evident to the interrupted thread
so that the instructions can be repeated.

Thus, it is one object of the invention to allow parallel
execution of critical sections by multiple threads, under the
recognition that in many cases, no actual conflict will occur.

The conflict may be another thread writing data that was
read by the given program thread in the critical section, or
another thread reading or writing data that was written by the
given program thread. In one embodiment, this conflict may
be determined by invalidation of a cache block holding data
of the critical section.

Thus, it is another object of the invention to utilize
existing cache protocol mechanisms to provide an indication
of whether there has been actual conflict in the execution of
the critical section.

Often, the critical section will be speculatively executed
to its end. The end of the critical section may be detected by
examining patterns of instructions typically associated with
lock acquisitions. For example, the pattern may be a store
instruction directed to an inferred lock variable. In a similar While the mechanism of locking a critical section for use

by a single thread effectively solves conflict problems, it can
reduce the benefits of parallel execution of threads by
effectively serializing the threads as they wait for a lock.

65 way, the beginning of a critical section may be deduced by
a lock acquisition pattern, including atomic read/modify/
write instructions.

US 7,120,762 B2
3 4

The speculatively execution of the critical section may
use a cache memory to record the speculative execution
without visibility to other processing units.

Thus, it is another object of the invention to infer the
existence of a critical section without modification of exist
ing software or compilers. This inference is possible in part
because misprediction of a critical section carries with it
very little penalty as will be discussed below.

In certain cases, the speculative execution will conclude
at a "resource boundary" placing physical limits on the
ability to speculate for long critical sections. For example,
resource boundaries may be limits in the cache size used for
the speculation or the write buffer size, as will be described
below, or other resources needed for speculatively execu
tion. In such cases, where there is no actual conflict but
simply a limitation or resources, the lock variable may be
acquired by the given thread and the speculative execution
committed, and the given thread may then continue execu
tion from the point at which the speculation was committed
to the conclusion of the critical section.

Thus, it is another object of the invention to provide a
5 simple, speculative mechanism utilizing the cache structures

available in many computer architectures.

The foregoing objects and advantages may not apply to all
embodiments of the inventions and are not intended to
define the scope of the invention, for which purpose claims

10 are provided. In the following description, reference is made
to the accompanying drawings, which form a part hereof,
and in which there is shown by way of illustration, a
preferred embodiment of the invention. Such embodiment
also does not define the scope of the invention and reference

15 must be made therefore to the claims for this purpose.

Thus, it is another object of the invention to provide for
the efficient execution of arbitrarily long critical sections
despite limited resources. 20

The first step of detecting the critical section may include
reading of a lock variable and performing the second step of
speculative execution only if the lock variable is not held by
another program thread.

25
Thus, it is another object of the invention to avoid

performance degradation in certain cases where the critical
section experiences a high number of actual conflicts. If the
lock has been acquired, the assumption may be made that
another processor or thread had to acquire the lock because

30
of its inability to perform a method of the present invention.

The first step of detecting the critical section may include
reading a prediction table holding historical data indicating
past successes in speculatively executing the critical section,
and the speculative execution may be performed only when 35
the prediction table indicates a likelihood of successful
speculative execution of the critical section of above a
predetermined threshold value.

Thus, it is another object of the invention to avoid
speculation for critical sections that are highly contested 40

during actual execution of the program.
The critical section may begin with a lock acquisition

section and may end with a lock release section and the
present invention may include the step of eliding the lock
acquisition and release. 45

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of the multi-processor system
showing processors with their associated caches and cache
controllers and the lock elision circuit of the present inven
tion, communicating over a network with a common shared
memory;

FIG. 2 is schematic representation of a critical section of
a thread executable on a processor of FIG. 1, the critical
section having a preceding acquire lock section and a
succeeding release lock section and showing example
machine instructions to implement the same;

FIG. 3 is a diagranimatic representation of the serializa
tion of multiple threads caused by contention for a lock for
a common critical section associated with a block of shared
memory;

FIG. 4 is a figure similar to that of FIG. 3 showing
parallelization of the same critical sections under the present
invention; and

FIG. 5 is a flow chart showing the functions executed by
the lock elision circuit of FIG. 1 in implementing the present
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now to FIG. 1, a multiprocessor, shared
memory computer 10 suitable for use with the present
invention includes a number of processor units 12 connected
via a bus structure 14 to a common, shared memory 17. The
shared memory 17 is depicted logically as a single device,

Thus it is another object of the invention to eliminate the
steps of acquiring and releasing a lock variable when no
actual conflict occurs thus speeding execution of the critical
section and allowing other threads to concurrently execute
the critical section.

