
I 1111111111111111 11111 111111111111111 111111111111111 111111111111111 IIII IIII

(12) United States Patent
Zilles et al.

(54) METHOD AND APPARATUS FOR PARALLEL
EXECUTION OF COMPUTER SOFTWARE
USING A DISTILLED PROGRAM

(75) Inventors: Craig Buchanan Zilles, Champaign, IL
(US); Gurindar S. Sohi, Madison, WI
(US)

(73) Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 470 days.

(21) Appl. No.: 10/263,514

(22) Filed:

(65)

Oct. 2, 2002

Prior Publication Data

US 2004/0068727 Al Apr. 8, 2004

(51) Int. CI.7 .. G06F 9/44
(52) U.S. Cl. 712/233; 712/200; 717/154;

717/159
(58) Field of Search 712/1, 200, 203,

712/233; 717/152, 153, 154, 159

(56) References Cited

U.S. PATENT DOCUMENTS

6,748,589 Bl * 6/2004 Johnson et al. 717/150

22

US006944 7 54 B2

(10) Patent No.: US 6,944,754 B2
Sep.13,2005 (45) Date of Patent:

2002/0144083 Al * 10/2002 Wang et al. 712/23

OTHER PUBLICATIONS

Sundaramoorthy et al., "Slipstream Processors: Improving
both Performance and Fault Tolerance", ASPLOS 2000,
Cambridge, MA, ACM, Nov. 12-15, 2000, pp. 257-268.*

Moshovos et al., "Slice-Processors: An Implementation of
Operation-Based Prediction", Proceedings of the 15th Inter
national Conference on Supercomputing, Sorrento, Italy,
2001, ACM, pp. 321-324.*

* cited by examiner

Primary Examiner-William M. Treat
(74) Attorney, Agent, or Firm-Quarles & Brady LLP

(57) ABSTRACT

Parallelization of a program is performed by creating a
distilled version of the program having higher execution
speed but with unverified execution. The distilled program is
executed rapidly to create state snapshots of the program
that may be forwarded to secondary processors for execution
of the actual program in parallel with other secondary
processors similarly allocated. Each state snapshot is veri
fied as the task is executed on a secondary processor by the
preceding processor. The degree of parallelization is limited
only by the speed up of the distilled program.

37 Claims, 4 Drawing Sheets

~·-·-·-·-·-·-·-·-·-·-·-·-·. '"=======~-.......------------!-----------,
PROFILE 28

DATA

30

26

THRESHOLD DISTILLER
Po

31 ~

24
DISTILLED
PROGRAM

12
~--·-·-·-·-·-·-·-·-·-·-·-·..J

U.S. Patent Sep.13,2005 Sheet 1 of 4 US 6,944,754 B2

12
,-10

14-(WJ7
FIG. 1

D-'20

FIG. 2

22
r•-•-·-·-·-·-•-•-•-•-•-•-•~

PROFILE 28
DATA

30

26

THRESHOLD DISTILLER
Po

31 r:=1

24
DISTILLED
PROGRAM

FIG. 3 12
w•-•-•-•-•-·-·-·-·-·-•-•-·..J

U.S. Patent Sep. 13,2005 Sheet 2 of 4

....---22

FIG. 4

TRANSITION
PROGRAM

36

PC
CONVERSION

41

FIG. 5

22 44 Pn ((
TRANSITION

PROGRAM
46

37

FIG. 6

US 6,944,754 B2

40

12
_,I

50

12
_/

VERIFICATION
CIRCUITRY

U.S. Patent Sep. 13, 200s Sheet 3 of 4 US 6,944,754 B2

, , ,

, ,
, ,

24°"\ Po Pl

38~~r~~;.::.:.:~=I
36

38
36
38 ,..-,~:::;:::r,

X
51

50

I

,'.====~ LIVE-IN

53

BUFFER r'
, , , ,

, , , ,

, ,
, , ,

,, '-----...-. ,

16

PC INSTRUCTION

22 r1 +1024 -:-:.r2

23 LOAD O[r2] -::.r3 :\

24
,;r I

STORE r3 - 8[r2t:
25

,,
LOAD O[r51- r5,,,:,'

..k'- --~

26 LOAD 8[r2J""-.. ; r7

FIG. 8
PRE-COMMITMENT

BUFFER

50 A
A+B -------B

B+C ______ .,
C

FIG. 7

~37

U.S. Patent Sep. 13,2005 Sheet 4 of 4

L2

PARTIAL CHECKPOINT N-2

N-1
N

LIVE-INS FOR TASK N + 1

A

8

C

FIG. 9

FIG. 10

US 6,944,754 B2

US 6,944,754 B2
1

METHOD AND APPARATUS FOR PARALLEL
EXECUTION OF COMPUTER SOFTWARE

USING A DISTILLED PROGRAM

CROSS-REFERENCE TO RELATED
APPLICATIONS

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

BACKGROUND OF THE INVENTION

5

2
without guarantee of accuracy. The distilled program is used
to make predictions about data and control flow, which are
then used to coordinate execution of the actual program
among multiple secondary processors.

