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(57) ABSTRACT 
There is provided a high throughput automated single mol
ecule image collection and processing system that requires 
minimal initial user input. The unique features embodied in 
the present disclosure allow automated collection and initial 
processing of optical images of single molecules and their 
assemblies. Correct focus may be automatically maintained 
while images are collected. Uneven illumination in fluores
cence microscopy is accounted for, and an overall robust 
imaging operation is provided yielding individual images 
prepared for further processing in external systems. Embodi
ments described herein are useful in studies of any macro
molecules such as DNA, RNA, peptides and proteins. The 
automated image collection and processing system and 
method of same may be implemented and deployed over a 
computer network, and may be ergonomically optimized to 
facilitate user interaction. 
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AUTOMATED IMAGING SYSTEM FOR 
SINGLE MOLECULES 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

2 
No. 6,294,136, the disclosure of which is fully incorporated 
herein by reference. The data generated from these studies
e.g., by manipulating and observing single molecules-con
stitutes single molecule data. The single molecule data thus 

5 comprise, among other things, single molecule images, 
physical characteristics such as the length, shape and 
sequence, and restriction maps of single molecules. Single 
molecule data provide new insights into the structure and 

This application claims the benefit of U.S. Provisional 
Application Ser. No. 60/542,469 filed Feb. 9, 2004, incorpo
rated herein by reference as if set forth in its entirety. This 
application also relates to U.S. patent application Ser. No. 10 

10/777,850 filed Feb. 13, 2004; U.S. patent application Ser. 
No. 10/888,517 filed Jul. 12, 2004; and U.S. patent applica
tion Ser. No. 10/888,516 filed Jul. 12, 2004, each of which is 
incorporated herein by reference as if set forth in its entirety. 

function of genomes and their constitutive functional units. 
Images of single molecules represent a primary part of 

single molecule datasets. These images are rich with infor
mation regarding the identity and structure of biological mat
ter at the single molecule level. It is however a challenge to 
devise practical ways to extract meaningful data from large 

15 datasets of molecular images. Bulk samples have convention
ally been analyzed by simple averaging, dispensing with rig
orous statistical analysis. However, proper statistical analy
sis, necessary for the accurate assessment of physical, 
chemical and biochemical quantities, requires larger datasets, 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

The work described in this disclosure was conducted with 
United States Government support, grant number DE-FG02-
99ER62830, awarded by the Department of Energy. The 
United States Govermnent has certain rights in the invent
ion(s) of this disclosure. 

BACKGROUND OF THE DISCLOSURE 

1. Field of the Disclosure 
The present disclosure relates to a high throughput auto

mated single molecule image collection and processing sys
tem that requires minimal or limited initial user input. Optical 
images of single molecules and fragments elongated and 
fixed within microfluidic channels can be automatically col
lected, maintaining correct focus, and the images prepared for 
further data processing. A computer-based analysis can be 
performed on each image thereby obviating the problem of 
uneven illumination in fluorescence microscopy, and provid
ing an overall robust imaging operation. Embodiments 
described herein are thus useful in studies of any macromol
ecules such as DNA, RNA and proteins. 

2. Description of the Related Art 
Modem biology, particularly molecular biology, has 

focused itself in large part on understanding the structure, 
function, and interactions of essential macromolecules in liv
ing organisms such as nucleic acids and proteins. For 
decades, researchers have developed effective techniques, 
experimental protocols, and in vitro, in vivo, or in situ models 
to study these molecules. Knowledge has been accumulating 
relating to the physical and chemical traits of proteins and 
nucleic acids, their primary, secondary, and tertiary struc
tures, their roles in various biochemical reactions or meta
bolic and regulatory pathways, the antagonistic or synergistic 
interactions among them, and the on and off controls as well 
as up and down regulations placed upon them in the intercel
lular environment. The advance in new technologies and the 
emergence of interdisciplinary sciences in recent years offer 
new approaches and additional tools for researchers to 
uncover unknowns in the mechanisms of nucleic acid and 
protein functions. 

The evolving fields of genomics and proteomics are only 
two examples of such new fields that provide insight into the 
studies of biomolecules such as DNA, RNA and protein. New 
technology platforms such as DNA microarrays and protein 
chips and new modeling paradigms such as computer simu
lations also promise to be effective in elucidating protein, 
DNA and RNA characteristics and functions. Single mol
ecule optical mapping is another such effective approach for 
close and direct analysis of single molecules. See, U.S. Pat. 

20 and it has remained intrinsically difficult to generate these 
datasets in single molecule studies due to image analysis and 
file management issues. To fully benefit from the usefulness 
of the single molecule data in studying nucleic acids and 
proteins, it is essential to meaningfully process these images 

25 and derive quality image data. 
Effective methods and systems are thus needed to accu

rately extract information from molecules and their structures 
using image data. For example, a large number ofimages may 
be acquired in the course of a typical optical mapping experi-

30 ment. To extract useful knowledge from these images, effec
tive systems are needed for researchers to evaluate the 
images, to characterize DNA molecules of interest, to 
assemble, where appropriate, the selected fragments thereby 
generating longer fragments or intact DNA molecules, and to 

35 validate the assemblies against established data for the mol
ecule of interest. This is particularly relevant in the context of 
building genome-wide maps by optical mapping, as demon
strated with the -25 Mb P. falciparum genome (Lai et al, 
Nature Genetics 23:309-313, 1999. 

40 In the Lai et al. publication, the P.falciparum DNA, con-
sisting of 14 chromosomes ranging in size from 0.6-3.5 Mb, 
was treated with either NheI or BamHI and mounted on 
optical mapping surfaces. Lambda bacteriophage DNA was 
co-mounted and digested in parallel to serve as a sizing stan-

45 dard and to estimate enzyme cutting efficiencies. Images of 
molecules were collected and restriction fragments marked, 
and maps of fragments were assembled or "contiged" into a 
map of the entire genome. Using NheI, 944 molecules were 
mapped with the average molecule length of 588 Mb, corre-

50 sponding to 23-fold coverage; 1116 molecules were mapped 
using BamHI with the average molecule length of 666 Mb, 
corresponding to 31-fold coverage (Id at FIG. 3). Thus, each 
single-enzyme optical map was derived from many overlap
ping fragments from single molecules. Data were assembled 

55 into 14 contigs, each one corresponding to a chromosome; the 
chromosomes were tentatively numbered 1, the smallest, 
through 14, the largest. 

Various strategies were applied to determine the chromo
some identity of each contig. Restriction maps of chromo-

60 sames 2 and 3 were generated in silica and compared to the 
optical map; the remaining chromosomes lacked significant 
sequence information. Chromosomes 1, 4 and 14 were iden
tified based on size. Pulsed field gel-purified chromosomes 
were used as a substrate for optical mapping, and their maps 

65 aligned with a specific contig in the consensus map. Finally, 
for chromosomes 3, 10 and 13, chromosome-specific YAC 
clones were used. The resulting maps were aligned with spe-
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cific contigs in the consensus map (Id at FIG. 4). Thus, in this 
experiment multi-enzyme maps were generated by first con
structing single enzyme maps which were then oriented and 
linked with one another. For a number of chromosomes that 
are similar in size, such as chromosomes 5-9, there are many 5 
possible orientations of the maps. Such maps may be linked 
together by a series of double digestions, by the use of avail
able sequence information, by mapping ofYACs which are 
located at one end of the chromosome, or by Southern blot
ting. 

In short, optical mapping is powerful tool used to construct 
10 

genome-wide maps. The data generated as such by optical 
mapping may be used subsequently in other analyses related 
to the molecules of interest, for example, the construction of 
restriction maps and the validation of DNA sequence data. 
There is accordingly a need for systems for visualizing, anno- 15 

tating, aligning and assembling single molecule fragments. 
Such systems should enable a user to effectively process 
single molecule images thereby generating useful single mol
ecule data; such systems should also enable the user to vali
date the resulting data in light of the established knowledge 20 

related to the molecules of interest. Robustness in handling 
large image datasets is desired, as is rapid user response. 

A prior system relating to the present disclosure contained 
scale and angle values that were stored within the system. The 
correlation of images to determine precise alignment was 25 

accomplished by comparing "bright spots" in the images-a 
very slow process that entailed identification of the bright 
regions in each successive overlapping region, all in "image 
space." 

Although the use of a Laplacian filter algorithms have been 30 

used previously in automatic focusing applications (E. Krot
kov. Focusing. International. Journal of Computer Vision. 1 
(3):223-237, 1997; N. Ng Kuang Chern, et al. Practical issues 
in pixel-based auto focusing for machine vision. Proceedings 
of the 2001 IEEE International Conference on Robotics and 35 

Automation. Seoul, Korea, May 21-26, 2001; J. Krautsky, et 
al. A new wavelet-based measure of image focus. Pattern 
Recognition Letters 23:1785-1794, 2002) they were not opti
mized for the purpose of imaging single molecules in an 
optical mapping application and were not available in a code 40 

library form that could be used in this laboratory. This may be 
due to the fact that varying types of tissues ( cells, DNA, etc.) 
each present their own set of automatic focusing challenges 
making a robust general purpose automatic focus algorithm 
impractical. Moreover, most cameras are sold independent of 45 

microscopes and vendors are not aware of the type of trans
lation gear necessary for various applications. Thus, innova
tive solutions applying the most current technology to the 
automatic focus concept was necessary; the system according 
to the present disclosure integrates cameras, translation 50 

equipment and software-together which are not available as 
a package for this particular application. An example of this is 
the "tiling" step; it is uniquely designed to solve the specific 
problem of automatically focusing "out of focal plane bright 
fluorescent objects." Recently, Zeiss offered an automatic 55 

focusing routine that works solely with a Hamamatsu camera; 
this system remains inadequate for an optical mapping appli
cation such as the one described herein, however. Zeiss focus
ing hardware also appears to relate only to intensity focusing. 

In summary, the present disclosure describes a novel, auto- 60 

mated solution to a single molecule optical mapping applica
tion. 

4 
assemblies, and for preparation of these single molecule 
images for further processing in external system(s). Both the 
devices, such as computer systems, and the methods for auto-
mated collection and processing provide for an overall robust 
imaging operation. The systems may include one or more of 
the following features, or may utilize all of them. Focus is 
advantageously automatically maintained during image col
lection. During the image processing step, the uneven illumi
nation of fluorescence microscopy may be substantially 
reduced or eliminated by a flattening process. Offset of over
lap may be determined between images and adjusted. Overly-
exposed (bleached) region of overlap on one image of each 
pair of overlapping images may be automatically overwritten 
with stronger (unbleached) data from the identical region of 
overlap from the second image in the pair, the second image 
having been exposed to a light source only once. The resulting 
overwritten images then may be virtually merged to form a 
superimage or montage for visualization in the systems, yet 
remain as separate image files for further processing else
where. Following a collection, the quality of automated 
focusing process during that collection may be assessed using 
a diagnostic tool. The automated collection and processing 
systems may be implemented and deployed over a computer 
network. Further, the systems and methods of these embodi
ments may be ergonomically optimized to facilitate both 
required and optional user interactions. 

In accordance with the embodiments, there are provided 
automated image collection and processing computer sys
tems and methods for collection of single molecule images, 
wherein the single molecule images comprise signals derived 
from single molecules or single molecular assemblies or 
polymers, any or all of which may be elongated and fixed. The 
systems may comprise single molecule image collection 
computer system with a user interface capable of displaying 
one or more areas on a surface, ( e.g., a microscope slide) for 
preparation of automated collection ofimages. The user inter-
face may allow a user to select one or more areas to be imaged 
and to initiate automated image collection. User selection of 
one or more areas for imaging, as well as initiation of auto
mated image collection and processing, may be ergonomi
cally optimized. The methods may comprise one or more of 
the steps: visualization and selection within a user interface of 
a computer system of one or more microchannels or other 
areas on a surface such as a microscope slide containing 
single molecules, their assemblies or polymers; and initiation 
of automated image collection and processing with no further 
user intervention if desired. Such processing may include one 
or more of the following steps or processes: automated focus
ing during automated image collection; automated image 
flattening; image overlapping and image overwriting and 
merging. The flattening and overlapping steps are order inde-
pendent following collection provided they precede the over
writing and merging step. 

In other embodiments there are provided computer sys
tems and methods for automated image collection and pro
cessing of single molecule images in which single molecule 
images are derived from optical mapping of single molecules, 
and in which single molecules are individual molecules or 
individual molecular assemblies or polymers. In various 
embodiments the single molecule is a DNA molecule. In yet 
other embodiments the single molecule is an RNA molecule, 
a peptide or a protein. 

SUMMARY OF THE DISCLOSURE 

This disclosure provides devices and methods for auto
mated collection of images of single molecules and their 

In other embodiments there are provided computer sys
tems and methods in which a user may locate and define 

65 control points and pass depth for one or more areas on a 
surface containing single molecules and fragments, both of 
which define the boundaries of the image collection given the 
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magnification setting, the image size and the size of each area 
selected. In various embodiments, the surface is a microscope 
slide. 

6 
instead of a sum image. The dark noise reflects image inten
sity present with no illumination source, and is determined 
automatically from an image taken at the beginning of every 
collection with the camera shutter closed. 

In other embodiments there are provided computer sys
tems and methods for automated image flattening in which 
the background illumination pattern of each image is auto
matically modeled in an iterative process including one or 
more of the steps: application ofa smoothing spline function 
to interpolate the low frequency components and to remove 
the high frequency components, and removal from the analy
sis of any pixel intensity values above two standard deviations 
from the mean following the fit. The iterative process is ter
minated when the standard deviation reaches its nadir. In 
these or other embodiments the automated image flattening 
component may be used for this process. 

In other embodiments there are provided computer sys
tems and methods in which the initial offset estimate for 
alignment within each pair of adjacent overlapping optical 

In other embodiments there are provided computer sys
tems and methods in which a series of overlapping optical 5 

images of the single molecules or single molecular assem
blies or polymers is automatically collected within the area(s) 
defined by the control points and pass depth. In other embodi
ments within the computer systems and methods, the series of 
overlapping optical images is automatically collected main- 10 

taining correct focus. In other embodiments image process
ing methods following automated collection may comprise 
one or more of the following steps and/or the following com
puter system components: automated image flattening using 
the automated image flattening component; image overlap- 15 

ping using the automated image overlapping component; and 
overwriting and merging using the overwriting and merging 
component. The order of the image flattening and overlap
ping steps is unimportant provided both occur prior to auto
mated image overwriting and merging. 20 images may be determined automatically within the series of 

overlapping optical images using the automated image over
lapping component. In these embodiments, the resulting sub
offsets may be used to determine error of initial offset esti-

According to other embodiments, there are provided com
puter systems and methods in which automated focus may be 
achieved by one or more of the following steps or processes: 
application of a Laplacian filter to small regions within reach mate and to adjust offset estimate for more precise alignment 

within each pair of overlapping images. 
In other embodiments there are provided computer sys

tems and methods for automated image overlapping using the 
automated image overlapping component which may com
prise one or more of the following: determination of initial 
offset estimate of aligriment between each pair of adjacent 
overlapping optical images; revision of scale and angle val-
ues; calculation of sub-offsets to determine error of initial 
offset estimate; and addition of the sub-offsets to the initial 
offset estimate to yield adjusted element and line (E/L) dis-

of the optical images to define areas of focus based on contrast 25 

in image intensity; generation of point-of-focus values rep
resenting varying focal planes for the image which, when 
accompanied by corresponding Gaussian distribution curves, 
together may represent focal planes of single molecule image 
data in sharpest focus; retention of the most frequently 30 

observed point-of-focus values and removal of remaining, 
outlying values from the analysis; and application of a 
smoothing spline function to the most frequently observed 
point-of-focus values to interpolate a final focus solution, a 
calculated focus value, for the image. 