The speculative execution of the critical section may elide
write instructions that do not change a value of memory
location being written to.

50 but in fact will often be distributed among the processor
units 12, according to methods well known in the art.

Thus it is another object of the invention to permit
55

concurrent execution even in the presence of a true conflict
between threads accessing the same location and at least one
performing a "silent write", particularly in the case where
cache invalidation procedures are used to detect conflicts.

After squashing the speculative execution of the critical 60
section when there has been a conflict, the critical section
may be re-executed a predetermined number of times or
until there is no conflict. If there remains a conflict after the
repeated re-executions, the lock variable may be acquired.

Thus, it is another object of the invention to allow 65

adjustment of the degree of speculation depending on
empirical factors that may be determined.

Processor units 12 include processor 16 communicating
with an Ll cache 18, an L2 cache 20, and a cache controller
22 as is well understood in the art. The shared memory 17
includes a memory controller 19 executing standard cache
protocols to allow copying of shared data structure 25 within
the shared memory to various ones of the L2 caches 20 of
particular processor units 12. The processor unit 12 may be
granted "owner" status for writing to memory or "sharing"
status allowing for reading of the memory. Change of status
of the caches 20, for example, when another cache 20 seeks
ownership or sharing of the shared data structure 25, may be
accomplished by transmission of the request to then cur
rently owning or sharing caches 20 invalidating their con
tents according to protocols well known in the art. Coher
ence of the caches may be implemented with any of a variety
of different cache control protocols including generally

US 7,120,762 B2
5

"snooping" protocols and those employing directories, as
known in the art, and the structure of the bus 14 may be
varied accordingly.

The processor units 12 also include the lock elision circuit
24 of the present invention whose operation will be 5

described below.

6
can be reinforced by a RELEASE sequence having a store
instruction directed to same address as the atomic read/
modify/write instructions of the ACQUISITION sequence,
both indicated by pseudo code 42.

Thus patterns of instructions with common addresses can
be used to infer the acquire lock section 30 and release lock
section 32 and thus the location of a critical section 28. It is
important to note, that this inferential detection of the start
and end of a critical section 28 is practical because perfect

In a multithreaded program, each processor unit 12 may
execute a different thread in parallel. The following descrip
tion of the present invention will be with respect to such a
multiprocessor system. Nevertheless, it will be understood
that such multithreaded programs can also be executed on a
single processor providing multi-threading capability and
the present invention is equally applicable to such systems.

10 identification of critical sections 28 is not essential for

Referring now to FIG. 2, a program thread 26 of a
multithreaded program may include a critical section 28 15

where access to shared data structure 25 occurs and conflicts
by other threads 26 are possible. Accordingly, the critical
section 28 may be preceded by an acquire lock section 30 in
which a LOCK variable (not shown but typically part of the
shared data structure 25) is acquired. By convention other 20

threads 26 may not access (read or write) data of shared data
structure 25 (other than the LOCK variable) while the
LOCK variable is held by another thread 26. A correspond
ing release lock section 32 follows the critical section 28 to
allow release of the LOCK variable and access to the shared 25

data structure 25 again by other threads 26.

operation of the invention. If a non-critical section is erro
neously identified as a critical section, so long as there is no
conflict during its speculative execution, commitment of the
speculative execution may still occur without harm. On the
other hand, if a critical section is not identified as such, it
will simply execute normally.

In situations where an inferred critical section 28 proves
at some point during its execution not to have been a critical
section, for example, as suggested by a write to a supposed
LOCK variable that does not restore the LOCK variable to
its pre-critical section "release" value, the preceding specu-
lative execution may simply be committed and the write
performed, so long as there has been no conflict. In this
respect, lock acquisitions that do not use a single lock
release value, for example, those that may release a LOCK
variable with any nonzero value, including processor iden-
tification values, may still be accommodated by the present
invention.