More specifically, a primary processor running the dis-
tilled program forwards a starting point (program counter
value) and other necessary state data to the secondary
processors to begin execution of a portion of the original
program. The primary processor then executes the next

10 portion of the distilled program and allocates a correspond
ing next portion of the original program to yet another
secondary processor. As the secondary processors conclude
their tasks, their state data is used to validate the state data The present invention relates to methods and apparatus

for executing a sequential computer program "in parallel" on
multiple processors and in particular to a technique in which 15

a distilled version of the program is used to coordinate the
parallel execution.

assumptions of the distilled program.
The more the distilled program outperforms the original

program the more secondary processors may be employed to
execute the program in parallel

Faster computer processing can be obtained with faster
processors (e.g., processors having higher clock rates, larger
data words, or more powerful instruction sets) or with more
processors by dividing the processing task among a number
of processors. This latter technique is termed parallel pro
cessing.

Programs can be explicitly written as parallel programs
(also called multithreaded programs), but this is often more
difficult than writing a sequential program with the same
functionality. Also, sequential programs can be automati
cally converted into parallel programs by parallelizing
compilers, but these techniques are currently limited to a
small class of applications.

Two previous speculative parallel processing models
include the multi-scalar model and the pre-execution model.
In the multi-scalar model, the program to be executed is
broken, to the extent possible, into independent tasks which
are each assigned to a different processor. To the extent that
the tasks are not truly independent, control information or
data information must be exchanged between the tasks.
When information needed by one task is generated by
another task, the first task must stall and wait for the second
task to complete. The problem of stalling can significantly
limit the efficacy of the multiscalar model.

One approach to minimize stalling is to allow the task
needing information to speculate as to what information it
will receive, picking a data value or control path to continue
execution. When the data or control information arrives, the
speculation may be verified and if incorrect, the speculative
execution may be "squashed" and the program "rewound" to
the point of speculation and the correct data used.
Nevertheless, so long as the prediction can achieve a certain
accuracy, speculation provides speed advantage.

In the pre-execution model, the program is scanned ahead

More generally, the present invention provides a method
of parallel execution of a program, including a first step of

20 creating a distilled version of the program adapted to
execute faster on a processor than the program. The distilled
version of the program is executed on a primary processor
and periodically a checkpoint is taken of the execution of the
distilled version of the program, and this checkpoint state

25 information is transferred from the primary processor to a
secondary processor. The secondary processor commences
execution of a portion of the program starting at a point
corresponding to the point in the distilled program where the
checkpoint was taken and using the state information from

30 the distilled version of the program. This process is repeated
for additional checkpoints using different processors for the
secondary processor.

Thus, it is one object of the invention to provide for
sophisticated control and data prediction through the use of

35 a distilled program. The distilled program is designed to run
faster but closely match the original program with respect to
control and data values needed by the secondary processors.

40

The distilled program may be created by eliminating
instructions whose probability of impacting the program's
execution is below a predetermined threshold, for example,
branch instructions for rarely taken branches. This probabil
ity may be determined by the step of profiling the program
to see how it actually performs in use.

45
Thus, it is another object of the invention to provide a

simple and possibly automatic method of generating the
distilled program.

The amount of compression of the distilled program may
be adjusted by changing the predetermined threshold at

50
which instructions are removed.

of its execution point on a first processor for problem areas
that may slow the execution, for example, LOAD instruc
tions accessing data outside the cache or unresolved 55

BRANCH instructions. A second processor is assigned to
these problem areas to pre-execute them. Again, speculation
may be used when values required for the pre-execution are
not immediately available.

Thus, it is another object of the invention to provide for
a simple method of adjusting how aggressively the distilled
program is "distilled", such as may be used to optimize the
parallelization process.

The execution by the secondary processor may be pre-
ceded by the execution (by a different secondary processor)
of the program concluding at the point in the execution
where the secondary processor began. The ending state
information from a preceding and different secondary pro-

BRIEF SUMMARY OF THE INVENTION

The present invention provides a new model for parallel
execution in which a distilled version of the program is
created that eliminates instructions in the program that rarely
affect the program's execution and possibly applies other
program simplifications. The result is a program that runs
substantially faster than the original program, although

60 cessor may be compared to the state information received
from the primary processor to identify erroneous state
information produced by the primary processor.

Thus, it is another object of the invention to provide a
simple method of verifying speculation and thus, of correct-

65 ing mis-speculation.
The secondary processor or centralized hardware may do

the step of comparing state information.

US 6,944,754 B2
3

Another object of the invention is to delegate the burden
of verification away from the primary processor

The comparison may be limited to a portion of the state
data generated outside the portion of the program executed
by the secondary processor but used by the secondary 5

processor in execution of the portion of the program.

Thus, it is another object of the invention to limit the
amount of state data that needs be communicated between
the processors for the purpose of verification.

State information that is unlikely to be used by a second-
ary processor before verification need not be computed by
the primary processor. The computations that produce such
state information can be removed from the distilled pro-
gram.

10

15

4
invention. Such embodiment and its particular objects and
advantages do not define the scope of the invention,
however, and reference must be made therefore to the claims
for interpreting the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified perspective view of a multiprocessor
system such as may be tailored for use with the present
invention;

FIG. 2 is a fragmentary schematic diagram of the multi
processor system of FIG. 1 showing each processor com
municating with an instruction/data cache and a common L2
cache, the latter holding partial checkpoints;

FIG. 3 is a flow diagram showing the steps of the present
invention in producing a distilled program for execution on
a first processor that coordinates execution of the original
program on multiple secondary processors;

Thus, it is another object of the invention to have the
distilled program/primary processor to avoid computing
data that will not be needed by a secondary processor to
further improve the performance of the primary processor
and reduce the amount of data that needs to be communi
cated between primary and secondary processors.

