
c12) United States Patent
Rajwar et al.

(54) CONCURRENT EXECUTION OF CRITICAL
SECTIONS BY ELIDING OWNERSHIP OF
LOCKS

(75) Inventors: Ravi Rajwar, Madison, WI (US); James
R. Goodman, Madison, WI (US)

(73) Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 215 days.

This patent is subject to a terminal dis­
claimer.

(21) Appl. No.: 11/539,731

Oct. 9, 2006 (22) Filed:

(65) Prior Publication Data

US 2007/0186215 Al Aug. 9, 2007

Related U.S. Application Data

(63) Continuation of application No. 10/037,041, filed on
Oct. 19, 2001, now Pat. No. 7,120,762.

(51) Int. Cl.
G06F 12100 (2006.01)
G06F 13/00 (2006.01)
G06F 13/28 (2006.01)

(52) U.S. Cl. .. 711/150
(58) Field of Classification Search 711/150

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,318,182 A 3/1982 Bachman et al.
4,320,451 A 3/1982 Bachman et al.
5,136,691 A 8/1992 Baror
5,185,878 A 2/1993 Baror et al.
5,421,022 A * 5/1995 McKeen eta!. 712/23

I 1111111111111111 11111 111111111111111 IIIII IIIII IIIII IIIII IIIIII IIII IIII IIII
US0077 65 3 64 B2

(IO) Patent No.: US 7,765,364 B2
(45) Date of Patent: *Jul. 27, 2010

6,006,299 A 12/1999 Wang eta!.

6,014,728 A 1/2000 Baror

6,353,881 Bl* 3/2002 Chaudhry et al.

6,360,220 Bl 3/2002 Forin

6,460,124 Bl 10/2002 Kagi et al.

6,651,146 Bl 11/2003 Srinivas et al.

6,684,398 B2 * 1/2004 Chaudhry et al.

(Continued)

OTHER PUBLICATIONS

........... 712/228

........... 718/106

Jason, Liu, David M. Nicol and King Tan, Lock-free Scheduling of
Logical Processes in Parallel Simulation, May 12-18, 2001, IEEE.

(Continued)

Primary Examiner-Sheng-Jen Tsai
(74) Attorney, Agent, or Firm-Boyle Fredrickson, S.C.

(57) ABSTRACT

One embodiment of the present invention provides a system
that facilitates avoiding locks by speculatively executing
critical sections of code. During operation, the system allows
a process to speculatively execute a critical section of code
within a program without first acquiring a lock associated
with the critical section. If the process subsequently com­
pletes the critical section without encountering an interfering
data access from another process, the system commits
changes made during the speculative execution, and resumes
normal non-speculative execution of the program past the
critical section. Otherwise, if an interfering data access from
another process is encountered during execution of the criti­
cal section, the system discards changes made during the
speculative execution, and attempts to re-execute the critical
section.

28 Claims, 3 Drawing Sheets

U.S. PATENT DOCUMENTS

6,862,664 B2 * 3/2005 Tremblay et al.

6,938,130 B2 8/2005 Jacobson et al.

US 7,765,364 B2
Page 2

2004/0162951 Al 8/2004 Jacobson et al.

........... 711/137
OTHER PUBLICATIONS

7,120,762 B2 * 10/2006 Rajwar et al. 711/150

James H. Anderson and Srikhanth Ramamurthy, A Framework for
Implementing Objects and Scheduling Tasks in Lock-Free Real­
Time Systems, Dec. 4-6, 1996, IEEE .

2002/0178349 Al* 11/2002

2003/0014473 Al 1/2003

2003/0014602 Al* 1/2003
2003/0221071 Al 11/2003

2004/0162948 Al 8/2004

Shibayama et al.
Ohsawaet al.

Shibayama et al .
McKenney et al.

Tremblay et al.

......... 712/235

......... 711/156

James R. Goodman, et al., Efficient Sychronization Primitives for
Large-Scale Cache-Coherent Multiprocessors, 1989 ACM 0-8979 l-
300-0/89/0004/0064, Computer Sciences Department, University of
Wisconsin-Madison, Madison, Wisconsin.

* cited by examiner

U.S. Patent

18

20

14

12

16 p

Ll

L2

CRfTICAL
SECTION

Jul. 27, 2010 Sheet 1 of 3 US 7,765,364 B2

110
12 ,17

24

22 16

25 FIG. 1
18

CJ 20 19 D

_....r44

FIG. 2
PRIOR ART

U.S. Patent

17

FIG. 3
PRIOR ART

25

Jul. 27, 2010

SHARED
MEMORY

FIG. 4

17

Sheet 2 of 3

26a 26b 26c 26d
_ _[__ (___ (

i I
1 28b:

SHARED
MEMORY

I BLOCK I

I I
I I
I 28CI

I
t

: 28d

l BLOCKHE-1----t--­
-7--

25

US 7,765,364 B2

U.S. Patent Jul. 27, 2010

ELIDE LOCK ACQUIRE

EXECUTE CRITICAL
SECTION, ELIDE
SILENT STORES

BUFFER RESULTS

Sheet 3 of 3

66

70 72

SQUASH
SPECULATION

WRITE
TO LOCK

74

US 7,765,364 B2

ELIDE LOCK RELEASE 82 FIG. 5

COMMIT
SPECULATION

84

US 7,765,364 B2
1

CONCURRENT EXECUTION OF CRITICAL
SECTIONS BY ELIDING OWNERSHIP OF

LOCKS

2
tively serializing the threads as they wait for a lock. This
serialization can be reduced by using a number of different
locks associated, for example, with different small portions of
shared memory. In this way, the chance of different threads

CROSS-REFERENCE TO RELATED
APPLICATIONS

5 waiting for a lock on a given portion of shared memory is
reduced.