In an alternative embodiment, the invention contemplates
the start (and/or end) of the critical section may be identified
by one or more special delimiter instructions only used for
critical sections. In this case the inference of the beginning
of the critical section rises to the level of certainty, but
changes in programming practices are required for such a
system, unlike that of the preferred embodiment described
above.

Referring still to FIG. 2, actual machine code 44 of the
acquire lock section 30 may provide further clues to iden
tifying the beginning of the critical section 28. Instructions

Referring now to FIG. 3, in the prior art, during a
multi-threaded execution of, for example, four threads 26a
through 26d, the critical sections 28a through 28d of the four
threads 26a through 26d may all access shared data structure 30

25 associated with a given LOCK variable. As depicted, if
thread 26a is first to acquire the LOCK variable in prepa
ration for the execution of its critical section 28a, all other
threads 26b through 26d break out of their parallel execution
and are serialized while waiting for the LOCK variable to be 35

released from the thread 26 ahead of them. Thus, for
example, thread 26b arriving at the acquire locks section 30
shortly after the acquisition of the LOCK by thread 26a,
must wait until the release lock section 32 of critical section
28a before initiating execution of critical section 28b. Dur
ing this waiting time, the thread 26b "spins" as indicated by
the dotted line during which execution stalls. As may be
seen, the last thread 26d may be required to spin for up to
three times the length of execution of the critical section 28
before being able to acquire the LOCK variable. In more
complex programs with multiple critical sections 28, or
threads repeating execution of critical sections 28, the wait
can be arbitrarily longer.

40 i(l)-i(7) show an atomic read/modify/write sequence pat
tern used in the acquisition of a LOCK variable, and in
particular, an instruction sequence that uses a specialized
LOAD LOCK (ldl_l) instruction i(3) and the STORE
CONDITIONAL (stl_c) instruction i(6) which provide quasi

45 atomic execution and thus are frequently associated with the
acquisition of a LOCK variable.

In this sequence, generally instructions i(l) and i(2) load
the LOCK variable and test it to see if it is available and if
not branch to instruction i(l). Instructions i(3) and i(4)

50 execute only if the LOCK variable is not held as tested by
instructions i(l) and i(2). These instructions i(3) and i(4)
load the LOCK variable conditionally, meaning that other
attempted loads of this variable will be detected at the

Referring again to FIG. 2, entry into the critical section 28
may be inferred by observing a pattern of instructions that
are typically used for acquiring and releasing a LOCK
variable in the acquire lock section 30 and the release lock
section 32. For example, the acquire lock section 30 may
follow an atomic read/modify/write instructions for loading
the lock variable, testing the lock variable and storing the 55

lock variable indicated in FIG. 2 by pseudo code 40.
The term "atomic" as used herein refers to an instruction

that cannot be interrupted by another thread before comple
tion, or cannot be interrupted before completion without
detection. Typically, atomic read/modify/write instructions
are readily distinguished from standard STORE and LOAD
instructions, and as used herein may include the well known
TEST&SET instructions, or as shown, the LOAD LOCK/
STORE CONDITIONAL instructions or other equivalent

subsequent store conditional instructions i(6).
If the LOCK variable is not held, instructions i(5), i(6) and

i(7) are executed causing a conditional store of a "held"
value into the LOCK variable. Instruction i(7) tests to see if
the STORE CONDITIONAL instruction was successful,
and if not causes a repeat of the operations starting at

60 instruction i(l) as true atomicity of instructions i(l)-i(7) was
not obtained.

After the critical section 28, instruction i(16) executes the
release LOCK variable via a store of the "release" value to
the same address.

atomic instruction. 65 Referring also to FIG. 1, the lock elision circuit 24 may
provide a filter detecting this or a similar pattern to deter
mine the beginning of a critical section 28. In the preferred

These atomic read/modify/write instructions provide
some indication of the acquisition of a lock. This indication

US 7,120,762 B2
7

embodiment, the pattern is a LOAD LOCK instruction
followed within a predetermined number of instructions by
a STORE CONDITIONAL instruction referencing the same
address.

The lock elision circuit 24 identifies the release lock
section 32 and hence the end of the critical section 28 by the
next STORE instruction to the same address.

8
If the instructions suggest that no LOCK variable is being

acquired, the lock elision circuit 24 loops back while allow
ing standard execution of the instructions.