In addition to eliminating rarely used instructions of the
program, the method of creating the distilled program may
use one or more of the following optimization techniques
known generally in the art: NOP elimination, dead code
elimination, idempotent operation elimination, constant
folding, function in-lining, register reallocation, scheduling,
code layout, IF----conversion, and prefetching.

FIG. 4 is a simplified representation of a program as
20 measured by a profiler showing use of the profile informa

tion in producing the distilled program of FIG. 3 having
fewer instructions;

FIG. 5 is a figure showing separation of the distilled
program of FIG. 4 into multiple tasks, each introduced by a

25 fork instruction, and a transition program all executed by the
primary processor;

FIG. 6 is a figure similar to FIG. 5 showing separation of
the original program into tasks with the beginning of each
task marked, and showing one task, and a transition program
executed by the secondary processors;

Thus, it is another object of the invention to allow
standard program optimization and speculation techniques 30

to be applied in producing the distilled version of the
FIG. 7 is a figure showing the transfer of information

between the primary and secondary processors as a function
of time on a vertical axis, and further showing the verifica-

35 tion process and squashing of task execution in the event of
mis-speculation;

program.

The creation of the distilled program may include the step
of adding markers (fork instructions) to the distilled version
of the program to indicate where the primary processor
should take a checkpoint and transfer the state information
from the primary processor to the secondary processor.

It is thus another object of the invention to permit a simple
mechanism for implementing the method through the addi-

40
tion of a specialized instruction.

FIG. 8 provides example instructions of a task of FIGS. 5
and 7 showing live-in values and live-out values that must
be transferred to and from the task to allow its execution and
which are used for verification purposes;

FIG. 9 is a simplified representation of the task of FIG. 8,
showing internally generated and used values that need not
be communicated to other tasks; and

The state information may include a program counter
value at which the secondary processor should begin execu
tion of the program.

Thus, it is another object of the invention to allow flexible
partitioning of the distilled program into tasks for execution
by secondary processors.

FIG. 10 is a graphic representation of the combination of
45 partial checkpoints such as define the set of state data that

must be sent to the secondary processors.

The state information sent from the primary to the sec
ondary processor can be limited to that which differs from a
reference set of state information (usually the non- 50

speculative state).

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

The following description is that of a preferred embodi
ment of the invention in which functional elements may be
implemented forms of software, hardware, or "firmware"
sharing in the characteristics of both hardware and software.

Thus, it is another object of the invention to reduce the
amount of state information that must be transmitted
between the primary and secondary processor.

The checkpoints of the distilled version may be selected
to minimize the amount of state information transferred
from primary to secondary processor and that needs to be
verified

55 It will be understood to one of ordinary skill in the art that
the particular form of implementation of a functional ele
ment is not critical to the invention and that variations in
implementation from that described may be covered by the
claims.

Thus, it is another object of the invention to provide task 60
partitioning that is likely to lead to efficient allocation of
portions of the program to the secondary processors.

The foregoing and other objects and advantages of the
invention will appear from the following description. In this
description, reference is made to the accompanying 65

drawings, which form a part hereof, and in which there is
shown by way of illustration, a preferred embodiment of the

Referring now to FIG. 1, a single chip multiprocessor 10,
suitable for use with the present invention, provides multiple
processors 12 incorporated into a single integrated circuit
substrate 14.

As shown in FIG. 2, each of the processors 12 designated
P0-PN includes a local instruction/data cache 16 and shares
a common level two (L2) cache 18, which in turn commu
nicates with memory (not shown). The L2 cache 18 provides

US 6,944,754 B2
5

a path of communication between the processors 12 which
may be augmented with special control lines (not shown)
understood to those of ordinary skill in the art and special
partial checkpoint buffers 20 and live-in buffers 53 as will be
described. The cache structure shown is not critical to the 5
invention and the term "common memory" will henceforth
refer to any shared memory structure including the L2 cache.

Referring now to FIG. 3, the present invention is intended
for use with a program 22, (the "original program") that
need not have been written or optimized for parallel execu- 10
tion on a multi-processor system 10. The program 22 may be
numeric or non-numeric (e.g., word processing) and is
generally unrestricted in kind. Source code of the program
22 may, but need not be available.

6
A profiling technique may be used to collect statistics on

actual control flow 34 in the original program 22 during a
period of typical operation of the program 22 to assign
percentage values to each branch in the control flow 34.
Thus, for example, it may be determined that seventy
percent of the time, the program 22 follows the left branch
(to program block I) after instruction block A, and thirty
percent of the time, follows the right branch to program
block B. Likewise, after program block C, less than one
percent of the time, the program 22 may branch to the left
(to program block E) and ninety-nine percent of the time,
may branch to the right (to program block D). The statistics
collected need not be on forward branches only but may
include, for example, backward branches such as from
program block H to program block B which as shown occurs

Preparation of the Distilled Program

Referring still to FIG. 3, at a first step, the invention
processes the program to produce a distilled program 24
from that original program 22. The distilled program 24 has
the qualities that it executes faster on a given individual
processor than the original program 22. As will be explained
in detail below, this increase in execution speed is princi
pally from the elimination of instructions but may be from
other optimization techniques as well, as will be described.
Significantly, though, the distilled program sacrifices accu
racy for speed. In this respect, the distillation process may
make use of extremely aggressive optimization techniques.

15 less than one percent of the time with the forward branch (to
program block I) occurring ninety-nine percent of the time.