This application is a continuation of U.S. application Ser.
Multiple locks increase the complexity of the program­

ming process and thus creates a tradeoff between program
performance and program development time. No. 10/037,041 filed Oct. 19, 2001 hereby incorporated by

reference. 10 Ideally, a software tool might be created that could review

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

and correct for overly aggressive use of lock variables by
reviewing critical sections in all threads and determining
whether a more narrowly defined locking might be employed.
The capability of any such a software tool, however, is limited

This invention was made with United States government
support awarded by the following agencies: NSF 9810114.
The United States as certain rights to this invention.

15 to static analysis of the software and cannot detect locking
that is unnecessary during dynamic execution of the software.

BACKGROUND OF THE INVENTION

The present invention relates to computers with shared­
memory architectures and, in particular, to architectures pro­
viding a lock mechanism preventing conflicts when multiple
program threads execute a common, critical program section.

20

SUMMARY OF THE INVENTION

A key insight to the present invention is that it may be
possible to execute a critical program section correctly with­
out acquisition of the lock. In many situations a critical sec­
tion may be executed by multiple threads simultaneously with
no actual conflict. This can be for a number ofreasons, includ-

25 ing the possibility that the different threads are updating
different fields of the shared memory block aggregated under
a single lock variable, or the store operations in the critical
section are conditional and frequently do not require actual

Multi-threaded software provides multiple execution
"threads" which act like independently executing programs.
An advantage to such multi-threaded software is that each
thread can be assigned to an independent processor, or to a
single processor that provides multi-threaded execution so
that the threads may be executed in parallel for improved 30
speed of execution. For example, a computer server for the
Internet may use a multi-threaded server program where each
separate client transaction runs as a separate thread.

conflicting store operations.

Each of the threads may need to modify common data
shared among the threads. For example, in the implementa­
tion of a transaction based airline reservation system, mul­
tiple threads handling reservations for different customers
may read and write common data indicating the number of
seats available. If the threads are not coordinated in their use
of the common data, serious error can occur. For example, a
first thread may read a variable indicating an airline seat is
available and then set that variable indicating that the seat has
been reserved by the thread's client. If a second thread reads
the same variable prior to its setting by the first thread, the
second thread may, based on that read, erroneously set that
variable again with the result that the seat is double booked.

In such cases, the steps of acquiring and releasing the lock
are unnecessary and can be elided. The critical section can be
speculatively executed, assuming there will be no conflict,
and in those cases where an actual conflict does occur, the
conflict can be detected automatically by existing cache pro-

35 tocol methods and execution of the critical section can be
re-performed.

Specifically then, the present invention provides a method
of coordinating access to common memory by multiple pro-

40 gram threads. Each given program thread first detects the
beginning of a critical section of the given program thread in
which conflicts to access of the common memory could occur
resulting from execution of other program threads. The given
thread then speculatively executes the critical section. The

45
speculative execution is committed only if there has been no
conflict, and is squashed ifthere has been a conflict.

Thus, it is one object of the invention to allow parallel
execution of critical sections by multiple threads, under the
recognition that in many cases, no actual conflict will occur.

The conflict may be another thread writing data that was
read by the given program thread in the critical section, or
another thread reading or writing data that was written by the
given program thread. In one embodiment, this conflict may
be determined by invalidation of a cache block holding data of

To avoid these problems, it is common to use synchroniz­
ing instructions for portions of a thread (often called critical
sections) where simultaneous execution by more than one
thread would be a problem. A common set of synchronizing 50

instructions implement a lock, using a lock variable having
one value indicating that it is owned by a thread and another
value indicating that it is available. A thread must acquire the
lock before executing the critical section and does so by
reading the lock variable and if it is not held, writing a value 55 the critical section.

to it indicating that it is held. When the critical section is
complete, the thread again writes to the lock variable a value
indicating that the lock is available again.

Typically, the instructions used to acquire the lock are
"atomic instructions", that is, instructions that cannot be 60

interrupted once begun by any other thread or quasi-atomic
instructions that can be interrupted by another thread, but that
make such interruption evident to the interrupted thread so
that the instructions can be repeated.

Thus, it is another object of the invention to utilize existing
cache protocol mechanisms to provide an indication of
whether there has been actual conflict in the execution of the
critical section.

Often, the critical section will be speculatively executed to
its end. The end of the critical section may be detected by
examining patterns of instructions typically associated with
lock acquisitions. For example, the pattern may be a store
instruction directed to an inferred lock variable. In a similar

While the mechanism of locking a critical section for use
by a single thread effectively solves conflict problems, it can
reduce the benefits of parallel execution of threads by effec-

65 way, the beginning of a critical section may be deduced by a
lock acquisition pattern, including atomic read/modify/write
instructions.