According to other embodiments, there are provided com
puter systems and methods in which the most frequently 
observed point-of-focus values may comprise a predeter
mined number (e.g., five) of the most frequently observed 
point-of-focus values. According to yet other embodiments, 40 

there are provided computer systems and methods in which 
each of the small regions of an image may comprise a region 
small enough to accommodate at least a predetermined num
ber of tiles, e.g., 100, in each image. According to yet other 
embodiments each of the small regions of an image may 45 

range from 8 by 8 pixels to 16 by 16 pixels, yet within each of 
the images the size the small region may be uniform through
out. According to yet other embodiments each of the small 
regions of an image may comprise a 10 by 10-pixel region. 

35 tances for more precise alignment within each pair of adja
cent overlapping optical images. 

According to other embodiments there are provided com- 50 

puter systems and methods in which the series of overlapping 
optical images is automatically flattened or substantially flat
tened, during which background and other illumination that is 
not generated primarily from the single molecules, single 
molecular assemblies or polymers is substantially reduced or 55 

removed from the images and the remaining illumination is 
normalized for further processing. A series of flattened opti-
cal images may result from this process. The automated 
image flattening step may comprise automated lessening or 
removal of dark noise from the total image intensity of each 60 

image; automated interpolation and substantial or complete 
removal of the image background noise of each image; and 
automated normalization of remaining image intensity using 
a sum image if a light source other than a laser light source is 
used. If a laser light source is used, normalization of the 65 

remaining image intensity of each image may be achieved 
using a single image of the background illumination pattern 

According to yet other embodiments there are provided 
computer systems and methods in which adjacent overlap
ping images include those collected sequentially within a row 
or colunm that overlap one another, as well as images in series 
that are flanked on either or both sides and overlap with 
images in the adjacent columns or rows. 

In another embodiments there are provided computer sys
tems and methods for automated image overlapping in which 
the initial offset estimates are based on the LUDL motor 
movement, the skew between the axes of the microscope state 
and the camera detector, and scaling. Scaling is the difference 
in size between one step of motor movement and the number 
of pixels the image moves. 

According to yet other embodiments, there are provided 
computer systems and methods in which sub-offsets are 
employed, and within each pair of sequential flattened optical 
images within the series of flattened optical images, flattened 
image intensity data within a region of overlap exposed to a 
light source more than once may be automatically overwritten 
with data from the identical region of overlap on an adjacent 
flattened image exposed to the light source only once; the 
resulting series of overwritten optical images replaces the 
series of flattened optical images. 

In another embodiment of the present disclosure there are 
provided computer systems and methods for automated 
image overlapping in which calculation of sub-offsets may 
comprise location of the best correlation (peak) within the 
data patterns of the overlapping regions of adjacent images, 
which method comprises one or more of the ordered steps: 
preparation of the image data within sub-images for transfor-
mation and correlation analysis; and computation of a Cross-
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to the light source only once; the resulting series of overwrit
ten optical images containing overwritten regions may 
replace the series of flattened optical images. The methods of 
automated image overwriting and merging also may include 

Correlation Function (CCF) through a Fast Fourier Transfor
mation (FFT). Computation of a CCF through an FFT 
comprises transformation of image data from intensity to 
frequency space, point-wise multiplication of the transform 
coefficients; frequency whitening of the results of the point
wise multiplication process; application of a Laplacian filter 
to the results of the frequency whitening; and execution of an 
inverse FFT of the product to yield the CCF. The CCF pro
vides a pair of sub-offsets defining the relative error from the 
initial offset estimate. 

5 automated merging of the overwritten regions within each 
pair of adjacent overwritten optical images to produce a 
single virtual superimage for visualization in the system; the 
series of overwritten optical images may be merged in the 

10 
sequential order the raw images were initially collected. 

In yet another embodiment of the present disclosure there 
are provided computer systems and methods for automated 
image overwriting and merging in which a linear blending of 
intensity values may be achieved in a transition region 
between the overwritten regions and non-overwritten regions, 

In other embodiments there are provided computer sys
tems and methods for automated image overlapping in which 
preparation of the image data for transformation and correla
tion analysis may comprise one or more of the ordered steps: 
copying overlapping regions of each pair of adjacent overlap
ping optical images into separate work areas to produce a 
copy of each of these regions (sub-images); calculating the 
average intensity of each of the sub-images and normalizing 
pixel intensity values within each of the sub-images; adding a 
pad-area and a fill-area, respectively, along two edges of each 
of the sub-images, filling of each of the pad- and fill-areas 
with predetermined values in a predetermined manner. 

15 in which the intensity values at the edge of the overwritten 
regions are identical or substantially identical to those in the 
non-overwritten regions and in which the transition region is 
of a predetermined width, e.g., 20 pixels wide. 

In yet another embodiment of the present disclosure there 
20 is provided a method for automated image overwriting and 

merging in which, despite merging for visualization of con
tents of the entire microchannel or other area imaged, each 
overwritten image may be retained as a separate file on a In other embodiments there are provided computer sys

tems and methods for automated image overlapping in which 
the addition of pad-areas and fill-areas and filling these areas 25 

as part of the preparation of image data may comprise one or 
more of the ordered steps. A pad-area and a fill-area, respec
tively, are appended along two adjacent sides of each sub
image such that the pad-area extends as a border along the 
edge of one side of the first sub-image and abuts and is 
adjacent to the fill-area bordering along the entire, adjacent, 
second side of that sub-image; the positions of the adjacent 
pad- and fill-areas on the first sub-image are switched with 
respect to each other on the second sub-image. For the one of 
the sub-images, the pad-area is filled vertically with smoothly 
interpolated values that range between those along the top and 
bottom edges of the sub-image, and the fill-area of that sub
image is filled with zeros. For the second sub-image, the 
pad-area is filled horizontally with smoothly interpolated val
ues that range between those along the right and left edges of 40 

the sub-image, and the fill-area of the second sub-image is 
filled with zeros. 

processing computer. 
In another embodiment of the present disclosure there are 

provided computer systems and methods for automated 
image collection and processing of single molecule images, 
in which a diagnostic computer tool that is not a required 
component of said system may be utilized to manually assess, 

30 after image collection is complete, the quality ofimage focus
ing performed by the automated image focusing component 
of the system during image collection. In yet other embodi
ments there are provided computer systems and methods in 
which manual assessment of image focusing performed by 

35 the automated image focusing component may be ergonomi
cally optimized. 

In yet other embodiments there are provided computer 
systems and methods for automated image overlapping in 
which the pad- and fill-areas represent borders wherein the 45 

width of the border is equal to no more than twice the 
mechanical error associated with optical image collection in 
the system. 

According to other embodiments there are provided com
puter systems and methods for automated image overlapping 50 

in which normalization of pixel intensity values within each 
of the sub-images is achieved, when the intensity value of 
eachofthe pixels is greater than the average intensity, through 
a natural log-transformation of the ratio of each pixel inten
sity value to the average intensity; when pixel intensity is less 55 

than the average intensity, normalization is achieved by sub
traction of 1.0 from the ratio of the pixel intensity value to the 
average intensity. 

In other embodiments there are provided computer sys
tems and methods for automated image overwriting and 60 

merging, using the automated overwriting and merging com
ponent, with the use of the sub-offsets and within each pair of 
adjacent overlapping flattened optical images, may include 
the automatic overwriting of bleached pixel intensity data 
within a region of overlap exposed to a light source more than 65 

once, with the stronger pixel intensity data from the identical 
region of overlap on an adjacent overlapping image exposed 

BRIEF DESCRIPTION OF DRAWINGS 

FIG. 1 is a screenshot showing the user interface used for 
initiating image collection. It depicts inputting control point 
information from the microcharmels. 

FIG. 2A is a screenshot showing the automated focus diag
nostic tool interface, indicating LUDL position (in steps) at 
each view prior to application of the algorithm for focus 
analysis. 

FIG. 2B is a screenshot showing the automated focus diag
nostic tool interface, following application of the algorithm 
for focus analysis. Areas of green represent an increase in 
contrast, while areas of red represent a decrease in contrast. 

FIGS. 3A and 3B are screenshots taken during the over
lapping process. These sub-images----copies of only the over
lapping regions of two adjacent optical images-show fluo
rescing single molecules and fragments in a microscope slide 
channel. Pad-areas and fill-areas have been added as borders 
as described below to perform the CCF through a FFT. 

FIG. 3C is a screenshot of the CCF diamond-shaped region 
that is searched for the correlation peak in the overlapping 
process as described below. 

DETAIL DESCRIPTION OF DISCLOSURE 

Relevant Terms 
The following disciplines, molecular biology, microbiol

ogy, immunology, virology, pharmaceutical chemistry, medi
cine, histology, anatomy, pathology, genetics, ecology, com
puter sciences, statistics, mathematics, chemistry, physics, 
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material sciences and artificial intelligence, are to be under
stood consistently with their typical meanings established in 
the relevant art. 

10 
ments. In certain embodiments, various wavelengths may be 
employed when light microscopy is used to generate single 
molecule images, including, e.g., laser, UV, near, mid, and far 
infrared. In other embodiments, various fluorophores may be As used herein, genomics refers to studies of nucleic acid 

sequences and applications of such studies in biology and 
medicine; proteomics refers to studies of protein sequences, 
conformation, structure, protein physical and chemical prop
erties, and applications of such studies in biology and medi
cme. 

5 employed when fluorescent signals are acquired. Further, 
single molecule images according to various embodiments of 
this disclosure may be multi-spectral and multi-dimensional 
(e.g., one, two, three-dimensional). 

As used herein, genomics and proteomics data refers to any 
The following terms: proteins, nucleic acids, DNA, RNA, 

genes, macromolecules, restriction enzymes, restriction 
maps, physical mapping, optical mapping, optical maps (re
striction maps derived from optical mapping), hybridization, 
sequencing, sequence homology, expressed sequence tags 
(ESTs), single nucleotide polymorphism (SNP), CpG 
islands, GC content, chromosome banding, and clustering, 
are to be understood consistently with their commonly 
accepted meaning in the relevant art, i.e., the art of molecular 
biology, genomics, and proteomics. 

10 data generated in genomics and proteomics studies from dif
ferent technology platforms; and biomedical data refers to 
data derived from any one or more biomedical technology 
platforms. 

As used herein, the term "contig" refers to a nucleotide 
15 (e.g., DNA) whose sequence is derived by clustering and 

assembling a collection of smaller nucleotide (e.g., DNA) 
sequences that share certain level of sequence homology. 
Typically, one manages to obtain a full-length DNA sequence 
by building longer and longer contigs from known sequences 

The following terms, atomic force microscopy (AFM), 
scan tunneling microscopy (STM), flow cytometry, optical 
mapping, and near field microscopy, etc., are to be understood 
consistently with their commonly accepted meanings in the 
relevant art, i.e., the art of physics, biology, material sciences, 
and surface sciences. 

20 of smaller DNA (or RNA) fragments (such as expressed 
sequence tags, ES Ts) by performing clustering and assembly. 
Various clustering programs are known; some of which are 
publicly available. See, e.g., "CluserW" and "Fragment 
Assembler", each of which is available on the World Wide 

25 Web. 
As used herein, the term "single molecule assembly" refers 

to larger single molecule fragments assembled from smaller 
fragments. In the context of nucleic acid single molecules, 
"assembly" and "contig" are used interchangeably in this 

30 disclosure. 

The following terms, database, database server, data ware
house, operating system, application program interface 
(API), programming languages, C, C++, Extensible Markup 
Language (XML), SQL, as used herein, are to be understood 
consistently with their commonly accepted meanings in the 
relevant art, i.e., the art of computer sciences and information 
management. Specifically, a database in various embodi
ments of this disclosure may be flat data files and/or struc
tured database management systems such as relational data
bases and object databases. Such a database thus may 35 

comprise simple textual, tabular data included in flat files as 
well as complex data structures stored in comprehensive data
base systems. Single molecule data may be represented both 
in flat data files and as complex data structures. 

As used herein, single molecules refer to any individual 40 

molecules, such as macromolecule nucleic acids and pro
teins. A single molecule according to this disclosure may be 
an individual molecule or individual molecular assembly or 
polymer. That is, for example, a single peptide molecule 
comprises many individual amino acids. Thus, the terms 45 

"single molecule," "individual molecule," "individual 
molecular assembly," and "individual molecular polymer" 
are used interchangeably in various embodiments of this dis
closure. Single molecule data refers to any data about or 
relevant to single molecules or individual molecules. Such 50 

data may be derived from studying single molecules using a 
variety of technology platforms, e.g., flow cytometry and 
optical mapping. The single molecule data thus comprise, 
among other things, single molecule images, physical char
acteristics such as lengths, heights, dimensionalities, charge 55 

densities, conductivity, capacitance, resistance of single mol
ecules, sequences of single molecules, structures of single 
molecules, and restriction maps of single molecules. Single 
molecule images according to various embodiments com
prise signals derived from single molecules, individual mo!- 60 

ecules, or individual molecule assemblies and polymers; such 
signals may be optical, atomic, or electronic, among other 
things. For example, a single molecule image may be gener
ated by, inter alia, atomic force microscopy (AFM), flow 
cytometry, optical mapping, and near field microscopy. Thus, 65 

electronic, optical, and atomic probes may be used in produc
ing single molecule images according to various embodi-

The term "array" of "microarray" refers to nucleotide or 
protein arrays; "array," "slide," and "chip" are interchange
able where used in this disclosure. Various kinds of nucleotide 
arrays are made in research and manufacturing facilities 
worldwide, some of which are available commercially. (e.g., 
GENECHIP microarray system by Affymetrix, Inc., LIFE
ARRAY microarray system by Incyte Genomics). Protein 
chips are also widely used. See Zhu et al., Science 293 (5537): 
2101-05, 2001. 

The terms "microfluidic channel," "microcharmel" and 
"charmel'' may be used interchangeably in various embodi
ments of the disclosure, and refer to the individual lanes on a 
microscope slide on which single molecules and single mol
ecule fragments have been deposited, elongated and fixed for 
optical imaging and mapping. A microcharmel may contain 
several single molecules and fragments. Furthermore, single 
molecules may be fixed in areas that are not in the shape of 
channels but, instead, as spots, blots, wells, or any other shape 
that will allow optical imaging of its contents, and may none
theless be referred to as charmels and the like in this disclo
sure. 