The statistics collected need not be on branch biases only
but may include, for example, information on branch
predictability, memory dependences, value invariance,

20 cache behavior, path profiles, loop trip counts, and silence.
The statistics collected by the profiling operation may be

used to produce the distilled program 24 by eliminating
paths which are executed at a rate below the predetermined
threshold 31. While eliminating instructions on rarely

25 executed paths will not alone speed up the average execution
of the distilled program 26, the removal of instructions also
includes the branch instructions themselves (as well as
instructions that compute the branch's outcome) which are

Generally, the distilled program may be created off line
prior to the execution of the program, creating a modified
copy of the program, or may be created concurrently with

30
execution of the program. As part of the process of con
structing the distilled program, transition programs, as will
be described, are constructed.

always evaluated no matter which branch is taken.
In the example of FIG. 4, branches of less than one

percent probability of execution are eliminated, that is, the
branches from instruction blocks H to B and C to E along
with their branch instructions. As noted above, however, the
precise percentage threshold at which branches are elimi-

An example of the type of instructions eliminated from
the original program 22 in creating the distilled program 24
are those instructions associated with branches that are
highly biased to one direction. More generally, as will be
understood from the following description, any instructions
that do not affect control flow or form live-in values for other
tasks may be eliminated.

35 nated is determined by the accuracy threshold value 31
which may be freely varied so, for example, the thirty
percent branch from block A to B could, in theory, be
eliminated as well.

In addition to the elimination of instructions described

The distilled program may be optimized in other ways as
well, as will be described, that do not necessarily eliminate
instructions, but that increase the rate of instructions
executed.

40 above, instruction blocks A, B, C, D, F, G, H and I that
remain, have been shortened in other ways. The following
list of optimizations are not exhaustive but are examples of
well known methods that may also be applied to the original

The production of the distilled program 24 may be 45

performed by a distiller program 26. In one embodiment, the
distiller program 26 may receive profiling information 28
indicating how the program 22 executes on a historical basis.
Profiling techniques that may make such measurements of
running programs are well known in the art. The distiller 50

program 26 may also receive an accuracy threshold value 31
(or set of thresholds) indicating how aggressively the dis
tillation process should be undertaken. Generally, the accu
racy threshold value 31 will be adjusted to balance the
tradeoff between accelerating the execution of the distilled 55

program 24 and the reducing time lost because of mis
speculation errors as will be described. The accuracy thresh
old value 31 may be set empirically for each program 22.

Referring now to FIG. 4, the original program 22 may
include a variety of instruction blocks 32 labeled A through 60

I, the instruction blocks 32 being arbitrary groupings of
instructions. Control flow 34, indicated by arrows connect
ing the instruction blocks 32, describes how execution of the
program 22 moves among the instruction blocks 32. The
control flow 34 will generally change according to changing 65

computation of values by instruction blocks 32 that control
branch instructions.

program 22 to produce a faster running distilled program 24.
(1) NOP elimination: removes compiler inserted NOPs

(instructions that perform no operation.)
(2) Dead code elimination: removes instructions whose

results never affect an active path. The elimination of branch
instructions, previously described, increases the opportunity
for dead code elimination.

(3) Idempotent operation elimination: eliminates instruc
tions that produce a result that is consistently equal to one of
its input operands. This often occurs with logical operations
where one operand is always a superset of the other.

(4) Branch elimination: as described above, strongly
biased branches and their predicate computation, and branch
instructions are removed.

(5) Constant folding: constants can be pushed into the
offset field of a memory instruction. Stack pointer arithmetic
can be collapsed if a function does not call other functions
dynamically.

(6) Function In-lining: function "in-lining" puts the func
tion in line with the code that calls it eliminating the recall
and return instructions. Further, once in line, the function
can be specialized to its call site eliminating other opera-
tions.

US 6,944,754 B2
7

(7) Register Re-allocation: having removed other instruc
tions and performed inlining (described above) provides the
opportunity to allocate registers more efficiently than was
done in the original code. This re-allocation often leads to
removal of register saves and restores if fewer registers are 5

required in the distilled program. Also, register moves can
often be eliminated by register re-allocation.

(8) Additional Register Allocation: repeatedly accessed
memory values can be allocated to a register if free registers
are available eliminating time-consuming memory opera- 10

tions. Frequently the compiler is prevented from allocating
registers because it cannot prove freedom from aliases. With
a memory dependence profile, the distilled program can be
attentive to frequent aliases when allocating registers.

8
ignored by the primary processor PO if it is likely that a
secondary processor will in any case have completed the
STORE before the LOAD is required. The historical sepa
ration of instructions in previous execution cycles can be
compared to a threshold value to make an assessment as to
whether the instruction may be skipped.

While the above examples show various techniques that
may be used to create the distilled program 24, the essential
concern is that the distilled program 24 runs substantially
faster than the original program 22, to provide an opportu
nity for multiple processor parallelization.

Further Processing of the Distilled Program and
Original Program

Referring now to FIG. 5, the resulting distilled program
24 is readied for execution in the primary processor PO (or
by multiple processors serving as a primary processor PO) by
further breaking it into tasks 36. Ideally the tasks are
selected to be as independent as possible, however, the

These optimizations can work synergistically. Instructions 15

removed by one optimization enable further instruction
removal by another. In addition to reducing the dynamic
instruction count, the distilled program can have a higher
instruction per cycle execution speed than the original
program. These known optimization techniques may also be
used to improve the execution speed of the distilled program
24.