US 7,765,364 B2
3

Thus, it is another object of the invention to infer the
existence of a critical section without modification of existing
software or compilers. This inference is possible in part
because misprediction of a critical section carries with it very
little penalty as will be discussed below.

In certain cases, the speculative execution will conclude at

4
The speculatively execution of the critical section may use

a cache memory to record the speculative execution without
visibility to other processing units.

Thus, it is another object of the invention to provide a
5 simple, speculative mechanism utilizing the cache structures

available in many computer architectures.
a "resource boundary" placing physical limits on the ability to
speculate for long critical sections. For example, resource
boundaries maybe limits in the cache size used for the specu­
lation or the write buffer size, as will be described below, or 10

other resources needed for speculatively execution. In such
cases, where there is no actual conflict but simply a limitation

The foregoing objects and advantages may not apply to all
embodiments of the inventions and are not intended to define
the scope of the invention, for which purpose claims are
provided. In the following description, reference is made to
the accompanying drawings, which form a part hereof, and in
which there is shown by way of illustration, a preferred
embodiment of the invention. Such embodiment also does not or resources, the lock variable may be acquired by the given

thread and the speculative execution committed, and the
given thread may then continue execution from the point at
which the speculation was committed to the conclusion of the
critical section.

Thus, it is another object of the invention to provide for the
efficient execution of arbitrarily long critical sections despite
limited resources.

The first step of detecting the critical section may include
reading of a lock variable and performing the second step of
speculative execution only if the lock variable is not held by
another program thread.

Thus, it is another object of the invention to avoid perfor­
mance degradation in certain cases where the critical section
experiences a high number of actual conflicts. If the lock has
been acquired, the assumption may be made that another
processor or thread had to acquire the lock because of its
inability to perform a method of the present invention.

define the scope of the invention and reference must be made
15 therefore to the claims for this purpose.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of the multi-processor system
20 showing processors with their associated caches and cache

controllers and the lock elision circuit of the present inven­
tion, communicating over a network with a common shared
memory;

FIG. 2 is schematic representation of a critical section of a
25 thread executable on a processor ofFIG.1, the critical section

having a preceding acquire lock section and a succeeding
release lock section and showing example machine instruc­
tions to implement the same;

FIG. 3 is a diagrammatic representation of the serialization
30 of multiple threads caused by contention for a lock for a

common critical section associated with a block of shared
The first step of detecting the critical section may include

reading a prediction table holding historical data indicating
past successes in speculatively executing the critical section,
and the speculative execution may be performed only when 35
the prediction table indicates a likelihood of successful
speculative execution of the critical section of above a prede­
termined threshold value.

memory;
FIG. 4 is a figure similar to that of FIG. 3 showing paral­

lelization of the same critical sections under the present
invention; and

FIG. 5 is a flow chart showing the functions executed by the
lock elision circuit of FIG. 1 in implementing the present
invention.

Thus, it is another object of the invention to avoid specu­
lation for critical sections that are highly contested during 40

actual execution of the program.
DETAILED DESCRIPTION OF THE PREFERRED

EMBODIMENT
The critical section may begin with a lock acquisition

section and may end with a lock release section and the
present invention may include the step of eliding the lock
acquisition and release.

Thus it is another object of the invention to eliminate the
steps of acquiring and releasing a lock variable when no
actual conflict occurs thus speeding execution of the critical
section and allowing other threads to concurrently execute the
critical section.

The speculative execution of the critical section may elide
write instructions that do not change a value of memory
location being written to.

Thus it is another object of the invention to permit concur­
rent execution even in the presence of a true conflict between
threads accessing the same location and at least one perform­
ing a "silent write", particularly in the case where cache
invalidation procedures are used to detect conflicts.

After squashing the speculative execution of the critical
section when there has been a conflict, the critical section may
be re-executed a predetermined number of times or until there
is no conflict. If there remains a conflict after the repeated
re-executions, the lock variable may be acquired.

Thus, it is another object of the invention to allow adjust­
ment of the degree of speculation depending on empirical
factors that may be determined.

Referring now to FIG. 1, a multiprocessor, shared memory
computer 10 suitable for use with the present invention

45 includes a number of processor units 12 connected via a bus
structure 14 to a common, shared memory 17. The shared
memory 17 is depicted logically as a single device, but in fact
will often be distributed among the processor units 12,

50

according to methods well known in the art.
Processor units 12 include processor 16 communicating

with an Ll cache 18, an L2 cache 20, and a cache controller 22
as is well understood in the art. The shared memory 17
includes a memory controller 19 executing standard cache
protocols to allow copying of shared data structure 25 within

55 the shared memory to various ones of the L2 caches 20 of
particular processor units 12. The processor unit 12 may be
granted "owner" status for writing to memory or "sharing"
status allowing for reading of the memory. Change of status of
the caches 20, for example, when another cache 20 seeks

60 ownership or sharing of the shared data structure 25, may be
accomplished by transmission of the request to then currently
owning or sharing caches 20 invalidating their contents
according to protocols well known in the art. Coherence of the
caches may be implemented with any of a variety of different

65 cache control protocols including generally "snooping" pro­
tocols and those employing directories, as known in the art,
and the structure of the bus 14 may be varied accordingly.