If, on the other hand, the instructions suggest that a lock
5 acquisition is being undertaken, the lock elision circuit 24

proceeds to decision block 64 and the lock variable is read
to see if the LOCK variable is in the held state.

The lock elision circuit 24 may include a table (not
shown) linking by program counter, a prediction value that 10
a particular instruction is the beginning or end of a critical
section 28, and this prediction value may be modified by
historical success in the prediction (indicated by a lack of
squashing of the speculative execution of the critical section
28) as will be described below. This prediction as to whether 15

a critical section has been found, may be supplemented by

If the LOCK variable is held, the lock elision circuit 24
again loops back, allowing standard execution which will
continue with the execution of instructions i(2) through i(l 6)
as written (as shown in FIG. 2).

In an alternative embodiment, at process block 64, the
prediction table forming part of the lock elision circuit 24
may be consulted to see if previous attempts at speculative
execution of the critical section 28 have been successful.
The prediction table in this case may store the results of the

a prediction as to whether speculative execution of the
critical section will be successful, as will be described
below.

Methods of inferring the beginning of a critical section are
also discussed in co-pending patent application Ser. No.
09/693,030 filed Oct. 20, 2000 entitled "Method of Using
Delays to Speed Processing of Inferred Critical Program
Portions" assigned to the same assignee as the present
application and hereby incorporated by reference.

Referring now to FIG. 4, generally, the present invention
uses this ability to infer the beginning and end of a critical
section 28 of a thread 26, to change execution modes to
execute the critical section 28 speculative until its end. If at
the end of the speculative execution, no actual conflict with
another thread 26 has occurred, the speculative execution is
committed. In this way, the present invention allows the
critical sections 28 of multiple ones of the four program
threads 26a through 26d to run concurrently provided there
is no actual conflict in the dynamic execution, but even
though they access the same shared data structure 25 which
are subject to the same lock. For example, during execution
of its critical section 28, thread 26a may access a first block
within shared data structure 25 while thread 26b accesses a

last N attempts at speculation, for example, indexed by
program counter value for fast reference, and the lock elision
circuit can defer to standard execution if a certain percentage

20 of the last N speculations were not successful.
If the LOCK variable is not held, as indicated by decision

block 64, the lock elision circuit 24 proceeds to process
block 65 and elides the acquire lock section 30 being
instructions i(2)-i(7). The STORE of instruction i(6) may be

25 suppressed because if speculative execution of the remain
der of the critical section is successful, it will be undone by
the LOAD instruction i(16).

The lock elision circuit 24 then proceeds to process block
66 to begin execution of the critical section 28 starting after

30 instruction i(7) is executed. At this time, the shared data
structure 25 necessary for the critical section 28 will be
loaded into cache L2 including typically the LOCK variable
as was accessed by instruction i(l) and other data needed by
the critical section 28. On the other hand, stores by the

35 critical section 28 may be done to the Ll cache 18, which
serves as a buffer for the speculative execution of the critical
section 28 now being performed, and prevents the effects of
the instructions of the critical section from being observed
by other processor units 12.

second block within the same shared data structure 25. There 40 At any time during the execution of the critical section 28,
a mis-speculation may occur as detected by process block
68. Such a mis-speculation occurs, as described in part
above, if data read by the current thread 26 in the critical
section 28 is written to by another thread 26, or if data

is no actual conflict in such accesses although this fact may
be undetectable statically.

As a second example, thread 26c executing the critical
section 28 may have a STORE that may be conditionally
executed to access the same block as accessed by thread 26a,
yet dynamically this conditional store may not be per
formed. In this case, again, there is no conflict, however, a
conflict would be assumed from static inspection of the
threads.

45 written to by the current thread 26 in the critical section 28
is read or written to by another thread 26, either of which as
would also cause invalidation of cache L2. Thus, standard
cache protocol messages may be used to detect such a
conflict.

50 Speculation per process block 66 continues until one of
three conditions detected by the following three decision
blocks 68, 76, and 80.