20
present invention accommodates a wide variety of
interdependence, that is, later tasks 36 requiring data gen
erated by earlier tasks 36. Generally, task boundaries are
selected not to lie within a small loop or within a small
function. The task boundaries may desirably be set to reduce (1) Simplification: some of the previous optimizations

such as register allocation, not only remove code but sim
plify the remaining code. Reducing LOADs, for example,
reduces data flow height and contention for cache ports
speeding execution.

25 live-in values being variables of a type as will be described
below.

(2) Scheduling: the elimination of branches provides the
distilled program with larger instruction blocks which facili- 30
tates instruction scheduling. In addition, loads can be hoisted
across basic blocks with impunity; exceptions caused by the
distilled program are ignored.

(3) Reducing Static Code Size: removing instructions
from active blocks and eliminating inactive blocks reduces 35

static code size enabling more efficient use of the instruction
cache.

(4) Code Layout: distillation may reduce the average
number of discontinuous fetches (i.e. taken branches)
through function in-lining, branch removal, and assigning 40

the dominant branch target to the fall through path. Code
layout can minimize instruction cache conflicts and increase
the number of instructions fetched per cycle.

(5) If-Conversion: frequently mispredicted branches
may be IF converted (using predication or CMOV 45

instructions) to avoid branch misprediction penalties. Dis
tilled programs create additional profitable opportunities for
IF conversion by reducing the amount of code in the IF and
ELSE clauses.

50
(6) Pre-fetching: cache miss profiling can guide schedul-

ing of loads and insertion of pre-fetches.

Prior to execution by the primary processor, P 0 , a fork
instruction 38 is added in between each task 36 defining
where checkpoints should be taken in the modified distilled
program 24'. Other methods of demarcating the tasks 36 may
also be used.

The processor PO is also provided with transition code 40
which provides an entry back into the modified distilled
program 24' in the event that a task 36 of the modified
distilled program 36 must be restarted after the task 36 is
squashed due to misprediction. The transition code 40
reinitializes the processor PO to state values existing at the
time of the execution of the squashed task 36.

Referring now also to FIG. 6, the tasks 36 in the modified
distilled program 24' labeled A', B' and C' have counterpart
tasks 37 labeled A, B and C in the original program 22.
Generally, as described before, task A will have a substan
tially longer execution time than task A' and likewise for
each of the corresponding tasks 36 and 37.

A bit map 44 is associated with the original program 22
and has a bit corresponding with each instruction of the
original program 22. Bits 45 of the bit map 44 may be set in
the bit map 44 at the first instruction of each task 37 of A,
B and C. These set bits allow the secondary processors 12 to
recognize when they have completed their tasks 37 effec
tively allowing a single task 37 to be loaded into a secondary
processor 12. Other mechanisms for identifying ends of
tasks are possible.

Associated with the task 37 loaded into the secondary

Alternatively, or in addition, the distilled program may
use a new or different instruction set executing faster and
tailored to the purposes of the distilled program in coordi
nating multiple secondary processors. Similarly, the portions
of the program executed by the secondary processor may be
modified from the original program, particularly in ways
that optimize their performance without speculation.

55 processor 12 is transition program 46 which may modify the
state data that was transferred from the primary processor 12
so that it is as will be expected by the original program. The
transition program 46 allows the distilled program to store
data in different locations and re-order operations across

Further, the primary processor PO may skip the evaluation 60 fork instructions, as will be described.
of data values that are not used in the program until a large
number of instructions later, where the large number of
instructions makes it likely that a secondary processor (as
will be described) will have evaluated the data value before
the time it is required by the primary processor or another 65

secondary processor. Thus, for example, a STORE A instruc
tion many instructions before a LOAD A instruction may be

Verification circuitry 50 whose operation is described
below is accessible to each secondary processor 12.

Using the Distilled Program to Coordinate Parallel
Execution of the Program

Referring again to FIG. 3, in overview, the distilled
program 24 is executed by one of the processors 12 (in this

US 6,944,754 B2
9

case, P 0) that will be designated the primary processor. As
the primary processor PO executes the distilled program 24,
it periodically activates a secondary processor (in this
example one of P 1 through P 3) to execute corresponding
portions of the original program 22. At the time of this 5

activation, the primary processor P 0 , transfers state infor
mation 30, consisting of a starting program counter value
and other state data, to the selected secondary processors P 1

through P 3 as will be necessary for the secondary processor
12 to begin execution of the original program 22 at the 10

designated starting point. At a minimum, only variables
modified by execution of the primary processor PO need be
sent as state information 30.

Referring now to FIG. 7, as the primary processor P0

begins execution of the distilled program 24 it arrives at a 15

fork instruction 38 signaling the beginning of task A'. The
fork instruction 38 causes the processor PO to transfer
current state data 30, including a program counter value and
other data likely to be needed by task A, to a secondary
processor P 3 • The secondary processor is arbitrarily chosen 20

from a pool of available processors 12 and need not occur in
any particular sequence.

The chosen processor P 3 receiving the state information
30, executes the transition program 46 which may modify
the state information 30 and may compute a starting pro- 25

gram counter for task A in the original program. Execution
of task A proceeds until the beginning of the next task is
encountered as demarcated by the bit map 44.

10
comparing it to the state information 30 previously provided
to it by the primary processor PO. Generally, this data should
match.

If a match is confirmed, then under the direction of the
verification circuitry 50, the data written by task B is
committed to memory and processor P2 is available for
additional task execution.