The terms "image" and "frame" may be used interchange
ably and refer, with each exposure, to the entire area captured 
by the camera. 

The term "overlap" or "overlapping" refers to 1) the pro
cess of determining the offset or relative distance between 
images adjacent to one another, or 2) a region common to 
adjacently-positioned images within a channel. The term 
"offset" refers to the relative shift in position, in terms of the 
number of pixels in XN coordinates, that the first image must 
be moved to align it to overlap with a second image, i.e., (0,0) 
in the first image is located at location (X,Y) in the second 
image. 

The term "sub-image" is the area within each image of a 
pair of adjacent images that roughly overlap as determined 
with an "initial offset estimate" based on LUDL movement. 
The initial offset estimate is then corrected to achieve a more 
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perfect alignment between overlapping images when sub
images from adjacent images are compared by a Fast Fourier 
Transformation (FFT) process. The term "sub-offset" refers 

12 
intensity shift of the illumination source from the center to the 
edge of the image; the terms "bright" image and "sum" image 
may be used interchangeably and represent multiplicative 
noise. The term "additive noise" refers to light reflected from to the number of pixels that the first sub-image must be moved 

to align it for overlapping with the second sub-image, cor
recting the initial offset estimate. 

5 the glass surface and glass slide. 
A user interface, or a view, as used herein and interchange

ably, refers to any kind of computer application or program 
that enables interactions with a user. A user interface or 
viewer may be a graphical user interface (GUI), such as a 

The term "pad-area" refers to an artificial extention of a 
sub-image filled with interpolated data values. The term "fill 
area" relates to the artificial extension of a sub-image filled 
with zeroes. The typical size of the fill-area increases the 
dimensions of the sub-image on all four of its sides. The FFT 
performed in this system requires the preparation of both 
pad-areas and fill-areas. 

10 browser. Examples of such a browser include MICROSOFT 
INTERNET EXPLORER internet browser and NETSCAPE 

The phrase "adjacent overlapping optical images" includes 
pairs ofimages collected in series within a colunm or row that 15 

overlap one another, as well as images in series that are 
flanked on either or both sides and overlap with images in the 
adjacent colunms or rows. 

The term "frequency whitening" refers to normalization of 
FFT coefficients to unit magnitude (length). 20 

The terms "overwriting" and "merging" may be used inter
changeably in the context of the component of the system 
described below in which the bleached data from an overlap
ping region of the microscope slide exposed to a light source 
more than once is overwritten with stronger, i.e., more 25 

intense, data from an identical region of overlap from the an 
adjacent imaging area on the microscope slide. 

The terms "automated" and "automatic" may be used inter
changeably in various embodiments of the present disclosure, 
and refer to 1) the components of the computer system of this 30 

disclosure-either collectively or individually-that 
describe a system for image collection requiring, once initi
ated, no human intervention, or 2) processing steps disclosed 
herein that require, once initiated, no human intervention for 
completion. 35 

The terms "tile" and "image" in certain portions (merging 
step) of the autocollection process may be used interchange
ably and refer to the 1316 by 1032-pixel image of the microf
luidic channel produced by the CCD camera. However, 
within the automated focusing component "tiling step" por- 40 

tion of the autocollection process, a tile is a 10 by 10 group of 
pixels within an image for the purpose of calculating a focus 
( energy change) value for that region. 

The terms "flattening" or "flat fielding" may be used inter
changeably and refer generally to the processes of removing 45 

the effect of the background illumination and controlling for 
the brightness of the image. 

The "tiling step" in the automated focusing process 
described in this disclosure refers to the application of a 
Laplacian filter to small regions within each image to define 50 

areas of focus based on contrast in image intensity. 
The term "identical" in "identical region of overlap on an 

adjacent, sequential image exposed to a light source only 
once" means the area of overlap between two adjacent images 
that is defined by collection of the second of the two images. 55 

The term "primarily" as used when referring to illumina
tion generated from images of single molecules and their 
assemblies relates specifically to the illumination from the 
genomic molecule itself as opposed to light reflected from the 
camera lens or surface such as a glass microscope slide, the 60 

intensity signal present in an image with no illumination 
source, or the uneven illumination due to the intensity shift of 
the illumination source from the center to the edge of the 
image. 

NAVIGATOR internet browser. A user interface also may be 
a simple command line interface in alternative embodiments. 
A user interface of the invention(s) of this disclosure may also 
include pug-in tools that extend the existing applications and 
support interaction with standard desktop applications. A 
user interface in certain embodiments of the invention(s) of 
this disclosure may be designed to best support users' brows
ing activities according to ergonomic principles. 

"Ergonomically optimized," as used herein, refers to opti
mization on the design and implementation of the assembly 
system based on ergonomics principles. The International 
Ergonomics Association defines ergonomics as both the sci
entific discipline concerned with the understanding of inter
actions among humans and other elements of a system, as 
well as the profession that applies theory, principles, data and 
methods to design in order to optimize human well-being and 
overall system performance. Ergonomists contribute to the 
design and evaluation of tasks, jobs, products, environments 
and systems to make them compatible with a user's needs, 
abilities and limitations. Ergonomically optimized systems 
according to this disclosure provide reduced error rate and 
improved efficiency and quality in user interaction. 
Automated Image Acquisition System 

Overview. Optical mapping data collections for single 
molecules may easily exceed 1000 images per microscope 
slide; it has therefore become impractical for a technician to 
oversee the capture of each image. Described herein are 
embodiments of an automated single molecule image acqui
sition and processing computer system and method that 
allows a user to select control points and pass depth defining 
one or more areas to be imaged, and to initiate the automated 
image collection process without further intervention if 
desired. During automated image collection within a micro
channel according to one embodiment of the present disclo
sure, a straight-line path is traversed between the selected 
control points ( e.g., beginning and ending) for each channel, 
automatically focusing at each location and acquiring the 
image. Currently, more than 100 images per microchannel are 
collected and as much as 20 percent of each image frame is 
overlapped with the previous and subsequent (or adjacent) 
images within the defined imaging area, although the number 
of images per microchannel can be varied from 1-20, 21-50, 
51-75, 76-100, 101-125, 126-150, 151-200, and greater than 
200. Likewise, the overlap may vary from 1-5 percent, 6-10 
percent, 11-15 percent, 16-20 percent, 21-25 percent, 26-30 
percent, 31-40 percent, or greater than 40 percent. The auto
mated focusing component of this system permits and facili
tates automated optical mapping of single molecules. 

Following collection, the images are routed to processing 
cluster where analysis is initiated. Image processing of the 
system disclosed below is comprised of substantial or com
plete removal of background intensity and normalization of 
the remaining intensity ("flattening") of the images, determi-

The term "dark noise" refers to the intensity signal present 
in an image with no illumination source. The term "multipli
cative noise" refers to the uneven illumination due to the 

65 nation of precise alignment between adjacent, overlapping 
images, the overwriting of data in overly exposed regions of 
overlap, and the virtual merging of overwritten images ("mo-
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saicing") to produce a superimage for visualization. Indi
vidual raw and overwritten images resulting from the collec
tion and processing system disclosed are maintained as 
separate files. The overwritten image files are routed for fur
ther processing in external systems not the subject of this 
disclosure. 

Suitable equipment. A LUDL MAC5000 may be used to 
control the movement of the ZEISS inverted fluorescence 
microscope state as well as the shutter (i.e., XY translation 
(movement of the stage) the Z axis (focus)). Other stage 
controllers, such as the LUDL MAC 2000, may be used. 
Advantageously, the controller should be rapid and accurate, 
i.e., must translate for location to location both quickly and 
with a minimum of error (±5000 nm X andY, ±100 in focus). 
Rapid, high-resolution (with CCD chip) and highly-sensitive 
cameras that allow the imaging of dim objects are advanta
geously used; currently available examples include the used; 
currently available examples include the PENTAMAX CCD 
camera, the HAMAMATSU CCD camera and the ROPER 
COOLSNAP HQ camera; the latter two are capable of pro
ducing at least two images per second. The camera advanta
geously has low noise, i.e., it substantially represents shape 
and size of the molecule, as well as intensity of the image. 
Most microscopes currently useful in the automated image 
acquisition system use a HBO 100 Watt mercury lamp as a 
light source, but a laser light source is preferred since it 
provides more consistent illumination, avoiding the conse
quences of dimming bulbs. A Spectra-Physics water-coiled 
laser may be used at one image collection station but diode 
lasers currently are believed to provide advantageous results. 
The type of laser chosen will depend upon wavelength 
required for illumination. A substance such as OLYMPUS 
immersion oil is advantageously used to reduce the refractive 
index to view the image. A person computer equipped with an 
operating system, e.g., MICROSOFT WINDOWS NT oper
ating system, may be connected to both the LUDL controller 
( computer interface: coordinates mechanical motions on the 
microscope) and the CCD camera, and advantageously may 
coordinate both systems, transferring collected images to the 
processing cluster. 
Embodiments of User Input and Automated Image Collec
tion. 

To prepare for automated image collection, the user advan
tageously should first identify control points defining, for 
example, the upper and lower (outer) boundaries of an area on 
a surface (e.g., microscope slide) to be imaged. Collection 
may be customized to an area of any shape, although in an 
advantageous embodiment, the area is rectangular-shaped in 
the form of a microfluidic channel or "microchannel" ("chan
nel") in which single molecules are elongated and fixed, e.g., 
within a molten or nonpolymerized gel composition on the 
surface ( e.g. slide). 

If the single molecules are fixed on the surface in the form 
of channels, as in one advantageous embodiment of the 
present disclosure, the lanes are approximately 100 µm in 
width. Acceptable lanes can be fewer than 50 µm, from about 
50 to 75 µm, from about 75 to 100 µm, from about 100 to 
about 125 µm, from about 125 to about 150 µm, and greater 
than about 150 µm. Numbers of channels per slide may vary 
from 1-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 
80-90, 90-100, and greater than 100. It is appreciated that 
some surfaces other than glass slides may facilitate higher 
numbers of channels. At this time there are on average ten 
channels per slide; it is currently possible to place between 
about 48 and about 100 channels per slide although higher 
numbers of channels require greater care. Advantageously, 
there should be some empty buffer zone between channels for 

14 
data collection because bleed between channels may disturb 
flow of the DNA and makes the surface ( e.g., slide) unusable. 
The user should identify the control points-here, for 
example, the beginning and ending points on each of the 

5 channels-by approximating the location of the center point 
at both the top and the bottom of each channel or other area to 
be imaged. These points define the upper and lower bound
aries of a channel or other area within which images are 
captured. In addition, depending on the level of magnifica-

10 tion, more than one colunm or row of images may be required 
to image the entire contents of the channel or area. Therefore, 
the user advantageously should also estimate and specify a 
pass depth indicating the number of colunms or rows of 
images to be captured. The system will then center the num-

15 ber of colunms or rows chosen along the line defined by the 
two control points, overlapping images in adjacent colunms 
or rows as necessary. The pass depth thus defines the bound
aries on opposite sides of the channel or area. These sequen
tial images in a single colunm whose path is defined along a 

20 channel or in several adjacent colunms or rows within a 
channel or collection area of an alternative shape or magni
fication, comprise a "group" of images. 

The user must supply certain information in the user inter
face (FIG. 1), e.g., for data tracking purposes: identification 

25 of the user, single molecule sample, sizing standard and 
restriction enzyme. Most importantly, however, the user 
should specify exposure time of the slide to the light source to 
provide capture of usable image according to embodiments of 
this disclosure. Specifically, the user should select an expo-

30 sure time that optimizes the number of gray levels in an 
acquired image. These values can be optimized with routine 
experimentation. Using the PENTAMAX camera the expo
sure time is typically 5000ms; using COOLSNAP HQ or 
ORCA camera with the laser system, the exposure time is 

35 typically 150ms. The CCD chip for each of these cameras 
returns the captured image data in a range between O (dark) 
and 4095 (fully saturated) gray levels. Therefore, the optimal 
mean background level is approximately 100 gray levels. The 
optimal difference between mean background and mean data 

40 level is 1000 gray levels or more, but the maximum gray level 
of any data point must be less than saturation ( 4095). 

Once the control points and pass depth are chosen for each 
channel or area, and the sample and user information and 
desired exposure time are added to the queue in the user 

45 interface, the user can initiate automated image collection and 
processing as disclosed herein with no additional user input 
required. Images are collected first within the first of one or 
more defined areas with as much as a 20 percent overlap 
between frames (images). In an advantageous embodiment of 

50 the present disclosure, collection of images within a micro
channel may take place in a single column or, in alternative 
embodiments and depending on the level of magnification 
chosen, collection may take place in two or more adjacent, 
overlapping colunms or rows of images. As an example, 

55 particularly when a greater magnification is used for collec
tion along a channel and thus more than one image is required 
to capture the contents of the width of the channel, images are 
collected first along the length of one side of the channel, 
continuing from the level of the second control point, gener-

60 ally at the end of the channel, along the length of the opposite 
side of the channel: overlapping frames in the adjacent col
unm as they are captured, to the level of the first control point, 
generally the top of the channel. In this way two (or more if 
necessary) adjacent colunms or rows of sequential images are 

65 collected for each channel. A similar approach may be fol
lowed to image a larger or different shaped area according to 
various embodiments of this disclosure. Once one channel or 
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area is imaged completely, collection continues on with the 
next area in the user-specified order. However, the user may, 
after collection is complete, examine collection problems or 
ensure that there were no problems with image collection 
using The automated focus diagnostic tool, a software pro
gram according to one embodiment of the present disclosure. 
The automated focus diagnostic tool, although not itself 
required for automated image collection and processing, may 
be used to verify that the automated focus component has 
functioned properly during prior image collection. 

Following preparation of the user list of control points, the 
first channel or area to be imaged specified on the list may be 
"initialized." Initialization of the channel or other area 
involves generation of both a log file containing information 
about the collection run itself, and an information file con
taining identification information for the sample and user. It 
also involves preparation of space on the storage device, ( e.g. 
hard drive) in which to store the images and further, defines 
within the channel or alternative size area to be imaged the 
coordinates of each image along the collection route. 

16 
in embodiments of the present disclosure, images may be 
divided and analyzed in small regions referred to as "tiles" as 
a way of adjusting for bright regions out of the primary focal 
plane (i.e., the "tiling step"). According to an advantageous 

5 embodiment of the present disclosure given the type of cam
eras currently in use, tiles are composed of 10 by 10 pixel 
regions within an image. The main factor influencing tile size 
is the image area of the camera after binning. Other embodi
ments may reflect tiles of varying size; in practice, again 

10 given current equipment capabilities, an acceptable range of 
tile size is between 8 by 8 and 16 by 16-pixels. Generally, a 
uniform tile size is used throughout the image, and within and 
between full collections, although this is a fully adjustable 
feature. Ideally, the image should be segmented into enough 

15 tiles such that outliers disturb the fewestnumberoftiles.A tile 

20 

size that results in more than 100 tiles per image allows an 
adequate number of them, for example, 50, to remain for 
statistical analysis given the fact that many may contain out
lier data and therefore will not be usable. 