The first condition may be caused by the occurrence of a
conflict such as produces mis-speculation. This terminates

Alternatively, execution of thread 26d, which in this
example writes to the same block as thread 26b is delayed
by means of its initial execution speculatively (indicated by
26d) being squashed, however, this delay is much reduced
over that obtained in the example of FIG. 3. 55 the current speculative execution of the critical section 28

causing the lock elision circuit 24 to squash the speculative
execution (as indicated by process block 70) by flushing the
Ll cache 18 and restoring the program counter of the
processor 16 to the beginning of the critical section 28

Referring now to FIG. 5, the initiation and management of
the speculative execution is controlled by the lock elision
circuit 24 (shown in FIG. 1). As each instruction is received
for execution by the processor 16, the lock elision circuit
detects, as indicated by decision block 60, whether an
acquire lock section 30 is likely being implemented. This
can be done by applying a filter to the instruction buffer to
look for the patterns described above. This process will
typically be done in hardware and in parallel with standard
execution of the instructions When process block 60 detects 65

a lock acquire section, standard execution is modified as will
be described below.

60 detected at decision block 60.
Following this squashing, if at decision block 72, a retry

limit has not been exceeded, the lock elision circuit 24
proceeds back to decision block 60 to begin speculative
execution of the critical section 28 again after detecting the
acquire lock section 30.

If the retry limit has been exceeded as checked at decision
block 72, indicating that a certain number of retries has been

US 7,120,762 B2
9 10

It will be recognized that the above described invention
may be used for nested critical sections 28 simply by
buffering the states of the variables required by the flow
chart of FIG. 5. No memory ordering problems exist because

performed without successful speculative execution of the
critical section 28, the lock elision circuit 24 branches to
decision block 60 and a write to the LOCK variable is
completed per instructions i(l) through i(7) in standard
execution.

If at decision block 68, no mis-speculation has occurred,
the lock elision circuit 24 checks at decision block 76
whether speculation resources have been exhausted. These
resource boundaries may vary depending on the particular
architecture of the computer 10 and its speculation mecha
nism, but generally include exhaustion of the Ll cache 18
when used for speculation, or if a register checkpoint
mechanism is used, as is well known for speculation, the
cache 20 used to store the register checkpoints for squashing
has been exhausted, or in those architectures in which a
reorder buffer is used for recovery of branch mis-specula
tion, that buffer is exhausted.

5 the speculative execution of the critical section has the
appearance of atomicity when the data accessed by the
critical section has not been accessed by any other thread.

As will be understood from the above description, the
presenting invention is applicable to a wide range of differ-

10 ent computer architectures and should not be construed to be
limited to the particular architecture described herein. The
speculative execution of the critical section may employ
other speculation mechanism including those employing,
"register checkpoints" or "reorder buffers", all well known

15 in the art. It is specifically intended that the present invention
not be limited to the embodiments and illustrations con-

In these situations where a resource boundary has been
reached, but there has been no conflict, squashing is not
required at process block 74, an acquisition of the lock may 20

be performed and the lock elision circuit 24 may proceed
with speculative execution from the point where it stopped,
the resources being made free by committing the speculation
up to that point. If the lock cannot be acquired, the specu
lative execution is squashed as has been described.

A variation of the occurrence of a resource boundary, that
25

is treated in the same way, is the occurrence of a non
cacheable operation, such as a write to an input/output (I/O)
location. I/O differs from cacheable memory in that, for
example, multiple writes of the same value to I/O may not 30

necessarily be ignored. Decision block 76 may also detect
such non-cacheable operations.

At process block 80, the lock elision circuit 24 detects
whether a release lock section 32 has occurred being a
STORE instruction using the same address detected in the 35

acquire lock section 30 detected at decision block 60. If a
lock release has occurred, the lock elision circuit 24 pro
ceeds to process block 82 and the STORE instruction 16 is
elided as the LOCK variable is already released because of
the elision of instruction i(5) at process block 65. 40

It will be recognized that if the critical section inferred by
decision block 60 is not truly a critical section 28, the
misidentified STORE instructions may still be elided with
out harm as it can be guaranteed that no intervening LOAD
instructions by any thread have occurred when speculation 45

is successful.
At process block 84, succeeding process block 82, the

speculative execution is then committed by updating cache
L2 with the L1 cache LL

Referring again to FIG. 5, in a further embodiment of the 50

present invention, the execution of STORE instructions
within the critical section 28 may be examined to see if they
are "silent stores", that is, stores that do not change the value
of the memory location to which the store is directed. In so
far as the speculation assumes for its success that no other 55

threads 26 access the shared data structure 25, these STORE
instructions may be suppressed. Detection of silent stores
requires only that each STORE instruction within the critical
section 28 be reviewed to see if it would change the value
at the target address. If not, the STORE instruction is elided. 60

This detection of silent stores allows parallel execution of
critical sections even when there are technically, true con
flicts, that is, STORES by different threads to the same
address. By suppressing the silent STORE instructions, the
threads do not create a write-event to the shared data 65

structure 25 such as would cause a mis-speculation in the
given thread 26 operating in the critical section 28.

tained herein, but that modified forms of those embodiments
including portions of the embodiments and combinations of
elements of different embodiments also be included as come
within the scope of the following claims.