Referring still to FIG. 7, during the execution of task B
and operation of the verification circuitry 50, the processor
PO may continue execution of the distilled program 24
arriving at a fork instruction 38 preceding task C'. Again,
state information 30 is transferred to an available processor,
in this case Pl, which begins execution of task C. Upon
completing that execution and starting execution of a veri
fication circuitry 50, processor Pl compares the state infor
mation 30 it received from processor PO to the verification
state information 51 transmitted from processor P 2 . In this
case it is assumed that there is not a match.

Such a mismatch may be caused by mis-speculation of
processor PO caused by the simplification of the distilled
program 24 described above. For example, a rarely taken
path may be taken or other prediction may prove improper.

The mismatch between the verification state information
51 and the state information 30 causes a mis-speculation
condition. The first step in recovering from a misspeculation
is to signal all processors working on parts of the execution
logically after the misspeculation to abort their work. Then
the correct state data 51 is communicated to yet another

30
processor, in this case processor P 2 , to restart execution of
task C, as described above, using the correct input state
information. In addition, the correct state data 51 is trans
mitted to processor PO to restart task C' after completing the

Generally, task A' will execute much faster than task A
and accordingly, the primary processor, PO will arrive at a
second fork instruction 38 demarcating task B' prior to
completion of task A by processor P3 . Upon encountering
the second fork instruction 38, processor PO sends new state
information 30, now updated by the execution of task A', to

35
a second processor P 2 which happens to be available,
causing it to load task B from the original program 22 and
begin execution of task B. At this time, two processors, P 2

and P 3 are simultaneously (in parallel) executing portions of
the original program 22. More than two processors 12 may

40
be simultaneously executing portions of the original pro
gram depending on the degree of acceleration of the distilled
program 42.

At some time after initialization of task B in processor P 2

task A in processor P 3 will complete and the verification
circuitry 50 will be started. Because task A is a non
speculative task (the first task or the first after a recovery),
the state information 30 received from the processor PO by
processor P3 will be assumed to be correct and the verifi
cation circuitry 50 provides a single function of transmitting
verification state information 51 to processor P 2 executing
processor B. The verification information is the data com
puted by task A that forms the state data 30 transferred to
processor P 2 by processor P 0 . The particular sequence of
secondary processors 12 executing tasks may be recorded in
commonly available memory by the verification circuitry 50
to identify processor P2 to which the verification state
information 51 is to be sent. The data written by task A
executing in processor P3 is then committed to memory,
meaning that it is transferred from cache 16 to the L2 cache
18. Processor P3 is then available for additional task execu
tion. Alternatively, the primary processor PO may commit
the data and the processor P3 may simply verify the execu
tion of the primary processor.

Upon completion of task B by processor P2, processor P2
communicates with verification circuitry 50 reading the
verification state information 51 from processor P3 and

transition code 40 to reset its internal state as is necessary.
In this way, the original program 22 may be executed in

parallel by a number of processors according to predictions
implicit in the rapidly executing distilled program 24.

Referring now to FIG. 8, the state information 30 and
check verification state information 51 transmitted between
processors, need not require an actual transmission of the
entire memory space, but may be limited to values that have
been changed as will now be described. Because the sec
ondary processors have a (possibly stale) copy of the state
information, or can retrieve one from the L2 and memory

45 system, it is unnecessary for the primary processor to send
a complete copy of the state information 30. Instead, only
the differences (changes that have been made by the primary
processor via stores and register writes) need to be sent by
the primary processor. Similarly, the verification state infor-

50 mation 51 communicated between secondary processors
need not be a complete copy of state, but merely the
differences introduced by the stores and register writes
performed in the execution of the task in the original
program. These differences can be (logically) broadcast to

55 all processors to keep each processor's local state informa
tion in synchronization.

The whole state information does not need to be verified,
but merely the live-in values, as will be described. In the
example of FIG. 8, the processor 12 executing a task 37

60 needs a variety of values that will be retrieved from the state
information 30. These live-in values can be tracked as they
are used, using a live-in buffer 53 that records the name and
value of each live-in value actually consumed by the task 37.
Thus, at instruction program counter value twenty-two hold-

65 ing the instruction: rl+1024----;,r2, rl is a live-in value
consumed by the task 37 because it is used by the task 37 but
not created in the task 37. On the other hand, values such as

US 6,944,754 B2
11 12

advantages do not define the scope of the invention,
however, and reference must be made therefore to the claims
for interpreting the scope of the invention. For example the
invention is not limited to the multiprocessor system shown

r2 created and consumed within the task 37 are not stored in
the live-in buffer 53. Referring to FIG. 9, values produced
and consumed within the task 37 are not live-in values for
the purpose of verification.

Generally, the live-in values will be a subset of the state
information 30. This means that only these live-in values in
the buffer 53 need to be verified in the verification circuitry
50 and so the verification circuitry 50 consults the live-in
buffer 53 in making this comparison. That is, as long as the
values of the live-in buffer 53 match the verification state
information 51 transmitted from the previous task, verifica
tion may be had even if other values in state information 30
and verification state information 51 do not match.

5 but may be used in a variety of multi-processor architectures
including a multi-threaded processor rather than a multi
processor, or a multiprocessor made up of multithreaded
processors. Thus the term processor use herein should be
held to cover both processors and threads of a multi
threaded processor.