To determine these coordinates for a channel according to 
one embodiment, and given the pass depth, the width of the 
channel, the (three-dimensional coordinates of the) control 
points and the magnification setting, the program can make 
multiple determinations, e.g., the upper left hand comer of the 25 

first image to be made as well as the lower left and comer of 
the last image in the first colunm, centering the colunms or 
rows within the area to be imaged between the control points. 
Along the straight-line path that connects these two points 
runs the left border of all sequential images in that colunm. 30 

The coordinates of each of these planned images, allowing for 

The point-of-focus value-the first approximation of 
focus----of each tile is determined, with larger values repre
senting tiles in better focus. A histogram is generated with 
these values. The peak value (i.e., the most frequently 
observed point-of-focus value), in addition to the four next 
most frequently observed in-focus values (two values repre
senting image positions on either side of the peak value in the 
histogram) are used to compute a final focus solution, the 
calculated focus value. The remaining, outlying values are 
removed from the analysis, considered to be intensity sources 
out of focus. Although the automated focus component is 
fully-automated, the user may verify, after the fact, that in-

at most a 20 percent overlap between successive images, is 
communicated via the LUDL controller to the stepper motor 
which controls movement of the stage and, thus, advance
ment of image collection along a channel. After one image 35 

has been collected or captured the stepper motor moves the 
stage the appropriate distance for focusing and collection of 
the next image, and so on until the last image in the channel is 
collected. Then collection either continues with one or more 

focus image collection has proceeded smoothly at each step 
using An automated focus diagnostic tool, as described 
below. Furthermore, this software provides a useful format 
with which to describe in more detail the automated focus 
component of the system. Example 1 below demonstrates an 
automated focus component routine. 
Automated focus diagnostic tool. The automated focus com
ponent can be a fully-automated element of the automated 
collection process. The automated focus diagnostic tool may 
be used to aid examination of the automated focus process, 
although this tool is not itselfrequired for the automated focus 
component to function according to this disclosure. As dis
cussed above, the automated focus component automatically 

adjacent colunms or rows ofimages within the same area until 40 

the entire group of images is captured for that area, or begins 
for the next channel or area after its initialization. A surface 
such as a microscope slide with ten channels, for example, 
will require approximately five hours to image given a mer
cury lamp used as a light source. In contrast, using a system 
with a laser light source, ten channels can be completed at this 
time in approximately 40 minutes. Once images have been 
collected, their files are placed in a folder on another process
ing computer. 

45 selects the best focal plane for small regions or tiles within the 
image, then compiles the best image from the tiles that are in 
sharpest focus. This is based on the application of a Laplacian 
filter to the intensity data to find the "edge energy" or "focus 
value" for each tile in each of the focal planes or views. This 

Automated Focus System Overview. The automated image 
collection system can be optimized to take advantage of the 
fact that single molecule data lie in a distinct focal plane. One 
of the primary aims of the embodiments disclosed herein is to 
maintain focus throughout image collection, despite the limi
tation that even illumination in fluorescence microscopy is 
nearly impossible. The standard method of focusing by image 
intensity requires an assumption that an image is in focus if it 
is the brightest of a continuous set (i.e., Z-stack,) comprising 
sequential images taken throughout the range of focal view
points, beginning with out-of-focus to in-focus, transitioning 
again to out-of-focus. This method, however, allows the algo
rithm to focus on bright regions which may in fact be out of 
the primary focal plane. In addition, focus resolution is not 
especially sharp. An automated focus system that may be 
used with the present image collection system improves upon 
the standard method by using Laplacian filtered image values, 
solving the latter problem. To address the initial problem, also 

50 approach highlights regions in the image of a rapid intensity 
change between pixels. The greater this calculated energy 
value, the sharper focus of the image for that tile and, thus, for 
the image. 

In the automated focus diagnostic tool interface (FIG. 2A), 
55 one of the windows shows, as specified by the user and for 

each focal plane view, the number of LUDL steps between 
these views. This value is set to 20 LUDL steps in embodi
ments of this disclosure although this is a fully adjustable 
feature. Other values as low as one or as many as about 100 

60 may be used with intermediate values of at least 5, at least 10, 
at least 20, at least 30, at least 40, at least 50, at least 60, at least 
70, at least 80 and at least 90. Positioned next to each number 
of LUDL steps is the view button that allows the image for 
that focal plane to be viewed. Using the automated focus 

65 diagnostic tool, the user can manually initiate the algorithm 
that applies the Laplacian filter at each of the focal planes in 
an image. Once the filter is applied, the number of LUDL 
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steps at each view is changed in the user interface to the 
calculated focus value for the image at that view (FIG. 2B). 
The largest of these energy values in the list corresponds to 
the view ( or within several LUDL steps ofit) with the sharpest 
overall focus for the image. When the view; button is selected 
next to this value, the image is shown with regions (tiles) of 
color-for example, green tiles may indicate an increase in 
contrast; red tiles may indicate a decrease in contrast. Each 
tile can generate a corresponding curve so that a "family" of 
curves is created. For most of the tiles the curve will be 
bell-shaped (i.e., a normal distribution), but some may show 
an aberrant shape which may indicate a feature in the image 
that is positioned in other than the primary focal plane. A 
histogram is generated, predicting the view (focus locations 
for the image) at or near which the actual focus location lies 
for that image. Any views greater than or less than two units 
from this view are eliminated and are represented as black
colored tiles in the image in the automated focus diagnostic 
tool window. Finally, since the in-focus image may actually 
lie at one of the 20 LUDL steps between each of the views 
shown in the automated focus diagnostic tool interface, a 
smoothing spline fit is applied and the interpolated focus 
location is identified. Once this process has been completed, 
the image is captured. 
Image Processing Overview 

The image processing function of the automated image 
collection and processing system of this disclosure may con
sist of one or more of four processes: flattening, overlapping, 
overwriting and merging. Flattening and overlapping may 
both be performed on the raw optical images and are order
independent with respect to each other. 

Flattening refers to removing as much background noise as 
possible and/or normalizing for the level of illumination in 
the raw image. The latter part of this step is advantageous due 
to the effect of uneven illumination from the (non-laser) lamp 
and objective lens. This has important implications for deter
mining molecule length since length is determined from the 
molecule's integrated fluorescence intensity. Without image 
flattening, a bright object at the center of the image may be 
interpreted as having high fluorescence intensity values, lead
ing to an overestimation in molecule size. Likewise, the size 
of an object at the outer edge of an image-perhaps a standard 
used for sizing of single molecules and fragments-may be 
underestimated without image flattening because it would 
appear dim by virtue of its position at this less-illuminated 
area of the image. 

18 
Embodiments of Image Processing 
Flattening. The following description illustrates an image 
flattening or flat fielding process in accordance with the 
embodiments of this disclosure. The image flattening process 

5 is used to remove optical artifacts in the collected raw image 
set; it may be performed before or after the overlapping 
process. The raw images contain four main components: 
dark, additive and multiplicative noise, and the signal gener
ated from the genomic data itself. The flattening process 

10 consists of the following steps according to embodiments of 
the present disclosure. First, the dark noise-the intensity 
present in an image with no illumination source-is removed 
or substantially lessened from the total image intensity. The 
dark noise is determined from an image taken at the beginning 

15 of every collection with the camera shutter closed. Next, an 
interpolated image of the background is built. To correctly 
model this background illumination pattern which includes 
additive noise-light reflected from the glass surface and 
glass slide-a substantial or large number (for example, 

20 greater than the 90th percentile) of the bright pixels from the 
image are removed. However, since a number of the remain
ing bright pixels in the image represent not background but 
single molecule fluorescence, an iterative process may be 
executed to interpolate the low frequency components and to 

25 remove these high frequency components. Specifically, a 
smoothing spline function is applied to the data and any pixels 
with intensity values above two standard deviations from the 
mean following the fit are removed. The remaining data are 
re-fit and, once again, values above two standard deviations 

30 are removed. This process is continued until the standard 
deviation reaches its nadir. The remaining intensity shape is 
an estimation of the raw image background. 

It has been determined empirically that between four and 
16 images can be used to mitigate the error associated with the 

35 use of a lamp versus a laser as the light source. Thus, for each 
series of 16 raw images collected, 16 interpolated background 
images are generated as described above. From this series of 
background images a single sum or bright image is produced 
that satisfactorily represents the background illumination in 

40 the corresponding set of raw images-including the multipli
cative noise-uneven illumination due to the intensity shift of 
the illumination source from the center to the edge of the 
image. Thus, the sum image represents the shape of the non
laser illumination source. The sum image is in fact a median 

45 composite image of the interpolated background images 
(with dark noise removed), generated by using the median of 
the intensity values at each pixel location from the 16 images. 
No sum image is produced when using a laser light source 
since a laser removes the error associated with differences in 

Overlapping relates to determination of offset of the align
ment between adjacent, overlapping images. Initial offset 
estimates for aligmnent are made based on LUDL movement; 50 

sub-offsets resulting from a Cross Correlation Function 
(CCF) performed through a Fast Fourier Transformation 
(FFT) refine the initial estimates, more precisely aligning 
these overlapping regions. 

illumination; instead, a single background image is used in 
place of the sum image. Regardless oflight source, the inter
polated background image is subtracted from its raw data 
image; the result is then divided by the sum image intensity 
which has been normalized to a mean of 1.0. The background 
and sum images are applied to complete the calculation: 

Jtotal=(JObject+JAdditiveError)* /Sum (Object=Corrected) 

60 Subtract off the background image illumination, where this is 
represented as the product of I Additive error*ISum 

Overwriting and merging use the results of the overlapping 55 

and flattening processes to overwrite pixels in any portions of 
images exposed to a light source more than once (and thus 
bleached), with the stronger unbleached image data from 
identical regions of overlap of immediately adjacent images 
exposed to a light source only once. Overwriting and merging 
also virtually blend the flattened images into a single super
image or montage for visualization in this system. A super
image is a virtual (not physical) image that appears to reflect 
the entire, continuous contents of the microchannel or other 
area imaged. Individual overwritten image files are main- 65 

tained in the system for further processing in an external 
system not disclosed herein. 

I,o,al((JAdditiveError)(Isum))~(JobJea)(Isum) 

Divide by the normalized bright image (with mean=l.0) to 
recover just the "correct" intensity term: 
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The product of image flattening is a series of flattened 
images, stored in individual files, corresponding to the origi
nal raw images. Example 2 describes the flattening compo
nent of the system according to one embodiment of this 
disclosure. 

Determination of sub-offsets. The stepper motor drive 
LUDL controls movement of the microscope stage and this, 
along with the magnification of the objective lens, provides a 
rough alignment estimate (initial offset estimate) between 
overlapping images along a microchannel or within an area of 
alternative size or shape. The initial offset estimate may be in 
error, e.g., by 50 or more pixels, but is sufficient to estimate 
the overlapping areas of adjacent images. Furthermore, even 

20 
mined, 0.002 multiplied by the total number of entries and the 
average scale value). When the standard deviation falls below 
this threshold, the final revised scale and angle are calculated 
as: 

scale~V(SUM(E*E+L *L)/SUM(X*X+ Y"'Y)) 

0~arc tangent(SUM(E*Y-L *X)/SUM(E*X+L *Y)), 

where SUM refers to the sum of the results of this calculation 
10 from each of the entries in the middle one-third of the list. 

The process of calculating the revised scale and angle 
values relies on the collection of at least some images that 
contain well-defined features such that they can be over
lapped with only a rough estimate of scale and angle. The 
more precisely scale and angle are estimated, the better the 
correlation between overlapping images and, further, the 
more likely the system will be able to process poor-quality 
images such as those somewhat out of focus or with few 
unique features. 
Determining Offsets. The process of determining relative 
offsets from the initial estimate of alignment between adja-
cent images comprises, in general, a comparison of shapes
as opposed to intensity-of data within each region of over
lap. This may be achieved with a Cross-Correlation Function 

if there is no slippage of the microscope slide over time, the 
slide on the stage and the detector in the camera themselves 15 

are not perfectly aligned. Either before or after flattening, an 
overlap step corrects for the mechanical errors (slipping of 
gears between motor and microscope stage) during image 
collection. As with the flattening process, the overlapping 
process is performed using the original raw images. The 20 

product of the overlapping process is a pair of sub-offsets, 
values more precisely indicating the position of one image's 
area of overlap relative to the other's; the sub-offsets thus 
correct the initial offset estimate which is based on LUDL 
movement, possible skew between the axes of stage and cam
era detector, and scaling-the difference in size between one 
step of motor movement and the number of pixels the image 
moves. Thus, each of the sub-offsets comprises the initial 
displacement of the stage movement plus the mechanical 
error associated with its slipping. 

25 (CCF) performed through a Fast Fourier Transformation 
(FFT). A Laplacian filter is first applied to the data. The FFT 
for each of the overlapping areas in adjacent images is com
puted and the transform (frequency) coefficients are multi
plied in a point-wise manner, frequency whitening is per-

30 formed (i.e., normalization of transform coefficients to unit 
magnitude (length)); finally, an inverse FFT of this product is 
performed to yield the CCF in image space. The CCF is thus 
based only on phase information and is less sensitive to 
changes in image intensity. If only intensity data were used, 

Correction for Skew of Camera and Stage Axes and Mechani
cal Error. Overlapping regions of the raw images may be 
aligned initially with the assumption that there is no geometry 
distortion present-that is, they differ by only linear shifts of 
the microscope stage which require only linear adjustments 
for precise alignment. Although the E/L (Element/Line) dis
tances that the image moves across the camera detector are 
analogous to the X and Y axes distances moved by the micro
scope stage, a correction must be made to account for the 
possible skew between the axes of stage and detector, as well 
as scaling. These factors vary between-not within-collec
tions due to physical movement of the camera, such as after 
cleaning, and selection of magnifying power, for example. 
Since the scale and coordinates of the stage are known, E and 
L are calculated as follows: 

E~element~scale*(X'cos 0+Y*sin 0) 

L~line~scale*(-X'sin 0+Y*cos 0), 

where the scale is given in pixels/step and its initial value is 
determined by the magnification of the microscope (e.g., 
63X=l.89, or 100X=3); the angle is initially considered to be 
180 degrees. Scale and angle are recalculated for each chan
nel or other area when determining the conversion from 
LUDL movement to estimate the degree of image overlap. 
For example, if the microscope stage moved a distance X/Y, 
one can compute a corresponding distance E/L, calculate 
overlap, adjust E/L based on the overlap calculation results 
and convert the results into a revised scale and angle for that 
channel. Several of these calculations are performed and con
sistent values in both scale and angle denote good overlaps. 
The number of calculations required for the revised scale and 
angle values, used subsequently in the overwriting and merg
ing process, are based on the following: These values are 
saved to a list that is sorted by angle; the standard deviation of 
the sale values from the middle one-third of entries is com
pared to a predetermined threshold value ( empirically deter-

35 the correlation could be dominated by a few very bright spots 
and not represent the best alignment of other features in the 
images. The transformation thus ensures that all features are 
used for correlation while minimizing the effects of extreme 
intensity variation for purposes of precisely positioning two 

40 images with respect to one another. 
Because of the large number of images being processed, 

calculating the CCF through a FFT is rapid and less laborious 
than calculating the normalized CCF in image space. The 
latter calculation, dividing the CCF by the local root mean 

45 square (RMS) energy at each point, is conventionally used to 
grade the CCF result. Performing the calculation in frequency 
space instead, according to embodiments of the present dis
closure, allows other filters such as frequency ( spectral) whit
ening to be applied. While it has been used successfully, a 

50 disadvantage to this approach alone is that all transform com
ponents are weighted equally, rather than being weighted 
based on their significance. The best prefiltering has been 
found to be approximately Laplacian rather than pure whit
ening, thus a Laplacian filter is applied before the inverse FFT 

55 is performed to generate the CCF. Several enhancements to 
this basic method are used to increase robustness and accu
racy according to various embodiments of the disclosure. 
The FFT and CCF. To prepare the data for the FFT and CCF, 
image data in the overlapping regions (no more than 20 per-

60 cent) of two images are copied into separate work areas, thus 
creating from each full image a separate sub-image of its 
overlapping region. 