US 7,765,364 B2
5

The processor units 12 also include the lock elision circuit
24 of the present invention whose operation will be described
below.

6
Thus patterns of instructions with common addresses can

be used to infer the acquire lock section 30 and release lock
section 32 and thus the location of a critical section 28. It is
important to note, that this inferential detection of the start
and end of a critical section 28 is practical because perfect
identification of critical sections 28 is not essential for opera-
tion of the invention. If a non-critical section is erroneously
identified as a critical section, so long as there is no conflict
during its speculative execution, commitment of the specula-

In a multithreaded program, each processor unit 12 may
execute a different thread in parallel. The following descrip- 5

tion of the present invention will be with respect to such a
multiprocessor system. Nevertheless, it will be understood
that such multithreaded programs can also be executed on a
single processor providing multi-threading capability and the
present invention is equally applicable to such systems. 10 tive execution may still occur without harm. On the other

hand, if a critical section is not identified as such, it will
simply execute normally.

Referring now to FIG. 2, a program thread 26 of a multi­
threaded program may include a critical section 28 where
access to shared data structure 25 occurs and conflicts by
other threads 26 are possible. Accordingly, the critical section
28 may be preceded by an acquire lock section 30 in which a 15

LOCK variable (not shown but typically part of the shared
data structure 25) is acquired. By convention other threads 26
may not access (read or write) data of shared data structure 25
(other than the LOCK variable) while the LOCK variable is
held by another thread 26. A corresponding release lock sec- 20

tion 32 follows the critical section 28 to allow release of the
LOCK variable and access to the shared data structure 25
again by other threads 26.

In situations where an inferred critical section 28 proves at
some point during its execution not to have been a critical
section, for example, as suggested by a write to a supposed
LOCK variable that does not restore the LOCK variable to its
pre-critical section "release" value, the preceding speculative
execution may simply be committed and the write performed,
so long as there has been no conflict. In this respect, lock
acquisitions that do not use a single lock release value, for
example, those that may release a LOCK variable with any
nonzero value, including processor identification values, may
still be accommodated by the present invention.

In an alternative embodiment, the invention contemplates Referring now to FIG. 3, in the prior art, during a multi­
threaded execution of, for example, four threads 26a through
26d, the critical sections 28a through 28d of the four threads
26a through 26d may all access shared data structure 25
associated with a given LOCK variable. As depicted, if thread
26a is first to acquire the LOCK variable in preparation for the
execution of its critical section 28a, all other threads 26b
through 26d break out of their parallel execution and are
serialized while waiting for the LOCK variable to be released
from the thread 26 ahead of them. Thus, for example, thread
26b arriving at the acquire locks section 30 shortly after the
acquisition of the LOCK by thread 26a, must wait until the
release lock section 32 of critical section 28a before initiating
execution of critical section 28b. During this waiting time, the
thread 26b "spins" as indicated by the dotted line during
which execution stalls. As may be seen, the last thread 26d
may be required to spin for up to three times the length of
execution of the critical section 28 before being able to
acquire the LOCK variable. In more complex programs with
multiple critical sections 28, or threads repeating execution of
critical sections 28, the wait can be arbitrarily longer.

25 the start (and/or end) of the critical section may be identified
by one or more special delimiter instructions only used for
critical sections. In this case the inference of the beginning of
the critical section rises to the level of certainty, but changes
in programming practices are required for such a system,

30 unlike that of the preferred embodiment described above.
Referring still to FIG. 2, actual machine code 44 of the

acquire lock section 30 may provide further clues to identi­
fying the beginning of the critical section 28. Instructions
i(l)-i(7) show an atomic read/modify/write sequence pattern

35 used in the acquisition of a LOCK variable, and in particular,
an instruction sequence that uses a specialized LOAD LOCK
(ldl.sub.--1) instruction i(3) and the STORE CONDI­
TIONAL (stl_c) instruction i(6) which provide quasi atomic
execution and thus are frequently associated with the acqui-

40 sition of a LOCK variable.

Referring again to FIG. 2, entry into the critical section 28 45

may be inferred by observing a pattern of instructions that are
typically used for acquiring and releasing a LOCK variable in
the acquire lock section 3 0 and the release lock section 3 2. For
example, the acquire lock section 30 may follow an atomic
read/modify/write instructions for loading the lock variable, 50

testing the lock variable and storing the lock variable indi­
cated in FIG. 2 by pseudo code 40.

The term "atomic" as used herein refers to an instruction
that cannot be interrupted by another thread before comple­
tion, or cannot be interrupted before completion without 55

detection. Typically, atomic read/modify/write instructions
are readily distinguished from standard STORE and LOAD
instructions, and as used herein may include the well known
TEST&SET instructions, or as shown, the LOAD LOCK/
STORE CONDITIONAL instructions or other equivalent 60

atomic instruction.
These atomic read/modify/write instructions provide some

indication of the acquisition of a lock. This indication can be
reinforced by a RELEASE sequence having a store instruc­
tion directed to same address as the atomic read/modify/write 65

instructions of the ACQUISITION sequence, both indicated
by pseudo code 42.