10
We claim:

The task 37 also creates live-out values, being values
generated by the task and used by other later tasks 37. In this 15

case, r2 is a live-out value. Once the verification circuitry 50
completes its verification and commitment is made, live-out
values are committed to cache L2. In the meantime, live-out
values are stored in a precommitment buffer such as held in
cache 16. 20

Referring now to FIG. 10, the transmission of state data
30 from the primary processor PO to the secondary proces
sors P 1-P 2 need not be in the form of a discrete message but
may be in values passed through the partial checkpoint

25 registers 20.

1. A method of parallel execution of a program compris
ing the steps of:

a) creating a distilled version of the program adapted to
execute faster on a processor than the program would
execute on the processor;

b) executing the distilled version of the program on a
primary processor;

c) periodically transferring state information from the
primary processor to a secondary processor;

d) commencing execution by the secondary processor of
a portion of the program starting at a point correspond
ing to where the checkpoint was taken by the primary
processor using the state information from the distilled
version of the program; and

e) repeating steps (b)-(d) for additional checkpoints and
using different processors for the secondary processor. More generally, each of the secondary processors P 1-P 2

may use the general system state indicated by the L2 cache
18 for most memory values, except those changed by tasks
36 of the distilled program that have not yet been verified by
running of the actual program's corresponding task 37.
Thus, referring still to FIG. 10, each task A', B' and C'
executed by the primary processor P0 may create partial
checkpoint data (N-2, N-1, N) changed by those tasks A',

2. The method of claim 1 wherein the step of creating a
distilled version of the program eliminates some instructions

30 of the program whose probability of execution is below a
predetermined threshold.

3. The method of claim 2 including the step of accepting
an input adjusting the predetermined amount.

4. The method of claim 2 wherein step (a) includes the
B' and C'. This partial checkpoint data may be stored in the
checkpoint registers 20 shown in FIG. 2 as part of the L2
cache 18. The partial checkpoint registers allow the L2 to
keep multiple copies of a value and associate with each the
task that created it.

35 step of profiling the program to monitor instructions
executed during execution of the program and creating the
distilled version of the program by removing instructions of
the program executing less than a predetermined amount.

5. The method of claim 1 wherein the execution of step (d)
40 by the secondary processor is preceded by execution by a

different secondary processor of the program concluding at
a point corresponding to where the checkpoint was taken,
and including the further step of:

Generally then, when a task A, B and C performed on the
secondary processor 12 requires an external memory value,
being possibly a live-in value, the secondary processor
logically accesses each set of partial checkpoint data in
reverse order (from N to N-2) looking for the first check
point set that contains the desired value. If no match is 45
found, the system value of L2 is used. Thus, for task N+l
executed on a secondary processor, a value 70 required will

(f) receiving state information from the different second
ary processor at the checkpoint and comparing it to the
state information from the primary processor at step (c)
to identify erroneous state information from the pri
mary processor. be found at a first partial checkpoint data N and a value 72

will be found at a second partial checkpoint value 70 and a
value 73 will be found in the general system state of L2.

If each processor has a private data cache and is executing
a single task, the lookup in the partial checkpoint registers
need only be performed once per value, as the resulting
value can be cached in the primary data cache 16.

6. The method of claim 5 wherein the comparing of step
50 (f) is done by dedicated circuitry.

Because the partial checkpoint register 20 is only 55

accessed on an Ll miss we avoid the increase in cache
access time that would be required to sequentially access
sets of partial checkpoint data stored in the cache 18. Each
set of partial checkpoint data is de-allocated when the
corresponding task is complete on a secondary processor 60

and committed.
The foregoing and other objects and advantages of the

invention will appear from the following description. In this
description, reference is made to the accompanying
drawings, which form a part hereof, and in which there is 65

shown by way of illustration, a preferred embodiment of the
invention. Such embodiment and its particular objects and

7. The method of claim 5 wherein the comparison of step
(f) is further limited to only the data used by the secondary
processor in execution of the portion of the program.

8. The method of claim 5 including at step (f) the step of
squashing executions by the secondary processor and pri
mary processor when the comparison of step (f) indicates
that the state information from the primary processor was
erroneous.

9. The method of claim 1 wherein the step (a) creates the
distilled program by eliminating instructions of the program
according to at least one technique selected from the group
consisting of: NOP elimination, dead code elimination,
idempotent operation elimination, constant folding, function
in-lining, register re-allocation, additional register
allocation, constant folding, and redundancy elimination.

10. The method of claim 1 wherein the step (a) creates the
distilled program by increasing the number of instructions

US 6,944,754 B2
13

executed per cycle according to at least one technique
selected from the group consisting of: strength reduction,
constant propagation, scheduling, code layout, if-conversion
and prefetching.

11. The method of claim 1 wherein step (c) is performed 5

at predetermined points in the program.
12. The method of claim 11 wherein the predetermined

points are demarcated by fork instructions added to the
distilled version of the program, wherein the fork instruc
tions cause the primary processor to transfer the state 10
information from the primary processor to the secondary
processor.

13. The method of claim 1 wherein step (d) includes the
step of executing transition instructions by the secondary
processor converting the state information provided by the 15

primary processor from the distilled version of the program
to correspond with the program portion executed on the
secondary processor.

14. The method of claim 1 wherein the state information
includes data providing a program counter value at which 20
the secondary processor should begin execution of the
program.

14
information, with the primary processor continuing
execution of the distilled version of the program;

whereby the distilled version of the program is executed
by the primary processor contemporaneously with
execution of the program by multiple secondary pro
cessors.

25. The multiprocessor integrated circuit of claim 24
wherein the processors operate so that each given secondary
processor receives state information from a different sec
ondary processor executing an earlier portion of the program
and the multiprocessor integrated circuit compares that state
information to the state information received by the given
secondary processor from the primary processor to identify
erroneous state information from the primary processor.