The average intensity within each sub-image itself is cal
culated and is used to normalize the pixel intensity values in 

65 each of the respective sub-images. Pixel intensity values 
greater than the average intensity for the sub-image are nor
malized to an average value of zero by taking the natural 
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logarithm of the ratio of the pixel intensity to average inten
sity, while pixel intensity values smaller than the average 
intensity have the average intensity subtracted from and then 
divided into them: 

If Intensity Value>Ave [i.e., brighter than average]: 
ln(Value/Ave), and 

iflntensity Value<Ave [i.e., dimmer than average]: (Value/ 
Ave)-1.0 

where Value is the pixel intensity value and Ave is the 
average intensity of the sub-image in which that pixel is 
located. The result is a transformation with continuous 
first derivative which minimizes the effects of very 
bright features while preserving all features. 

To overcome the periodic nature of the FFT, a standard 
procedure employed to prepare the data for this procedure is 
to add fill-areas containing zeros around the sub-images 
being compared. An algorithm has been designed to improve 
upon this standard method by preventing the creation of an 
artifact pattern which could lead to a falsely high correlation 
and, thus, imprecisely determine alignment position. In par
ticular, the algorithm addresses the substitution of pad-areas 
containing artificial data for some of the fill-areas containing 
zeros in the standard procedure. 

For each of the sub-images, a pad-area-a border, e.g., of 
up to about 100 pixels in width-is added to the sub-image 
along the two edges that, in the full image, would appear as a 
boundary between overlapping and non-overlapping data. 
(For purposes of the FFTwhich assumes the data are periodic, 
however, it is as if this boarder extends from all four sides of 
the sub-image, and the border and sub-image data repeat in all 
directions to infinity.) FIGS. 3A and 3B depict two sub
images (Sl and S2, respectively). As shown in FIG. 3A, the 
pad-area along the lower edge ofSl ( a) is filled vertically with 
smoothly-interpolated values that range between those along 
top and bottom in Sl. The adjacent fill-area in Sl, (b ), is filled 
with zeros; this area extends the length of the sub-image, 
displacing any interpolated values in (a). The same treatment 
is applied in the second sub-image (S2, FIG. 3B), with the 
exception that the locations of the zero-fill-area (b) and the 
pad-area filled horizontally with interpolated-values (a) are 
switched. Filling one area vertically and the other horizon
tally minimizes any contribution of these border areas to the 
size of the correlation peak while simultaneously removing 
most of the problems associated with the discontinuities in 
energy at the edges of the overlapping regions. 

Each of the fill- or pad-areas represents a border of a width 
that may vary depending upon size of sub-image and 
mechanical error of the system. For speed of processing, the 
sub-image and border together should be as small as possible 
to minimize the number of calculations performed yet 
account for existing mechanical error. For example, given a 
full image width of 1316 pixels, the border may be 100 pixels 
wide along the adjacent sides of overlapping regions of the 
sub-image; this accommodates an error of plus or minus 50 
pixels which represents typical mechanical error in the sys
tem. This error represents the difference between initial offset 
estimate and sub-offset calculation due to, for example, slight 
movement of a microscope slide. Ideally, the border should be 
no greater than twice the mechanical error. In no case should 
the border width be larger than that of the sub-image. How
ever, the border width may be greater than 100 pixels if the 
combined sub-image and border width does not sum to a 
maximum of 20 percent of the full image. The 20 percent 
value was chosen because the present system disclosed 
requires at least 15% of the pixels within the iris area to 
overlap, in which case there is coincident data for merging the 
images. The requirement for this degree of overlap virtually 

22 
guarantees that the area contains some unique features, even 
on a "clean" slide, to facilitate precise alignment. In a system 
without an iris, the amount of overlap would need to be 
roughly twice the mechanical error in the system. For 

5 example, if the present system were without an iris a 10 
percent overlap (about 100±50 pixels) would suffice, but if 
mechanical error could be reduced further (plus or minus 25 
pixels), a 5 percent overlap would also be sufficient. A lower 
limit given the current technology is roughly 10 pixels (i.e., 

10 10 rows of full image width or 10 colunms of full image 
height) of true overlap provided the overlapping region con
tains unique features. 

Data in each sub-image work space including the pad- and 
fill-areas are then transformed from intensity- to frequency 

15 space using a subroutine library. The library, which is avail
able on the World Wide Web, provides a very fast implemen
tation of the procedure, for example. The resulting transform 
coefficients are multiplied point-wise, frequency "whitening" 
is performed followed by application of a Laplacian filter, and 

20 an inverse transformation of the product from frequency to 
intensity space yields the CCF solution. 
Search for Correlation Peak. Following the inverse FFT, the 
resultant CCF image is searched to locate the correlation 
peak. Peak values (intensities ranging from the true peak 

25 value to one half of this value) and initial offset estimates are 
collected and then fit with a two-dimensional parabola, a 
model chosen for both its speed and its close approximation to 
the shape of a Gaussian peak. Application of the Laplacian 
filter before the inverse FFT "spreads out" the peak to a 

30 Gaussian shape allowing its location to be precisely deter
mined to sub-pixel resolution. A pair of sub-offsets is pro
duced, indicative ofrelative distance in pixels from the (0, 0) 
position, defining the correlation peak position of best align
ment for the images. For example, if the initial LUDL esti-

35 mate of the offset is (980, 850) and the true offset is (987, 
844 ), the location of this peak is represented by the pair of 
sub-offsets (-7, 6) vis-a-vis the initial offset estimate, repre
sented by the (0, 0) position. The bounds placed on the search 
for the correlation peak are such that at least half of the real 

40 image data in the two sub-images would still overlap if the 
initial offset estimate varied by the displacement of the peak 
within the CCF; this creates a diamond-shaped region to be 
searched. FIG. 3C shows a screenshot of this region (d), the 
open area where the cross hairs ( c) would intersect at the 

45 center representing two images requiring no change in align
ment. The bright spot to the lower-right of the intersection 
represents the Gaussian-shaped correlation peak. The direc
tion and magnitude of the difference between the two repre
sents the error in the initial offset estimate, indicating the shift 

50 necessary to bring the two images into more precise align
ment. Example 3 provides the code for the overlap program 
used to align the subimages shown in FIGS. 3A and 3B; the 
program reads in the "raw" (full) images (not shown) and 
displays the results as indicated in the introduction to code. 

55 The encircled single molecule fragments shown in FIGS. 3A 
(Sl) and 3B (S2) may be used as a sighting reference to 
illustrate this shift in alignment. Note that a greater portion of 
the upper of the three encircled fragments is shown in S2 
(FIG. 3B) compared to the same fragment in Sl (FIG. 3A)-

60 that greater portion of the fragment being indicative of the 
direction and magnitude of the shift of Sl to align with S2. 
The shift is, however, relative since S2 could also be shifted to 
align with Sl. The peak value of the parabolic fit and the 
deviation (RMS) of the fit from the peak values are used to 

65 determine if the correlation is valid. A very good correlation 
is considered to be greater than or equal to 0.2. A nearly 
perfect correlation between unique images would be about 
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0.8. Thus, initial offset estimates are determined for each pair 
of overlapping images in a group. The CF-corrected (sub-) 
offsets are added to the initial offset estimate to yield the 
adjusted E/L distances, calculated for each image using only 
the revised scale and angle values as discussed below and 5 

used in the overwriting and merging process. 
Overwriting and merging. The Overwriting and merging 
component of the autocollection system directs overwriting 
and virtual merging (mosaicing) of the overlapped areas, 
resulting in a set of individual overwritten images replacing 10 

the flattened images. It also allows a single virtual superimage 
or montage to be visualized; this superimage reflects the 
length of the microchannel or other imaged area on the micro
scope slide, which extends beyond the microscope field of 
vision. Original raw images are retained for re-processing if 15 

necessary. 

24 
overwntmg process, the data are smoothed in the about 
20-pixel-wide transition region surrounding the overlapped 
regions. This transition region is measured perpendicularly 
inward from the edge of the non-bleached image which is 
overwriting the bleached image. Within the transition region, 
a linear blending of intensity values is achieved such that the 
values at the edge of the overwritten region are identical to 
those in the non-overwritten region of the image. This is an 
important feature of embodiments of the present disclosure, 
since it ensures that subsequent (newer, more sensitive) soft
ware programs used on these images will not detect a differ
ence at this interface to be a restriction site (i.e., cut by a 
nuclease). 

The final set of files resulting from the method and auto
mated collection and processing system includes the original 
raw images as well as individual merged (overwritten) 
images, the absolute coordinates of each image, the relative 
offset values used in the merging step and any other identi
fying or relevant information for the sample, user or process-

20 ing of the sample. 
The automated collection and processing system accord

ing to this disclosure is ergonomically optimized. Established 
ergonomic principles may be followed as discussed supra. 
This optimization reduces user response time and increases 

As each image is collected in succession, an area of the 
microchannel or other area on the slide containing single 
molecules and fragments is exposed to a light source. 
Because there is an overlap up to about 20 percent of the 
length of the image along both the upper and lower edges of 
most image frames, if not also along one or both sides of the 
images, one or more of these overlapped areas is exposed to 
the light source more than once, leaving the signal in this area 
"bleached." Thus the intensity values at each pixel within 
these areas are reduced due at least two if not more exposures. 
For example, in one embodiment of the present disclosure, if 
the width of a single microchannel and magnification setting 
are such that imaging of the entire channel can be achieved 
with a single colunm of images, the overlap (upper about 20 
percent) portion of all but the first image is exposed to the 
light source twice, while the lower overlap portion of all 
images in the colunm is exposed only once. Overwriting of 
the pixels restores the strength of the signal to the bleached 
area(s) of an image by using the sub-offset information to 35 

precisely align the regions of overlap. In this example, for 
each pair of sequential images, this results in the signal from 
the lower unbleached overlap area of the earlier-collected 
image replacing the bleached signal in the upper area of the 
subsequently-collected image. This process is repeated for all 40 

images of a group in the overwriting and merging step in 
embodiments of the present disclosure. As the bleached pix-

25 
the overall system efficiency in processing large datasets. 

According to this disclosure, the automated collection and 
processing system in various embodiments may be imple
mented in different programming languages, including, e.g., 
C, C++ used in Examples 1-3 and any other comparable 

30 
languages. Additional embodiments of this disclosure are 
further described by the following examples, which are only 
illustrative of the embodiments but do not limit the underlin
ing invention(s) in this disclosure in any manner. 

els are overwritten, each overwritten image is saved as an 
individual file; subsequently, the images are virtually-but 
not physically-merged with one another to display them in 45 

a continuous superimage in this system, reflecting the con
tents of the microchannel or other imaged area. The overwrit
ing process ensures that the overlapping regions, for example 
within pairs of sequential images, contain equivalent pixel 
intensity values. 50 

In addition, to ensure that no abrupt differences between 
overlapped and non-overlapped regions are introduced in the 

EXAMPLE 1 

The Automated Focus Component Routine 

The automated focus component routine is written to work 
with an interface to a CCD camera. Since more than one type 
of CCD camera may be used, C++ was used to develop an 
abstract class to encompass a variety of camera classes. Dur
ing the setup phase the type of camera is queried from the 
object to determine both allowed binning values and optimal 
exposure times. The automated focus component object also 
assumes the existence of a translatable Z axis (motorized 
objective column), in various embodiments with LUDL 
access. Some classes that the automated focus component 
object uses are not documented here (SmoothingSplines for 
example) but are well understood in the art. The specifics of 
the LUDL stage controller and varying CCD camera drivers 
are also accessed through classes (as mentioned supra) and 
provide for a clearer and more flexible solution. 
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#include <math.h> 
#include "AutoFocus.h" 

US 8,271,251 B2 

II backlash correction for the focus motor in Motor steps - l 0 Judi steps 
#define FOCUS_BACKLASH_COMPENSATION 100 

II The default image border edge culling - often have bad pixels along the · 
// border - especially when binning. · 
#define DEF AULT _FOCUS_BORDER_SlZE 3 . 

U . . . I 
II AutoFocus(LuldAccess.CCDAccess,TileSize)- Constructor // 
// LudlAccess - The ludl object - this allow.s us to move the focus motor// 

26 

II CCDAccess - Access to the imaging system. Allows us to capture small // 
II focus images. · // 
// Algorithm: The basic approach of the autofocus object is to ftnd the edge// 
II energy in each of a series of images.· The image with the roost// 
II energy in the sequence is the most in focus. The best method // 
II · (to date) is to use a l..aplacian convolution filter to detect // 
II these edges. The approach is to apply a convolution kernel // 
II to each pixel in the image and divide this result. by the . //. 
II "energy" under the kernel. Square the answer and you have // 
II · yoiu edge energy. II · 
II ll 
II -I -1 -1 J I I II 
II· -1 · 8 -1 J J J Result= (Laplacian • Laplacian) / //. 
II -1 -1 -1 I I I (Intensity• Intensity) // . 
II Laplacian kernel Intensity Sum Kernel // 
II . ll .•• . 
// A 3•3 kernel works best on a fine· focus, where a 5•5 seems to// 
II . work better when doing a coarse focus - it generates a // 
II smoother Qlrve, thus suppressing background noise which can be// 
II significant in the coa~ focus case. It wilJ also s~ ll 
II the edge ene,gy that we are looking for, so don't use this // 
II kernel in a fine focus. · // 
ll ll 
ll Second Stage: Due to the fact that clumped DNA, floaters, or scratches // 
// in either the slide or cover slip may result in data // 
// outside of the target focal plane, the results of the . · // 
// above algorithm are grouped into tiles. Each image in the// 
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II z-~ck is placed into a grid ofN•M tiles. The convolution resulls // 
II for each tile in the grid lire stored separately. This way// 
II data that comes into focus in sepamte focal planes can· // 
II be filtered out. The tiles that contain the "maxima" of II 
II hits are used to gcnCJ11te a focus curve. From this curve,// 
II the taiget focus locatjon is interpolated. II 
II . . :u 
11·-----------------1.1 
Autofocus::AutoFocus(Ludl• LudlAcc:ess, CCD_CAMERA• CCDAccess) { . . 