In this sequence, generally instructions i(l) and i(2) load
the LOCK variable and test it to see if it is available and if not
branch to instruction i(l). Instructions i(3) and i(4) execute
only if the LOCK variable is not held as tested by instructions
i(l) and i(2). These instructions i(3) and i(4) load the LOCK
variable conditionally, meaning that other attempted loads of
this variable will be detected at the subsequent store condi­
tional instructions i(6).

If the LOCK variable is not held, instructions i(5), i(6) and
i(7) are executed causing a conditional store of a "held" value
into the LOCK variable. Instruction i(7) tests to see if the
STORE CONDITIONAL instruction was successful, and if
not causes a repeat of the operations starting at instruction i(l)
as true atomicity of instructions i(l)-i(7) was not obtained.

After the critical section 28, instruction i(16) executes the
release LOCK variable via a store of the "release" value to the
same address.

Referring also to FIG. 1, the lock elision circuit 24 may
provide a filter detecting this or a similar pattern to determine
the beginning ofa critical section 28. In the preferred embodi­
ment, the pattern is a LOAD LOCK instruction followed
within a predetermined number of instructions by a STORE
CONDITIONAL instruction referencing the same address.

The lock elision circuit 24 identifies the release lock sec­
tion 32 and hence the end of the critical section 28 by the next
STORE instruction to the same address.

US 7,765,364 B2
7

The lock elision circuit 24 may include a table (not shown)
linking by program counter, a prediction value that a particu­
lar instruction is the beginning or end of a critical section 28,
and this prediction value may be modified by historical suc­
cess in the prediction (indicated by a lack of squashing of the 5

speculative execution of the critical section 28) as will be
described below. This prediction as to whether a critical sec­
tion has been found, may be supplemented by a prediction as
to whether speculative execution of the critical section will be
successful, as will be described below. 10

Methods of inferring the beginning of a critical section are
also discussed in co-pending patent application Ser. No.
09/693,030 filed Oct. 20, 2000 entitled "Method of Using
Delays to Speed Processing oflnferred Critical Program Por­
tions" assigned to the same assignee as the present applica- 15

tion and hereby incorporated by reference.
Referring now to FIG. 4, generally, the present invention

uses this ability to infer the beginning and end of a critical
section 28 of a thread 26, to change execution modes to
execute the critical section 28 speculative until its end. If at 20

the end of the speculative execution, no actual conflict with
another thread 26 has occurred, the speculative execution is
committed. In this way, the present invention allows the criti-
cal sections 28 of multiple ones of the four program threads
26a through 26d to run concurrently provided there is no 25

actual conflict in the dynamic execution, but even though they
access the same shared data structure 25 which are subject to
the same lock. For example, during execution of its critical
section 28, thread 26a may access a first block within shared
data structure 25 while thread 26b accesses a second block 30

within the same shared data structure 25. There is no actual
conflict in such accesses although this fact may be undetect­
able statically.

As a second example, thread 26c executing the critical
section 28 may have a STORE that may be conditionally 35

executed to access the same block as accessed by thread 26a,
yet dynamically this conditional store may not be performed.
In this case, again, there is no conflict, however, a conflict
would be assumed from static inspection of the threads.

Alternatively, execution of thread 26d, which in this 40

example writes to the same block as thread 26b is delayed by
means ofits initial execution speculatively (indicated by 26d')
being squashed, however, this delay is much reduced over that
obtained in the example of FIG. 3.

Referring now to FIG. 5, the initiation and management of 45

the speculative execution is controlled by the lock elision
circuit 24 (shown in FIG. 1). As each instruction is received
for execution by the processor 16, the lock elision circuit
detects, as indicated by decision block 60, whether an acquire
lock section 30 is likely being implemented. This can be done 50

by applying a filter to the instruction buffer to look for the
patterns described above. This process will typically be done
in hardware and in parallel with standard execution of the
instructions When process block 60 detects a lock acquire
section, standard execution is modified as will be described 55

below.
If the instructions suggest that no LOCK variable is being

acquired, the lock elision circuit 24 loops back while allowing
standard execution of the instructions.

If, on the other hand, the instructions suggest that a lock 60

acquisition is being undertaken, the lock elision circuit 24
proceeds to decision block 64 and the lock variable is read to
see if the LOCK variable is in the held state.

8
In an alternative embodiment, at process block 64, the

prediction table forming part of the lock elision circuit 24 may
be consulted to see if previous attempts at speculative execu­
tion of the critical section 28 have been successful. The pre­
diction table in this case may store the results of the last N
attempts at speculation, for example, indexed by program
counter value for fast reference, and the lock elision circuit
can defer to standard execution if a certain percentage of the
last N speculations were not successful.