We claim:
1. A method of coordinating access to common memory

by multiple program threads comprising the steps of:
in each given program thread,
(a) detecting the beginning of a critical section of the

given program thread in which interruption to access of
the common memory could occur resulting from execu
tion of other program threads;

(b) speculatively executing the critical section; and
(c) committing the speculative execution of the critical

section if there has been no interruption to access of the
common memory and squashing the speculative execu
tion of the critical section if there has been an inter
ruption wherein the speculative execution is committed
upon the occurrence of a non cacheable operation
limiting further speculation.

2. The method of claim 1 wherein the interruption is:
(a) another thread writing data read by the given program

thread in the critical section, or
(b) another thread reading or writing data written by the

given program thread.
3. The method of claim 2 wherein the interruption is

detected by an invalidation of a cache block holding data of
the critical section.

4. The method of claim 1 wherein absent the occurrence
of a non cacheable operation limiting further speculation,
the speculative execution is committed at the end of the
critical section.

5. The method of claim 4 wherein the end of the critical
section is detected by a pattern of instructions typically
associated with a lock release.

6. The method of claim 5 wherein the pattern of instruc
tions is a store instruction to a deduced lock variable
address.

7. The method of claim 1 wherein absent the occurrence
of a non cacheable operation limiting further speculation,
the speculative execution is committed at a resource bound
ary limiting further speculation.

8. The method of claim 7 including the step of:
(d) if at step (c) there was no interruption from the

execution of another thread acquiring a lock variable
allowing the given thread to have exclusive access to
the critical section and continuing execution from the
commitment point to the conclusion of the critical
section.

US 7,120,762 B2
11

9. The method of claim 1 including the step of:
(d) if at step (c) there was no interruption from the

execution of another thread acquiring a lock variable
allowing the given thread to have exclusive access to
the critical section and continuing execution from the 5

commitment point to the conclusion of the critical
section.

10. The method of claim 1 wherein step (a) includes
reading of a lock variable and wherein step (b) is performed
only when the lock variable is not held by another program 10

thread.
11. The method of claim 1 wherein step (a) includes

reading a prediction table holding historical data indicating
past successes in speculatively executing the critical section
and wherein step (b) is performed only when the prediction 15

table indicates a likelihood of successful speculative execu
tion of the critical section of above a predetermined thresh
old.

12. The method of claim 1 wherein the critical section is
preceded by a lock acquisition section and including the step 20

of eliding the lock acquisition before step (b).

12
(a) another thread writing data read by the given program

thread in the critical section, or
(b) another thread reading or writing data written by the

given program thread.
22. The method of claim 21 wherein the computer archi

tecture includes a cache and the interruption is detected by
an invalidation of a cache block holding data of the critical
section.

23. The method of claim 18 wherein the speculative
execution is committed at the end of the critical section.

24. The method of claim 23 wherein the end of the critical
section is detected by a pattern of instructions typically
associated with a lock release.

25. The method of claim 24 wherein the pattern of
instructions is a store instruction to a deduced lock variable
address.

26. The method of claim 18 wherein the speculative
execution is committed at a resource boundary limiting
further speculation.

27. The method of claim 26 wherein when there is no
interfering access to the common memory from the execu
tion of another thread acquiring a lock variable, the lock
elision circuit allows the given thread to have exclusive

13. The method of claim 1 wherein the critical section
ends with a lock release section and including the step of
eliding the lock release section after step (c) when at step (c)
upon reaching the end of the critical section, no interruption
from the execution of another thread occurred.