// save our Ludl and CCD handles 
this->LudlAccess = LudlAccess; 
this->CCPAcccss = CCDAccess; 

// Tile and Border size 
this->BorderSize"' DEFAULT_FOCUS_BORDER_SIZE; 
this->AppliedBorderSize = DEFAULT_FOCUS_BORDER~SIZE; ·. 

// ludl-backlash compensation - leave as a variable so it can be tweaked 
. this->FocusBackLashCompensation = FOCUS_BACKLASH_ COM PENSA TJON; 

// clear the ti_les 
TileLists = NUIJ.; 
TilePeakLocations = NUIL; 
Tiles Wide a 0; 
TilesHigh·= 0; 
SlicesAllocated·= 0; 

// tl,jask 
TileMask-=NULL; ... 
Masld..eft = O; . 
MaskRightc O; 
MaskTopmO; 
MaskBottom = O; 
CenteJOnctiue; 

II movement targets 
TargetOffsds-= NULL; 

// Focus Kand 
NeighbolOffsets = NUIJ.; . 
NeighbolCount = 0; 

// final curve m;ults 
LaplacianResults =,NUIL; 
LaplacianTiledResulls = NUIL; 
DYeNULL; 
PeakHistogram • NULL; 

II make sure our splines are cleared 
· LaplacianSpline = NULL; 

LaplacianTiledSpline = NUlL; 

// set our focus parametm based on the CCD Camera type 
iJ{CCDAcccs.,) 

( 
switch(CCDA-ccess->CletCameraType()) 

( 
case CCD _ CAMERA_NONE: // No camera found 

bmik; . . 
case CCD.:.CAMERA:_PENT AMAX: // Pentamax 

this->TileSize= 8; 
this->ExposureTime= 0.100; 
this->Binning = 6; 
break; . 

--caseCCD CAMERA PVCAM: 
case CCD=CAMfRA= ORCA: 

this->TileSize = 8; 
this->&pos~Tiine = 0.020; 
tJiis->Binning = 4; 

} 
} 

break;. 

//'Sd up some defauh Judi speeds 
it{LudlAccess && t.udJAcc,ess-> Valid()) . 

28 
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{ . . •' 

// using smaller numbers actually does NOT effect times as inuch as you would think 
// as the Judi motors never really reach "high.speed" except at the beginning and end 
II of the routine (large traversal distances there) . 
· LudlAccess->SpeedFocusWrite(2500); . II default is 20000 - setting max speed 
LudlAccess->StartSpeedfocusWnte(250); Ii default is 5000 - setting start speed 

} . . 
//'Error Log ,.. stderr unless otherwise specified 
Errorl.og == stderr; . 

} 
II'--------"'---------..;..."--! 
// -Autofocus() - desuuctor ll 
II . · 1 

AutoFocus::-AutoFocus() 
{ 
// wipe out the allocated focus buffers 

. -CleanFocusBuffers(); 
} 11-------------------1, 

// double 'SetFocusExposureTime( double FocusExposureTime) · II 
II retumS • returns the value that we were able to set · II 
II . . 1 

double Autofocus::SetFocusExposureTime(double FocusExposureTime) 
{ . 

// verify based on cameni - some have a inin focus time 
il{CCDAcc:c:ss) . - . --

{ 
switcJl(CCDAccess->GetCameraType()) 
{ 
case CCD CAMERA NONE: II No camera found 

Fetiun 0.100; -
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'CBSCCCD _ CAMERA _PENT AMAX: II Pentamax - less than IOOms (-90 actually) will cause a Hardware/driver lock up 
this->ExposureTime = max(0. I 00, FocusExposureTime); · 
return this->ExposureTime; 

casrl:CD CAMERA PVCAM: 
case CCD-CAMERA-ORCA: 

this->ExposureTime-;, max(0.001, FocusExposureTime); 
mum this->ExposureTime; · · 

} . 

} 
mum0.0; 

} ll-------------------11 it lntializeBufTCIS() - initializes the Autofocus buffers, returns if the II 
II buffers are already allocated correctly II 

11----------------,11 
boot AutoFocus::lnitializeBuffers(int FocusStepsRequested, int RcquestedKernelWidth) 

{ . 

II The CCD must be initialized accurately before running this step 
/11) detenniile how many tiles we have in X and Y based on the CCD buffer 
II dimensions, TileSize and BorderSize 
/12) Allocate space to store the EdgeEne,gy results for each image grid 
// 3) Allocate space to store the tracking info to construct the focus curvei; 

// I) detennine how many tiles we have in X and Y based on the CCD buffer 
// dimensions, TileSize and BorderSize 

if{!CCDAccess->Valid()) return false; 

// adjust the bonier size to work with the kernel width, also adust the kernel to be ODD 
ifl!(ReqilesledKernelWidth % 2)) 
1«.questedKemelWidlh++; 

II now the bo.~erm 
AppliedBorder.iize= mBll(Requesri:aKemelWidth / 2, BorderSize); 

//so how many tiles 
int RequestedTilesWide = (CCDAcccss-;,,fjetfocusBufferWidth()- (2 • AppliedBorderSize)) 

/Tile"Su.e; • 
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int RequestedTilesHigh • (CCDAccess->GetFocusBufferHeight() - (2 • AppliedBorderSize)) 
/ TileSize; ·. . 

II so, do we need to re-allocate? 
ifl(RequestedTilesWide != TilesWide) II 

(RequestedTilesHigh != TilesHigh) 11 
(FocusStepsRequested > SlicesAllocated)).· 
{ . . 

II clear it all . 
CleanFocusBuffers(); 

II re-allocate eveiything. ... 
Tiles Wide= RequestedTilesWide; 
TilesHigh = RequestedTilesHigb; 
SlicesAllocated = FocusStepsRequested; 

II List of Grids 
typedef double• Jpdouble; . 
TileLists = new Jpdouble[SlicesAllocated]; 
for(int GridNumber = 0; GridNumber < SlicesAllocated; GridNumba++) 
TileLists[GridNumber) = new double{TilesWide • TilesHigh]; · 

II Focus peak calc's · 
TilePeakLocations = new int(TilesWide • TilesHigh]; 

II Motor move offset& 
TargetOffsets = new double[SlicesAllocated};. 
DY= new double[SlicesAllocated); 

II Final Laplitcian ~Its to be splined 
LaplacianResults = new double[SlicesAllocated); 
liPl8Ci8DTiled):tesiilU-:=·newooublC[Slicci:AllOCBted];'-··-- · .. ---~· ----- · 

// Peak tracking (can view count here now) 
PeakHistogram = new int[SlicesAll()!:81ed); 

// flag to reset the rest as well · 
KemelWidth = -1; 
ResetFocusMaslc = true; 

} . 

II Focus Kernel alteration 
ift:RequestedKemelWidth != KemelWidth) 

{ . . . 

II define the focus kernel 
KemelWidth = RequestedKemelWidth; 
delete NeighboJOffsc:ts; 
int FocusBufferWidth= CCDAccess->GetFocusBufferWidth(); .. 
Neighb01Cmmt = KemelWidth • KemelWidth - ((KemelWidth a 2) • (KemelWidth. 2)); 
NeighboiOffsets = new int[NeighbmCount]; · 
int index = O; ' 
int KemelRadius = KemelWidth / 2; 
for(int y = -KemelRadius; y <= KernelRadius; y++) 
for(int x ·= -KemelRadius; x <= KemelRadius; x++) • 

{ 
ifly = KemelRadius II x = KerneJRadius II y =-KemelRadius II x = -Kerne)Radius) 

{ . . 

NeighbOIOffsets[index] = y •-·FocusBuffe,-Width + x; 
index++; 
} 

} 
} 

II Set up the focus lll8S'lc 
if{ResetFocusMaslc) 
{ , 

· II Masking 
delete TileMask; 
TileMaslc •.new bool[TilesWide • TilesHigh]; 
//bas it beat'5et? If not default to full screen 

ifl!MaskRig1it && !MaskBoftoin) · 
{ . . 
MaskLeft-=!0; 
MaskRight·= Tiles Wide· I; 
MaslcTop =-0; . 
MaskBottom= TilesHigh • I; 
CenterOn = true; 
} 
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int Mask Width-= MaskRigbt • MaskLeft + l; 
int MaskHeight = MaskBottom. • MliskTop + l; 
iftCenter9n) 
. UnMaskedCells ":'· Mask Width • MaskHeight; 
else . . . 
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UnMaskedCells = TilesWide • TilesHigh - MaskWidth • MaskHeight; 

. fo1(int y ": O; y < TilesHigh; ytt) 
. fol(int x = O; x< Tiles Wide; x++) 

{ . . . 

ift(y>= MaskTop) &.& (y c= MaskBottom)&.& 
(x >= MaskLeft) &.& (x <= MaskRight)) 
{ 
TileMaslc{y • TilesWide + x] = CenterOn; 
} . . 

e1se 
TileMaslc{y • TilesWide + x] ~ !CenteiOn; 

} 
//Done 

ResetFocusMlisk = false; 
} 

If done 
. retumtrue; 
} 

11·-· -----------------li 
// CleanfocusBuffcrs() - clean up the current focus buffeis. // 
"'------. --·--------_-_ .... · ·--·--------1.· 7---
void AutoFocus::CleanFocusBuffcrs(void) · 

{ . 

If List of Grids 
if{TileLists) 

{ . . 

fol{int GridNumber = O; GridNumber < SlicesAllocated; GridNumbel++) 
delete TileLists[GridNumber]; . 

delete TileLists; 
TileLists = NULL; 
} 

If Tile masking 
delete TileMask; 

. TileMaslc = NULL; 
// clear the neighboJs a~ 
delete NeighborOffsets; 
NeighborOffsets = NULL; 

· If Focus peak calc's 
ddete TilePeakLocations; 
TilePeakJ..ocations = NUIJ..; 

// Motor move offsets 
ddete TargetOffsets; 
TaigetOffsets = NULL; 

// Final Laplacian results to be splined 
delete LaplacianResults; 
LaplacianRi:sults = NULL; 
delete LaplacianTiledResults; 
LaplacianTiledResults = NULL; 
delete DY; 
DY=Nlll.L; 

If clean the splines 
ddete LaplacianSpline; 
LaplacianSpline = NULL; 
delete LaplacianTiledSpline; 
LaplacianTiledSpline = NULL; 

II no more peak histogram 
delete PeakHistogram; 
PeakHistogram"' NULL; 

} 11-----------------------t 
II SetFocusMask(float lndentPercent, bool CenterValue) // 
// Tile in the range of LEFT-RJGHT end TOP-BOTTOM are~ to CENTERVALUE, II 
// the remaining tiles ere set to !CENTERVALUE // 
II . 

34 
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void AutoFocus::SetFocusMaslc(float lndentPercent, bool CenterValue) 
{ . . 

II doi:i'l let it range too far! And convert to a fraction 
IndentPen:ent = max( 0.Of, min(lndentPercent, 100.ot)) / JOO.Of; 

// validate l8l)gCS . 
MaskLeft = max(O, (int)(fTilesWide • I) • lnilentPercent)); 

· MaskRight = min(TilesWide • I, (int)((TilesWide • I)• (1.0 - lndentPercent))); 
MaskTop = max(0, (int)((TilesHigh • I) • lndentPercent)); 
MaskBottom = min(TilesHigh • 1, (int)((TilesHigb • l) • ( 1.0 - lndentPen:ent))); 
CenteiOn = CenterValue; . · 
ResetfocusMask = ttue; 

} 11--------------------fl 
// LaplacianFocusAlgorithrn(lmageNumber) - docs a Laplacian filter on the // 
// JmageNumber buffer in the CCDAccess object. The results are stored in II 
II the Tile anay associated with that lmageNumber. // 
// .J -1 -1 . . . II 
II .J 8 -I LaPlacian Filteron·each pixel-with some small border to II 
// .J .J -1 omit edge noise ofCCD chip II 
// Square the result for each pixel. Also keep a sum of the squares of II 
// the.intensities of each pixel for nonnalization. II 
II now Divide the SumofSquares of the filtered pixels by the SumOfSquares// 
II of the intensity pixels to remove the illumination dependence // 
II . . I 
void Auto'focus::LaplacianFocusAlgorithm(ini lmageNumber) 

{ ------- . :·----·····-·-·-··--···--·· ··--···- .----··---· .. 

II aa:ess die CCDBuffer 
unsigned soon• FocusData = CCDAccess->Get.FocusData(lmageNumba-); 
int FocusBufferWidth = CCDAccess->GetFocusBufferWidth(); 
int FocusBufferHeight = CCDAccess->GetFocusBufferHeight(); 

II padding froin edges ( center in image as much as possible) 
int LeftPad = AppliedBonlerSize + ((FocusBufferWidth - AppliedBonlmize • 2) % TileSize) / 2; 
int TopPad = AppliedBorderSize + ((FocusBufferHeight • AppliedBordmize • 2) % TileSize) / 2; 
i11t LineAdjust = FocusBufferWidth ~ TileSiu; · 

// which is our Target Grid? 
double• Grid = TileLists[lmageNumber]; . 

II T111verse the image 
intCeJl=O; 
fol(int b = 0; h < TilesHigb; h++) . 

{ 
fol(int w = 0; w < Tiles Wide; w++) 

{ 
II skip if masked off 

if{!'fileMask(Cel)]) 
{ 
Grid[C.ell] = 0.0; 
Cell++; 
continue; 
} 

II variables to track in our algorithm 
· double:EdgeEnergy = 0.0; 
// offset tracking 
int TileCornerOffset = ((h • TileSize + TopPad) • FocusBufferWidth) + 

(w • TileSize + LeftPad); 
// 111w 9ata pointer is then... · 

unsigned short• Data = &FocusData[TileCornerOffset]; 

// calc the laplacian values for the entire tile space. 
fol{int Height= O; Height< TileSize; H~ht++) 

:ol(int Width ;= 0; Width < TileSize; Wid~) 
{ . . 