If the LOCK variable is not held, as indicated by decision
block 64, the lock elision circuit 24 proceeds to process block
65 and elides the acquire lock section 30 being instructions
i(2)-i(7). The STORE of instruction i(6) may be suppressed
because if speculative execution of the remainder of the criti­
cal section is successful, it will be undone by the LOAD
instruction i(l 6).

The lock elision circuit 24 then proceeds to process block
66 to begin execution of the critical section 28 starting after
instruction i(7) is executed. At this time, the shared data
structure 25 necessary for the critical section 28 will be
loaded into cache L2 including typically the LOCK variable
as was accessed by instruction i(l) and other data needed by
the critical section 28. On the other hand, stores by the critical
section 28 may be done to the Ll cache 18, which serves as a
buffer for the speculative execution of the critical section 28
now being performed, and prevents the effects of the instruc-
tions of the critical section from being observed by other
processor units 12.

At any time during the execution of the critical section 28,
a mis-speculation may occur as detected by process block 68.
Such a mis-speculation occurs, as described in part above, if
data read by the current thread 26 in the critical section 28 is
written to by another thread 26, or if data written to by the
current thread 26 in the critical section 28 is read or written to
by another thread 26, either of which as would also cause
invalidation of cache L2. Thus, standard cache protocol mes­
sages may be used to detect such a conflict.

Speculation per process block 66 continues until one of
three conditions detected by the following three decision
blocks 68, 76, and 80.

The first condition may be caused by the occurrence of a
conflict such as produces mis-speculation. This terminates
the current speculative execution of the critical section 28
causing the lock elision circuit 24 to squash the speculative
execution (as indicated by process block 70) by flushing the
Ll cache 18 and restoring the program counter of the proces-
sor 16 to the beginning of the critical section 28 detected at
decision block 60.

Following this squashing, if at decision block 72, a retry
limit has not been exceeded, the lock elision circuit 24 pro­
ceeds back to decision block 60 to begin speculative execu­
tion of the critical section 28 again after detecting the acquire
lock section 30.

If the retry limit has been exceeded as checked at decision
block 72, indicating that a certain number of retries has been
performed without successful speculative execution of the
critical section 28, the lock elision circuit 24 branches to
decision block 60 and a write to the LOCK variable is com­
pleted per instructions i(l) through i(7) in standard execution.

If at decision block 68, no mis-speculation has occurred,
the lock elision circuit 24 checks at decision block 76 whether
speculation resources have been exhausted. These resource
boundaries may vary depending on the particular architecture
of the computer 10 and its speculation mechanism, but gen-If the LOCK variable is held, the lock elision circuit 24

again loops back, allowing standard execution which will
continue with the execution of instructions i(2) through i(16)
as written (as shown in FIG. 2).

65 erally include exhaustion of the Ll cache 18 when used for
speculation, or if a register checkpoint mechanism is used, as
is well known for speculation, the cache 20 used to store the

US 7,765,364 B2
9

register checkpoints for squashing has been exhausted, or in
those architectures in which a reorder buffer is used for recov­
ery of branch mis-speculation, that buffer is exhausted.

In these situations where a resource boundary has been
reached, but there has been no conflict, squashing is not 5

required at process block 7 4, an acquisition of the lock may be
performed and the lock elision circuit 24 may proceed with
speculative execution from the point where it stopped, the
resources being made free by committing the speculation up
to that point. If the lock cannot be acquired, the speculative 10

execution is squashed as has been described.
A variation of the occurrence of a resource boundary, that

is treated in the same way, is the occurrence of a non-cache­
able operation, such as a write to an input/output (I/O) loca­
tion. I/O differs from cacheable memory in that, for example, 15

multiple writes of the same value to I/O may not necessarily
be ignored. Decision block 76 may also detect such non­
cacheable operations.

At process block 80, the lock elision circuit 24 detects
whether a release lock section 32 has occurred being a 20

STORE instruction using the same address detected in the
acquire lock section 30 detected at decision block 60. If a lock
release has occurred, the lock elision circuit 24 proceeds to
process block 82 and the STORE instruction 16 is elided as
the LOCK variable is already released because of the elision 25

of instruction i(5) at process block 65.
It will be recognized that if the critical section inferred by

decision block 60 is not truly a critical section 28, the misi­
dentified STORE instructions may still be elided without
harm as it can be guaranteed that no intervening LOAD 30

instructions by any thread have occurred when speculation is
successful.

10
is specifically intended that the present invention not be lim­
ited to the embodiments and illustrations contained herein,
but that modified forms of those embodiments including por­
tions of the embodiments and combinations of elements of
different embodiments also be included as come within the
scope of the following claims.

The invention claimed is:
1. A method for avoiding locks used to control simulta­

neous access of a critical section by multiple processes by
speculatively executing critical sections of code, comprising:

(a) allowing different processes to speculatively execute a
critical section of code within a program without first
acquiring a lock associated with the critical section;

for at least some executions where a process completes the
critical section without encountering an interfering data
access from another process, the method further com­
prises:

committing changes made during the speculative execu­
tion, and resuming normal non-speculative execution of
the program past the critical section;

for at least some executions where an interfering data
access from another process is encountered during
execution of the critical section, the method further com­
prises at least one of the following steps of:

(i) discarding changes made during the speculative execu­
tion, and attempting to re-execute the critical section at
least one time wherein attempting to re-execute the criti­
cal section involves speculatively re-executing the criti­
cal section; and

(ii) acquiring a lock associated with the critical section,
non-speculatively executing the critical section, and
releasing the lock associated with the critical section.