25 access to the critical section and continues execution from
the commitment point to the conclusion of the critical

14. The method of claim 1 including the further step of:
(d) after squashing the speculative execution of the criti

cal section ifthere has been a interruption, re-executing
the critical section speculatively. 30

15. The method of claim 14 wherein the speculative
re-execution of the critical section is repeated up to a
predetermined number of times until there is not a interrup
tion.

16. The method of claim 15 wherein (d) if after the 35

predetermined number of tries there remains a interruption
from the execution of another thread, acquiring a lock
variable allowing the given thread to have exclusive access
to the critical section and continuing execution of the critical
section from its beginning. 40

17. The method of claim 1 wherein the speculation
executes the critical section using a cache memory to record
the speculative execution without visibility to other process-
ing units.

45
18. A method of coordinating access to common memory

by multiple program threads comprising the steps of:
in each given program thread,
(a) detecting the beginning of a critical section of the

given program thread in which interruption to access of
50

the common memory could occur resulting from execu
tion of other program threads;

(b) speculatively executing the critical section; and
(c) committing the speculative execution of the critical

section if there has been no interruption to access of the 55
common memory and squashing the speculative execu
tion of the critical section if there has been an inter
ruption wherein the speculation executes the critical
section eliding write instructions that do not change a
value of memory location being written to. 60

19. The method of claim 18 wherein step (a) deduces the
beginning of a critical section by detecting patterns of
instructions typically associated with a lock acquisitions.

section.
28. The method of claim 18 wherein the lock elision

circuit reads a lock variable and speculatively executes the
critical section only when the lock variable is not held by
another program thread.

29. The method of claim 18 wherein the speculative
execution is committed upon the occurrence of a non
cacheable operation limiting further speculation.

30. The method of claim 29 including the step of:

(d) if at step (c) there was no interfering access to the
common memory from the execution of another thread,
acquiring a lock variable allowing the given thread to
have exclusive access to the critical section and con
tinuing execution from the commitment point to the
conclusion of the critical section.

31. The method of claim 18 including a prediction table
holding historical data indicating past successes in specula
tively executing the critical section and wherein the lock
elision circuit speculatively executes the critical section only
when the prediction table indicates a likelihood of successful
speculative execution of the critical section of above a
predetermined threshold.

32. The method of claim 18 wherein the lock elision
circuit determines the beginning of a critical section by
detecting patterns of instructions typically associated with a
lock acquisitions.

33. The method of claim 32 wherein the pattern includes
an atomic read/modify/write sequence.

34. The method of claim 18 wherein the critical section is
preceded by a lock acquisition section and wherein the lock
elision circuit elides the lock acquisition before speculation.

35. The method of claim 18 wherein the critical section
ends with a lock release section and wherein the lock elision
circuit elides the lock release section after speculation when
upon reaching the end of the critical section, no interfering
access to the common memory from the execution of 20. The method of claim 19 wherein the pattern includes

an atomic read/modify/write sequence. 65 another thread occurred.

21. The method of claim 18 wherein the interfering access
to the common memory is:

36. The method of claim 18 wherein after squashing the
speculative execution of the critical section, if there has been

US 7,120,762 B2
13

an interfering access to the connnon memory, the lock
elision circuit re-executes the critical section speculatively.

37. The method of claim 36 wherein the lock elision
circuit repeats the speculative re-execution of the critical
section up to a predetermined number of times until there is 5

not an interfering access to the connnon memory.
38. The method of claim 37 wherein if after the prede

termined number of tries there remains an interfering access
to the connnon memory from the execution of another
thread, the lock elision circuit allows acquisition of a lock 10

variable allowing the given thread to have exclusive access
to the critical section and continuing execution of the critical
section from its beginning.

14
40. The method of claim 18 wherein the lock elision

circuit elides write instructions within the critical section
that do not change a value of memory location being written
to.

41. The method of claim 18 wherein the value in memory
subject to the elided write instruction is a lock variable for
controlling access to the critical section by competing pro
gram threads.

42. The method of claim 18 wherein step (a) deduces the
beginning of a critical section by detecting special delimiter
instructions.

43. The method of claim 1 wherein step (a) deduces the
beginning of a critical section by detecting special delimiter 39. The method of claim 18 wherein the computer archi

tecture includes a cache memory and the lock elision circuit
uses the cache memory to record the speculative execution
without visibility to other processing units.

15 instructions.

* * * * *

	Bibliography
	Abstract
	Drawings
	Description
	Claims