II enagy below this tile 
int IntensityEnetgy = I + (,.Data); 
int Value= NeighboiCouiJt • (•Data); 
fo_l(int n=0; n <Neighbo!Count; n++) 

{ 

36 



} 

37 

int I = *(Data+ NeigliboiOffsets[n]); . 
Intensity Energy+-= I • I; . . . 
Vlllue-=I; 
) 

JI Add up the energy . . 
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EdgeEnergy +<= ((double)Value • (double)Value)/ (double)lntensityEnergy; 
// Next data point · 

Data++; 
} JI Width (tile) · 

// advance to next row 
Data +== LineAdjust; 

} JI Height (tile) 
// set the tiles value into the grid 
Grid(Cell] = EdgeEnergy; 
Cell++; . 

} //TilesWide 
} // TilesHigh 

Jl-----------------1./ 
JI lFocusAlgorithm(lmageNumber) - focus by intensity only // 
JI . . I 

void AutoFocus::IFocusAlgorilhm(int lmageNumber) 
{ 
JI access the CCDBuffer 
unsigned shon• FocusData = CCDAccess->GetFocusData(lmageNumber); 
int FocusBufferWidth = CCDAccess->GetFocusButTcrWidth(); 
int FocusBiifferHeighi=-CCDAccess->GetfociisBuffcrHeighi(); 

// padding from edges ( center in image as much as possible) 
int LeftPad = AppliedBorderSize + ((FocusBufferWidth • AppliedBorderSize • 2) % TileSize) / 2; 
int TopPiid = AppliedBonlerSize + ((FocusBufferHeight • AppliedBorderSize • 2) % TileSize) / 2; 
int LineAdjust -= FocusBufferWidth • TileSize; 

// which is our Target Grid? . 
double* Grid = TileLists[lmageNumber]; 

// Travcn;e the image 
imCell=0; 
f«»1:int h = 0; h < TilesHigh; h++) 

{ 
fol(int w= 0; w < TilesWide; w++) 

{ 
JI skip if masked off 

if{ !TileMask[Cell]) 
{ . 

Grid[Cell] = 0.0; 
Cell++; 
continue; 
} 

II offset tracking 
int TileComeiOffset = ((h • TileSize + TopPad) • FocusBufferWidth) + 

(w • TileSize + LeftPad); 
// raw data pointer is then ... 
unsigned shon• Data = &FocusData[TileComCJOffset]; 
int Totallntensity = O; . 

// calc the laplacian values for the entire tile space. 
fol(int Height= 0; Height< TileSize; Height++) 

{ . . 

for(int Width = 0; Width < TileSize; Width++) 
{ . 

// energy below this tile 
int Value= •(Data + FocusBufferWidth + I); 
Totallntensity = max(Value. Totallntensity); 

// Next data point 
Data++; 

} // Width (tile) 
// advance to next row 

Data +c LineAdjust; 
} // Height (tile)· 

// set the tiles value into the grid 
Grid[Cell] = Totallntensity; 
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Celt++; 
} // Tiles Wide 

}// TilesHigb 
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ll'-'-------------------1.~ 
II AnalyzeSlopes() analyzes the.TileListsO to detcnnine between slices, // 
II where the ene,gy tenns are headed. · // 
II We want to track all of the tiles that fonn a majority and are headed II 
II into focus (rising slope) or out of focus( decreasing slope) together. // 
II An absolute slope check is ·too variable, so calculate a standard deviation// 
II and aill anything within an SDev ofO.O a O slope (indetenninate) II 
II . II 
boo) AutoFocus::AnalyzeSlopes(void) 
{ . . . 

// use the following·throughout - how many cdls are there in our image? 
intCdls .. Tiles Wide • TilesHigh; . 

II Step one ~ analyze each slice looking for a distinct peak, as more than 
// one peak is ·giving us ambiguous infonnation. 
II - this peak is found by finding a point with a lesser value on it's left 
// and a lesser value on it's right 
II Step 2 - Find the most common peak location - this is the definition of 
// being in focus.• Keep anything that has a peak within I bin of· 
// our mode in the "Histogram" · · 
// For now we're taking the location of "THE" peak, as removing information tends to be ... 
// dangerous and is causing strange results in extreme cases. The algorithm taJds 
// to be more stable if we just use step 2 to remove outliers. 

- foi(iiitCdl=O;Celf<:C:ells;-Cell++) . - ..... ---······ 
{ . 

II skip if masked off 
it{!TileMask(CeU]) 

{ 
TilePeakLocations[Cdl] = •I; 
continue; 
} 

// where is the peak FOR TIUS Cal. 
int Peaklndcx ,. •I; . . 

// the intensity value of that peak 
double Peald = -99999.0; 

/hhe inti:nsity value of the runner up 
double Pealc2 = -99999.0; 

II "Left" is the valud in the slice at index - I 
// "Gaiter" is the value in the slice at index 
// "Right" is Ille value in Ille slice at index + I 

double left; . 
double Center= Tilel..ists[O][Cell]; 
double Right= TileLists( I ][Cell]; 

// are we staning with a ~Left most" peak 
if(Center> Righi) 

( 
Peak 1 = Center; 
Peaklndc:x = O; 
} 

// progm;s through this slice 
foi{int JmageNumber = I; lmageNumber < lmagesCaptured • I; lmageNumber++) 

{ . . 

// shift over one unit 
l:.eft .. Center; 
Cente,=Right;: 
Righl=.TileLists[lmageNumber+ l][Cell]; 

// are we a peak? 
. if{Left < Center&&. Right < Center) 

·{ 
iftCenter > Peak2) 'II bigger than our runner up? 

( . . . . 

il{Center > P.eakl) ll ,than our firstp:ak? 
{ . 
Peak2 "' Peakl; // yup so shift do:wn one and place 
Peak I = Center; II the new center as the peak 
Peaklndl:ll = JmageNumber; // track our peak 
} 
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else Pealc2 = Center, II just replace the runner up 
} // larger then the nmner up peak value (pealc2) 

} // it's a peak 
} // traverse: the entire slice 

// are we ending with a "Right most• peak 
Left C Center; 
Center= Right; 
iftCentcr> Left) // right side has a rising slope 

{ . . . .. 
iflCenter > Peak I) // is the height greater than our first found peak? 

{ 
// Peak! = Center; :JI the new center as the peak 
Peaklndex "'JmagesCaptured • I; II track our peak (index). 
} /I have II stonger peak (than peak!) · 

} // have a:right most peak 
II Store the indet of the peak for this slice in the image 
TilePeakLocations[Cdl]= Peaklndex; 

} //Cell 

/I Step 2 - Find the most common peak location:;_ this is the definition of 
II being in focus. Keep anything that has II peak within J bin of 
II our mode in the "Histogram". · · 

ValldPeakTiles = O; 
memset(PeakHistognnn. 0, sizeoflint) • JmagesCaptured); · 

// fill the Histognun with om indeit values . 
for(int Cell -= O; CeJI < Cells; Cell++) 

{ . . 

II skip if masked off 
ifl!TileMask,[CeJI]) continue; 

II otherwise tabulate the peak 
if(TilePeakLoca1ions[Cell) !.;. • l) // skip the "no-pmk" case - pretty close to impossible? 

{ . . 

PeakHistogram(TilePeakLocations[Cell))++; 
ValidPeakTiies++; . 
} 

} 
II find the peak 

int Max Hits e O; 
int Maxlndcx = -J; 
for(int lmageNumber = O; lmageNumber < lmagesCaptured; lmageNumber++) 

{ . 

if{PeakHistogram[lmageNumber] > MaxHits) 

} 

{ . 

MaxHits = PeakHistogramflmageNumber); 
MaxJndex = lmageNumber; 
} 

// remove anything that isn't a peak m- adjacent to the peak 
for( int Cell = O; Cell < Cells; Cell++) 

{ 
if(!TileMask[Cell)) cominue; 
if{((TilePeakLocations[Cell) < Max Index • I) II 

} 

(TilePeakl.ocations[Cell] > Max Index+ I)) && 
(TilePeakLocations[ Cell) != • I )) 
{ 
TilePeakl..ocl!tims[Cell] = ·l; II invalidate it 
ValidPeakTilo-; 
} 

II if there are any tilts left return true -4las to be true actually, but 
--11 keep this return vitiile in, in case we31ter the algorithm more in the future 
. -~f(ValidPeakTiles) 

return true; . 

II otherwise this algorithmhas failed 
return false; 

} 

11-----------------~II 
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// int DoFocus(Steps,StepSize) . .· . // 
// Steps - number offocus slices to take ( depth of z-stack) // 
// StepSize "" how many Judi micro-steps between each slice . // 
// returns FOCUS FAIL on failurc · // 
11 Otherwise it rerums die number of steps that the stage hail to be moved ·11 · 
II to bring the image into focus ... (dFocus steps between last location and // 
II · this location) · // 
11· 1· 

int AutoFocus::boFocus(int Steps,int StepSize,int RcquestKemelWidth, boo) UseTiledSpline) 
{ . . . . 

// #defme FOCUS TIMING ECHO I 
.· II #def me FOCUS-TIMING-ECHO 2 

#ifdefFOCUS TIMING ECHO -
LARGE INTEGER PerfonnanceFrequency; 
LARGE= INTEGER StartfirstMove, StartSetup, DoneFocllSSetup; 
LARGE_INTEGER DoneFocusSequence, DoneAnalysis, DoneFinalMove;. · 
#ifdefFOCUS_ TIMINO_ECHO _2 . . 

44 

LARGE_INTEGER SendTrigger, VValidReceived, FrameEndReceived, Ana)ysisDone, LudlMoveDone; 
double VValidTime ,.. O; . 
double FrameEndTime = O; 
double Ana)ysisDoneTime = O; 
double LudlMoveDoneTime = O; 

#endif 
PerfonnanceFrequency.QuadPan = O; 
QueiyPerfonnanceFrequency(&Perfoffll8nceFrequency); 

#endif . 

· II just beginning, so ·clear the count 
lmagesCaptured = O; 

// Fim move to place us at the stan of our sun - half the distance covered 
int F1rstMotorMove ... -{(Steps· I)• StepSize) / 2; 

// Timing of 0111 capture 
// I) Move to Stan position + BackLasbCompensationDistance (LUDL). 
/12) Initiate move to real Focus Stan Position (LUDL) 
// 2a) Initialize Focus mode - paramaters set already (CCD) 
// 2b) Poll wait for move complete (LUDL) 
/13) Stan focus image exposure · (CCD) 
// 3a) Wait for the FocusMoveSafe() signal (CCD) 
// 3b) Full move to next focus location (LUDL) 
// Jc) Analyze tile• 2 (we an: sure this ones in buffer) (AUfOFOCUS) 
// 3d) Make sure Judi done moveing 
// 3e) loop to 3 until all images acquired 
1/ 4) Wait and analyze final image (CCD/AUTOFOCUS) 
it S) Stop Focus Sequence (CCD) 
/16) Construct the Focus curve and pick the target point (AUTOFOCUS) 
// 7) Move to the predicted point and return (LUDL) 
// DONE 

·. . 

// I) Move to Stan position + BackLasbCompensationDistance (LUDL) 
#ifdef FOCUS TIMING ECHO 
QueiyPerformanceComuer(&StanFirstMove); 

#endif . . 
LudlAccess->MoveFocusMotorPulses(FirstMotorMove • FocusBackLashCompensation, tNe); 

/12) Initiate move to real Focus Stan Position (LUDL) · 
LudlAccess->MoveFocusMotorPulses(FocusBackLashCompensation, false); 

//2a) Initialize Focus mode (CCD) . 
#ifdefFOOUS TIMING ECHO 
QueryPerfor,nanceCoWUer(&StartSetup); 

#endif 
CCDAccess->SetFocusParameters(Binning, ExposureTime, Steps); 
ift!CCDAc:cll,s->Startfocus()) 
return F<>Of$_FAILED; 

#ifdefFOCUS TIMING ECHO 
· . QueiyPerformanceCowuer( &DonefocusSetup ); 

#endif 
// Initialize internal b~ - if needed 
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JnitializeBuffers(Steps, RequestKemdWidth); 
I/ 2b) Poll wail for move c:omp)ClC . . (LUDL) 

int LudlBusy .. l; 
while(LudlBusy) LudlAccess->BusyFocus(&LudlBusy); 

1/ 3) Stan focus image exposure . (CCD) 
while(JmagesCaptured < Steps) . 
{ 
II~ the image 
, #ifdefFOCUS_TIMING_EC::HO_2 

QueryPerfonnanceCounter( &Send'Trigger); 
#endif . 
CCDAccess->CllptureFocuslmage(); 

I/ 3a) Wait for the Foc~oveSafe() signal (CCD) 
ift!CCDAccess->FocusMoveSafe()) 

{ 
1/ event failed for some raison "- try again 
II ORCA - trigger error• . . 
II PENT AMAX - Shouldn't happen - CCD _PENT AMAX should be waiting for return signal 
itl!CCDAccess-> Valid()) 

{ 
fprintftEnorl..og, "AUTO _f'.OCUS ::Camera failed during focus sequence. \n"); 
return FOCUS FAILED; .· . 
) -

continue; 
} 

II make sun: camera is still oJcay! 
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- -· .. #ifdef'FOCUSIIJ\illNu"ECHcn·- . -··------·· ........... ·--··-~----------------------·---·- ... 

QueryPerfonnanceCounier(& VValidReceivcd); . 
#endif . . 

113b) Fuil move to next focus loc:atkln (LUDL) 
iftlmagcsCaptured < Steps - 1 ) 
LudlAccess->MovefocusMotolf'ulses(StepSizc, false); 

II 3c) Analyze the image 
l/ i) wail for it to be in buffer (for sure) 
II this assumes the MoveFocusMollilf'ulses will take longer 
II than the CCD ttanSfer + analysis , 
II Analysis -20 ms (on 433mHZ pentium) and transfer the same or less 
II Move -60 ms so assumption seems to be safe since ll'Bilsfer on a_ binned 
II image is less_ than 40ms 
II ii)analyzeil 
/Ii) wail 

ifllmagesCaptured > 0) 
{ 
// make sure it's in! 

while(!CCDAccess->FocuslmageCaptured(lmagesCaptured- I)); 
#ifdefFOCUS TIMING ECHO 2 
QueryPerfonminceCoumer(&FrameEndReceived); 

#endif 
// ii) analyu 
bplacianFocusAlgorithm(lmagesCaptured - l ); 
#ifdefFOCUS TIMING ECHO 2 
QueryPerfonMDCeCouiner(&AnalysisDone); 

#endif 
} 

113d) Make S!1ff ludl done moving 
· LudlBusy • Ii . 

while(LudlQUI)') l..udlAccess->BusyFocus(&LudlBusy); 
#ifdefFOCUS TIMING ECHO 2 
QueryPerfonnanceCoumer( &LudlMoveDone); 

// concatenate tbe times 
if{lmagesCaptun:d > 0) 

{ 
VValidTime ,+,= {doublc:X(VValidReceived.QuadPart - SendTrigger.QuadPart) • 1000) / (double) PerformanceFreguency.QuadPan; 
FrameEndTime~{double)((FrameEndReceived.QuadPart- WalidReceived.QuadPart) • 1000)/ (double) ·· · 

PerfonnanceFrequency.QuadPart; , , 
AnalysisDoneTime +<-.{doubleX(AnalysisDone.QuadPert - FrameEndReceived.QuadPart) • I 000) / (double) 

PerfonnanceFreq~;QuadPart; 
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LudlMoveDoneTime += (doubl~X(l . .udlMoveDone.QuadPan. AnalysisDone.QwidPart) •.tOOO) / (double) 
PerfonnanceFrequ~.QuadPan; . 