At process block 84, succeeding process block 82, the
speculative execution is then committed by updating cache
L2 with the L1 cache L1 .

2. The method of claim 1, wherein data accesses from other
processes are allowed to proceed during the speculative

35 execution of the critical section.
Referring again to FIG. 5, in a further embodiment of the

present invention, the execution of STORE instructions
within the critical section 28 may be examined to see if they
are "silent stores", that is, stores that do not change the value
of the memory location to which the store is directed. In so far 40

as the speculation assumes for its success that no other threads
26 access the shared data structure 25, these STORE instruc­
tions may be suppressed. Detection of silent stores requires
only that each STORE instruction within the critical section
28 be reviewed to see if it would change the value at the target 45

address. If not, the STORE instruction is elided.
This detection of silent stores allows parallel execution of

critical sections even when there are technically, true con­
flicts, that is, STORES by different threads to the same
address. By suppressing the silent STORE instructions, the 50

threads do not create a write-event to the shared data structure
25 such as would cause a mis-speculation in the given thread
26 operating in the critical section 28.

It will be recognized that the above described invention
may be used for nested critical sections 28 simply by buffer- 55

ing the states of the variables required by the flow chart of
FIG. 5. No memory ordering problems exist because the
speculative execution of the critical section has the appear­
ance of atomicity when the data accessed by the critical
section has not been accessed by any other thread. 60

As will be understood from the above description, the
presenting invention is applicable to a wide range of different
computer architectures and should not be construed to be
limited to the particular architecture described herein. The
speculative execution of the critical section may employ other 65

speculation mechanism including those employing, "register
checkpoints" or "reorder buffers", all well known in the art. It

3. The method of claim 1 wherein the interfering data
access is detected by an invalidation of a cache block holding
data of the critical section.

4. The method of claim 1 wherein the critical section is
detected by a pattern of instructions typically associated with
a lock acquisition.

5. The method of claim 4 wherein the pattern of instruc­
tions includes an atomic read/modify/write sequence.

6. The method of claim 4 wherein the critical section is
detected by a special delimiter instruction.

7. The method of claim 1 wherein the changes made during
the speculative execution are further committed at a resource
boundary limiting further speculation.

8. The method of claim 7 wherein ifthere was no interfer­
ing data access continuing execution from a commitment
point to a conclusion of the critical section.

9. A method for avoiding locks by speculatively executing
critical sections of code, comprising:

allowing a process to speculatively execute a critical sec­
tion of code within a program without first acquiring a
lock associated with the critical section;

wherein if the process completes the critical section with­
out encountering an interfering data access from another
process, the method further comprises:

committing changes made during the speculative execu­
tion, and resuming normal non-speculative execution of
the program past the critical section;

and wherein if an interfering data access from another
process is encountered during execution of the critical
section, the method further comprises:

discarding changes made during the speculative execution,
and attempting to re-execute the critical section zero or

US 7,765,364 B2
11

more times; wherein attempting to re-execute the critical
section involves speculatively re-executing the critical
section,

wherein if the critical section is not successfully completed
after a number of attempts at speculative execution, the 5

method further comprises:
(ii) acquiring a lock associated with the critical section,

non-speculatively executing the critical section, and
releasing the lock associated with the critical section;

wherein the changes made during the speculative execu- 10

tion are further committed at a non-cacheable operation
limiting further speculation.

10. The method of claim 1 wherein the speculative execu­
tion of the critical section of code within a program without
first acquiring a lock associated with the critical section 15

occurs after reading a prediction table holding historical data
indicating past successes in speculatively executing the criti-
cal section above a predetermined threshold.

11. The method of claim 1 wherein committing changes
made during the speculative execution, and resuming normal 20

non-speculative execution of the program past the critical
section made when the process completes the critical section
without encountering an interfering data access from another
process, is performed without releasing the lock.

12.Amethodfor avoiding locks by speculatively executing 25

critical sections of code, comprising:
allowing a process to speculatively execute a critical sec­

tion of code within a program without first acquiring a
lock associated with the critical section;

wherein if the process completes the critical section with- 30

out encountering an interfering data access from another
process, the method further comprises:

committing changes made during the speculative execu­
tion, and resuming normal non-speculative execution of
the program past the critical section; 35

and wherein if an interfering data access from another
process is encountered during execution of the critical
section, the method further comprises:

discarding changes made during the speculative execution,
40

and attempting to re-execute the critical section zero or
more times; wherein attempting to re-execute the critical
section involves speculatively re-executing the critical
section,

wherein if the critical section is not successfully completed
45

after a number of attempts at speculative execution, the
method further comprises:

(ii) acquiring a lock associated with the critical section,
non-speculatively executing the critical section, and
releasing the lock associated with the critical section;

wherein the critical section is speculatively executed while
eliding write instructions that do not change a value of
memory location being written to.