26. The multiprocessor integrated circuit of claim 25
wherein the processors operate so that a given secondary
processor compares only data of the state information used
by the given secondary processor in the execution of that
portion of the program.

27. The multiprocessor integrated circuit of claim 25
wherein the processors further operate to squash execution
of a program portion by a given secondary processor and the
corresponding portion of the distilled version of the program
by the primary processor when the comparison indicated

15. The method of claim 1 wherein at step (e) the different
processors used as the secondary processors are selected
from a pool of secondary processors according to availabil
ity of processors of the pool.

25 that the state information from the primary processor was

16. The method of claim 1 wherein the checkpoints of the
distilled version of the program are selected to not fall within
loops of the program having less than a predetermined size
and not to fall within functions of the program having less 30
than a predetermined size.

17. The method of claim 1 wherein checkpoint locations
are selected to minimize the number of live-in values to a
task.

18. The method of claim 1 wherein the distilled version of 35

the program uses a different instruction set.
19. The method of claim 1 where the distilled program is

created concurrently with the execution of the program.

erroneous.
28. The multiprocessor integrated circuit of claim 24

wherein the state information includes data providing a
program counter value at which the secondary processor
should begin execution of the program.

29. A computer-readable medium containing a distiller
program which when executed creates a distilled version of
an application program for use in parallel execution of the
application program on a multiple processor chip, the dis
tiller comprising means for eliminating instructions having
a non-zero probability of execution below a predetermined
threshold and including checkpoints at which parallel execu
tion of the program may be coordinated.

30. The distiller program of claim 29 including a profiler 20. The method of claim 1 where the step (d) does not use
the original program, but a modified copy of the program.

21. The method of claim 20, where the distilled program
is allowed to commit state, and the modified copy of the
program is used to verify the execution of the distilled
program.

40 monitoring execution of instructions of the program,
wherein the profiler identifies instructions that statistically
that are used less than a predetermined amount and com
municates this identification to the distiller program.

22. The method of claim 1 where in step (c), only data
modified by the primary processor is sent as state informa
tion by the primary processor.

31. The distiller program of claim 29 wherein the distiller
45 program accepts an input controlling the predetermined

amount.
32. The distiller program of claim 29 wherein the distiller

program further eliminates instructions of the application
program according to at least one technique selected from

23. The method of claim 1 where the distilled program is
parallelized and multiple primary processors coordinate in
its execution.

24. A multiprocessor integrated circuit for parallel execu
tion of a program comprising:

50 the group consisting of NOP elimination, dead code
elimination, idempotent operation elimination, constant
folding, function in-lining, register re-allocation, additional
register allocation, constant folding, and redundancy elimi-(a) a memory adapted to hold a program and a corre

sponding distilled version of the program, the distilled
version of the program including fork instructions and 55

adapted to execute faster on a processor than the
program would execute on the processor; and

(b) a plurality of processors communicating with the
memory, the processors operating so that a primary
processor may execute the distilled program and at a 60

fork instruction transfer state information about current
execution of the distilled program to a free secondary
processor further causing the free secondary processor
to begin execution of a portion of the program at a
location in the program corresponding to the location of 65

the fork instruction in the distilled version of the
program, the free secondary processor using the state

nation.
33. The distiller program of claim 29 wherein the distiller

program increases the number of instructions executed per
cycle in the application program according to at least one
technique selected from the group consisting of strength
reduction, constant propagation, scheduling, code layout,
if-conversion, and prefetching.

34. The distiller program of claim 29 wherein the distiller
program adds fork instructions to the distilled version of the
program, the fork instructions causing a primary processor
executing the distilled program to transfer state information
about current execution of the distilled program to a free
secondary processor whereby the free secondary processor
may begin execution of a portion of the program at a point

US 6,944,754 B2
15

corresponding to the location of the fork instruction using
the state information, and with the primary processor con
tinuing execution of the distilled version of the program so
that the distilled version of the program is executed by the
primary processor contemporaneously with execution of the s
program by multiple secondary processors.

35. A distilled version of an application program both the
distilled version of the application program and the appli
cation program being embodied on a computer-readable
medium, for use in parallel execution of the program on a 10

multiple processor chip, the distilled program eliminating
instructions of the program having a non-zero probability of
execution below a predetermined threshold and including
added fork instructions causing a primary processor of the
multiprocessor chip executing the distilled program to trans- 15

fer state information about current execution of the distilled
program to a free secondary processor whereby the free
secondary processor may begin execution of a portion of the
application program at a point corresponding to the location
of the fork instruction using the state information with the

16
primary processor continuing execution of the distilled
version of the program so that the distilled version of the
program is executed by the primary processor contempora
neously with execution of the program by multiple second
ary processors.

36. The distilled program of claim 35 wherein the distilled
program eliminates instructions of the application program
according to at least one technique selected from the group
consisting of NOP elimination, dead code elimination, idem
potent operation elimination, constant folding, function
in-lining, register reallocation, additional register allocation,
constant folding, and redundancy elimination.

37. The distilled program of claim 35 wherein the distilled
program increases the number of instructions executed per
cycle over the application program according to at least one
technique selected from the group consisting of strength
reduction, constant propagation, scheduling, code layout,
if-conversion and prefetching.

* * * * *

	Bibliography
	Abstract
	Drawings
	Description
	Claims