50

13. The method of claim 12 wherein elided write instruc­
tions include a lock variable for controlling access to the 55
critical section.

14. The method of claim 1 wherein the critical section is
speculatively executed using a cache memory to record the
speculative execution without visibility to other processing
units.

15. An apparatus that avoids locks used to control simul­
taneous access of a critical section by multiple processes by
speculatively executing critical sections of code, comprising:

60

a speculative execution mechanism configured to allow
different processes to speculatively execute a critical 65

section of code within a program without first acquiring
a lock associated with the critical section;

12
a commit mechanism, wherein when the process com­

pletes the critical section without encountering an inter­
fering data access from another process, the commit
mechanism is configured to:

commit changes made during the speculative execution,
and to resume normal non-speculative execution of the
program past the critical section; and

a re-execution mechanism, wherein when an interfering
data access from another process is encountered during
execution of the critical section, there-execution mecha­
nism is configured to perform at least one of the follow­
ing steps:

(a) discard changes made during the speculative execution,
and to attempt to re-execute the critical section at least
one time wherein the re-execution mechanism is config­
ured to speculatively re-execute the critical section,

(b) acquire a lock associated with the critical section, non­
speculatively execute the critical section, and to release
the lock associated with the critical section.

16. The apparatus of claim 15, wherein the speculative
execution mechanism is configured to allow data accesses
from other processes to proceed during the speculative execu­
tion of the critical section.

17. The apparatus of claim 15 wherein the interfering data
access is detected by an invalidation of a cache block holding
data of the critical section.

18. The apparatus of claim 15 wherein the critical section is
detected by a pattern of instructions typically associated with
a lock acquisition.

19. The apparatus of claim 18 wherein the pattern of
instructions includes an atomic read/modify/write sequence.

20. The apparatus of claim 18 wherein the critical section is
detected by a special delimiter instruction.

21. The apparatus of claim 15 wherein the changes made
during the speculative execution are further committed at a
resource boundary limiting further speculation.

22. The apparatus of claim 21 wherein if there was no
interfering data access continuing execution from a commit­
ment point to a conclusion of the critical section.

23. An apparatus that avoids locks by speculatively execut­
ing critical sections of code, comprising:

a speculative execution mechanism configured to allow a
process to speculatively execute a critical section of
code within a program without first acquiring a lock
associated with the critical section;

a commit mechanism, wherein if the process completes the
critical section without encountering an interfering data
access from another process, the commit mechanism is
configured to:

commit changes made during the speculative execution,
and to resume normal non-speculative execution of the
program past the critical section; and

a re-execution mechanism, wherein if an interfering data
access from another process is encountered during
execution of the critical section, there-execution mecha­
nism is configured to:

discard changes made during the speculative execution,
and to attempt to re-execute the critical section zero or
more times; wherein the re-execution mechanism is con­
figured to speculatively re-execute the critical section,
wherein if the critical section is not successfully com­
pleted after a number of attempts at speculative execu­
tion, the re-execution mechanism is configured to:

acquire a lock associated with the critical section, non­
speculatively execute the critical section, and to release
the lock associated with the critical section;

US 7,765,364 B2
13

wherein the changes made during the speculative execu­
tion are further committed at a non-cacheable operation
limiting further speculation.

24. The apparatus of claim 15 wherein the speculative
execution of the critical section of code within a program 5

without first acquiring a lock associated with the critical
section occurs after reading a prediction table holding histori­
cal data indicating past successes in speculatively executing
the critical section above a predetermined threshold.

25. The apparatus of claim 15 wherein committing changes 10

made during the speculative execution, and resuming normal
non-speculative execution of the program past the critical
section made when the process completes the critical section
without encountering an interfering data access from another
process, is performed without releasing the lock. 15

26. An apparatus that avoids locks by speculatively execut­
ing critical sections of code, comprising:

a speculative execution mechanism configured to allow a
process to speculatively execute a critical section of
code within a program without first acquiring a lock 20

associated with the critical section;

14
a re-execution mechanism, wherein if an interfering data

access from another process is encountered during
execution of the critical section, there-execution mecha­
nism is configured to:

discard changes made during the speculative execution,
and to attempt to re-execute the critical section zero or
more times; wherein the re-execution mechanism is con­
figured to speculatively re-execute the critical section,
wherein if the critical section is not successfully com­
pleted after a number of attempts at speculative execu­
tion, the re-execution mechanism is configured to:

acquire a lock associated with the critical section, non­
speculatively execute the critical section, and to release
the lock associated with the critical section;

wherein the critical section is speculatively executed while
eliding write instructions that do not change a value of
memory location being written to.

27. The apparatus of claim 26 wherein elided write instruc­
tions include a lock variable for controlling access to the
critical section. a commit mechanism, wherein if the process completes the

critical section without encountering an interfering data
access from another process, the commit mechanism is
configured to:

28. The apparatus of claim 15 wherein the critical section is
speculatively executed using a cache memory to record the

25 speculative execution without visibility to other processing

commit changes made during the speculative execution,
and to resume normal non-speculative execution of the
program past the critical section; and

units.

* * * * *

	Bibliography
	Abstract
	Drawings
	Description
	Claims