. } 
else 

{ ' ' ' .· . . 

VValidTime -+c<·(doubleX(VValidReceived,QuadPert • SendTrigger.QuadPart) • l000) / (double) Perl'ormenceFrequency.QuedPart; 
LudlMoveDoneTime += (doubleX(LudlMoveDone.QuadPert • VValidReceived.QuedPert) • l000) / (double) 

Perfonnancefrequency.Quadhrt; · · · 

' ) . 
#cndif· 

// 3e) loop to 3 UJllil all images acquired 
lmagesCaptured++; 

) . 

// 4) Wait and then analyze final image 
while( !CCDAccess-> FocuslmagcCaptUred(lmagesCaptured ·.I)); 
tlifdcfFOCUS_TIMING_ECH0_2 . 

QueryPerl'onnenceCounter( &FmmeEndReceived); . . 
FrameEndTime+= (doubleX(FrameEndReceived.QuadPert. LudlMoveDone.QuadPait) • 1000) / (double) 

Peri'ormencef requency .QuadPart; 
#cndif 
LaplacianFocusAlgorithm(lmagesCaptured • I); 
#ifdefFOCUS TIMING ECHO 2 

Que,yPerformenccCou-;jte,( &AnalysisDone); . . 
AnalysisDoneTime +a (doubleX(AnalysisDone.QuedPert • FmmeEndReccived.QuadPart) • I 000) / (double) 

PerfonnanceFrequency .QuadPart; . #cnllif . .. -· . . --···· 

// 5)'Stop the focus sequence 
CCDAccess->StopFocusCupturc(); 
#ifdefFOCUS TIMING ECHO 
QuayPerfoinumceCowrte,(&DoneFocusSequence); 

#cndif 

/16) Const,uct the Focus curve and pick the mrget point (AUTOFOCUS) 
/17) Move to the predicted point end calculate confidence (LUDL) 

int FocusTarget = RetumFocusTerget(Stcps, StepSize, UseTiledSpline); 

// Finally done with all of that mess .... so oow go ahead end move to new position 
#ifdefFOCUS TIMING ECHO 

QueiyPerfoniumcecowrte,(&DoneAnalysis); 
#cndif 
LudlAccess->MoveFocusMotmPulses(FocusTerget • FocusBackLeshCompensation, true); 
LudlAccess->MoveFocusMotoJPulses(FocusBackLashCompensation, tJue); . 

#ifdefFOCUS TIMING ECHO 
Que,yPenonmnceCowrte,(&DoneFinalMove); 

II Now echo the times . . . 
double FirstMoveTime = (doubleX(StartSetup.QuadPart • SmrtFirstMove.QuadPart) • 1000) / (double) PerformenceFrequency.QuadPart; 
double SetupTime = (doubleX(DoneFocusSetup.QuadPert • SmrtSetup.QuadPart) • 1000)/ (double) PerformenceFrequency.QuadPart; 
double FocusSequenceDone = (doubleX(DoneFocusSequence.QuadPart • DoneFocusSenip.QuadPan) • 100:>) / (double) 

PerfonnanceF requency .QuadPart; . . 
double AnalDone = (doubleX(DoneAnalysis.QuadPan • DoneFocusSequence.QuedPart) • 1000) / (double) PerfonnanceFrequency.QuadPart; 
double FinaJMoveDone = (double)((DoneFinalMove.QuadPart • DoneAnalysis.QuadPart) • I 000) / (double) · 

PerformenccFrequCIJC)' .QuadPart; 
double Tom!Time • (doubleX(DoneFinaJMove.QuadPert • StertFirstMove.QuadPart) • 1000) / (double) PerfonnanceFrequency.QuadPart; 
fprintf{Em>rLog/Mvl %4i Set %4i FS %4i Anal %4i Mv2 %4i. Totel'Yo4i\n", 

(int)FirstMov~ime, (int)SetupTime, (int)FocusSequenceDone, 
(int)Anal~liilt)FinelMoveBDne, (int)TotalTime); · 

#iflll:ffG>CUS_1ii~IING_ECH0_2 . . 
fjiijn'il{stdoUl,"Foc:us'.Break Down ... ,.,Valid o/o4i FrameEnd %4i AnalysisDone %4i LudlDone o/o4i\n", 

;(im)VValicrfime, (int)FrameEilllTime, (int)AnalysisDoneTime, (int)LudlMoveDoneTime); 
tlendif ' 

#cndif 

II and re111m the amount .we've changed 
return (FocusTarget +((Steps· I)• StepSjze)/-2); 

} 
/1----------,---~-----1 
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II RetumFocusTarget(Steps, S1epSize)- Find the best location to call . // 
II "In Focus" based on the two curves · II 
II . . I 
int AutoFocus::RetumfocusTarget(int Steps, int StepSize, boo) UseTiledSpline) {. . •. . 

II Also calculate the eonfidence. 
ti Find the Max (point ofbest focus) in both MVes 
II If the two curves are in agreement select the TILED resuh 
II .If the two curves disagree, Move to the point with the smallest delta from center 
bool FocusResult = AnalyzeSJopes(); . 

II build curves regardless of success or failure (has both) 
BuildCurves(StepSize); . 

double EnclX = (Steps • I) • StepSize; 
double CurveMax = 0.0; 
double B!=Slfocus = 0.0; 
double CurveMaxTiled = 0.0; 
double BestFocusTiled • 0.0; 

11 Full spline 
for(double x = 0.0; x <= EndX; x += 1.00) 

{ 
double value= l..aplacianSpline->GetValue(x, O); 
il{value > CurveMax) . . 

{ 
CurveMax = value; 
Bestfocus = x; 

// keep our current max 
II peak located al . 

} 
} 

// Tiled Spline 
for(double x = 0.0; x <>= EndX; x += 1.00) 

{ 
double value= LaplacianTiledSpline->GetValue(x, O); 
il{value > CurveMaxTiled) 

} 

{ 
CurveMaxTiled = value; 
BestFocusTiled = x; 
} 

II keep our current max 
II peak located at 

// calculate how much we shifted from our last position - 855\lmes the center 
// of our curve was the last focal plane 
int ChangeFromCenter= BestFocus -((Steps- I)• StepSize) / 2; 
int ChangeFromCenterTiled = BestFocusTiled - ((Steps -1) • StepSize) / 2; 

// default target if we fail 
int FocusTarget = -((Steps- I)• StepSize) /2; 

// If the tiled spline is valid proceed by analyzing the results based on both curves 
il{FocusResult && UseTiledSpline) 

{ 
II how close to agreeing are they? 

int dFocus = BestFocusTiled - BestFocus; 
dFocus = max(dfocus, -dFocus); 

// Confidence 
FocusConfidence = 1.0 - (lloat)dFocus / (float)(StepSize • Steps/ 2); 

// if within a step, pick the TILED solution 
il{dFocus < StepSize) 
FocusTarget = -({(Steps - I)• StepSize) - BestFocusTiled); 

else 
{ 
// which is closest to center? 

if(ChangeFromCenter < CharigeFromCenterTiled) 
FocusTarget = -(((Steps- I)• StepSize) • BestFocus); 

else 
FocusTarget = -(((Steps- I)• StepSize)- BestFocusTiled); 

} . . 

// if the TilesSpline is invalid, use the fan back spline. 
II or if we are}Orced to use this mode (iris/bright image focus) 
else · 

{ 
II from the Full mask spline 

FocusTarget·= ·"(((Steps· I) • StepSize) • BestFocus); 
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} . 

II so the Taiget is: , 
~m FocusTSlict; 

} . . 
11·-.;.._ _________________ _,,, 

II BuildCurves(StepSize)- how.large is each step to set the position anay II 
II . comctly. . // . 

11· 1 
void AutofO!=IIS::B~ildCUJVes(int StepSize) 

{ 
// nowlill the anay-(used to build spline) 
Ta)¥et0ffsc:ts[O) = O; II obviously no offset here! . 

. fol(int Steplnda= I; Steplndex < lmagesCaj,tured; Steph,clex++) 
TaJ1!etOffsets[Steplndex) .. TargetOffsets[Steplndcx - I]+ StepSize; 

// how many cells? 
.intCelJsc TilcsWide • TilesHigh; 

II m our result anays 
fol{int lmage=O; Image< lmagesCaptural; Image++) . 

{ .. 

// clear to start 
Laphn:ianResults[Jmage) .. 0.0; 
LaplacianTiledResults[lmage) = 0.0; 

// add up each slice . 
doubie- tist ., TileLists[lrnage ); 

. foi\irii Cell i:i~;(:ell<Cells;Cen+t--~J---
{ 
ll skip if masked 

ift:!TileMask(Cell)) continue; 
//just integrate the edge value for die entire image space 

LaplaciariResults(lmage] += List[ Cell); 
II only intqratc for valid i:ells 

if{TilePeakLocations[CeD) != -1) 
LaplacianTiledResults[lrnage) += List[Cell]; 

} // all cdls in an image · 
} // all images 

// reset the Laplacian spline- set up our-DY tenns first (Full image) 
// I) Fini round RMS of the lirst derivative · 
double RMSdy = 0.0; 
Joi{int ·Image= I; Image< lmagesCaptured; Image++) 

t· . . . . 
double dy = (LaplacianResults(lrnage] - LaplacianResults(lmage - I)); 
RMSdy += dy • dy; . 

} . . 

RMSdy = sqn(RMSdy I (lmagesCaptural • I}); 
//2) ,:brow out the outlietS 
double ValidPoints"' 0.0; 
double SmoothSum = 0.0; 
fol(int Image= I; Image< lmagesCaptured; Image++) 

{ 
double dy =~LaplacianResults[lrnage] • LaplacianResults[lmage - I)); 
dy = max{dy, -dy); 
ill:dy < RMSdy) 

} 

{ 
SinoottiSilm += dy; 
ValidPoints++; 
} 

if{ValidPoints) 
{ 
SmoothSum ./= ValidPoints; 
iffSmootliSum < 1.0) 
Smooth~um ~= SmoothSum; 

else 
Smooth"Sum .,; sql(SmoothSum); 

. } 
oelse . 

SmoothSum ~ I :O; If rilin 'will handle this in the set step 
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. . 
II 3)-set the DY tenns - don't allow to be more than 50"/4 of the actual dy 
. for{int Image= I ;Image c:: lmagesCaptured • I; Image++) . 

DY(lmage) = SmoothSum / 100.0; 
II anchor the ends 
. DY(0) ., SmoothSum /_ I 000.0; 

. DY[JmagesCaptured • I)= SmoothSum I 1000.0; .. .. . 
II 4) finally allocate them if they don't exist, or just reset them if they do .. 

54 

if(!LaplacianSpline) .. •· ·. . . . . . . 
LaplaciailSpline=new SmoothSpline(TargetOfTsets, LaplacianResults, DY, lmagesCaptured, lmagesCaptured); 'else .. . .. .. 
LaplacianSpline-> ResetSpline(TargetOfTsets, LaplacianResults, DY ,JmagesCaptured, lmagesCaptured); 

- .. 

II raet the Tiled J.aplacian spline - set up our DY terms first 
II l) First round RMS of the first derivative 

RMSdy = 0.0; . 
for(int Image = I; Image < JmagesCaptured; Image++) 

{ .. .. 

double dy = (LaplacianTiledResults(Jmage)- LaplacianTiledResults(bnage - I]); 
RMSdy-tc: dy • dy; 
} 

· RMSdy = sqn(RMSdy I (lmagesCaptured - I)); 
112) Throw out the outliCIS - take the MEAN of the remainder, not the RMS 

ValidPoints = 0.0; 
-SmoothSurn = 0,0; 
foi(int Image= I; Image< lmagesCaptured; Image++) 

{ 
double dy = (l.aplacianTiledResults(lmage)-..: LaplacianTiledResults(bnage a I]); · 
dy= max(dy.~); ·· 
if{dy < RMSdy) 

} 

{ 
SmooihSum -+c: dy • dy; 
ValidPoints++; 
} 

iftValidPoints) 
{ 
SmoothSum t= ValidPoints; 
iflSmoothSum < 1.0) 

SmoothSum -= SmoothSum; 
else 

SmoothSum = sqn(SmoothSum); 
} 

else 
SmoothSum = 1.0; II min will handle this in the set step 

// 3) Set the DY terms - don't allow to be more than 50% of the actual dy 
for(int Image= I ;Image < lmagesCaptured • I; Image++) 
DY[lmage] = SmoothSum / 100.0; 

// anchor the ends 
DY(0] = SmoothSum / 1000.0; 
DY(lmagesCaptured - I)= SmoothSum / I 000.0; 

/14) finally allocate them if they don't exist, or just reset them if they do .. 
ift!LaplacianTiledSpline) 
LaplacianTiledSpline = new SmoothSpline(TargetOffsets, LaplacianTiledResults, DY, lmagesCaptured, lmagesCaptured); • • else . . . 

. LaplacianTiledSpline->ResetSpline(TargetOffsets, LaplacianTiledResults, DY, lmagesCaptured, lmagesCaptured); 

II . 1 
it int Rerumfocuslmagd'osition() - returns the offset of the image slice II 
II that is the most nt'focus - used for bright field construction II 11--------------------11 
int Auto1'ocus::ReturnFocuslmagePositioij-void) 
{ 
int FocusPosition = O; 
Tol'(int i = I; i < lmagesGaptured; i++) . 

iftl..aplacianResults[i] > 12placianResults(f'ocusPosition)) 
"focusPosition = i; 

mum FocusPosition; · 
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Example 2. Image flat fielding code. 

#include "Flaue,iMaster.b" 

.// Image tolenmce levels . 
#define SATURATION_POJNT_l28IT 4095 . . . . 
#define BIN_SIZE_l2BIT 4096.0f // allows soine padding at the low end ofa flattened 16 bit image 
#define SATURATION POINT 1681T 6SS3S 
#define SUB_SAMPLE=SIZE - 8 // bin down to 8 • 8 when using the Kappa interpolation hl,rary 
#define SCALE_FACTOR · JO.Of //scale data 11pbyJ0.0(rangeis~096+ Da1a • SCALE_FACTOR) 

#define DARK_IMAGE_MODE)-OLERANCE 500 // if the mode of the darldmage is above SOO- we have a problem 
· II print a message and resume as if no dark image exisas 

#define VERBOSE_MODE 0 // I full output .. 
· II O Warnings, Errors and vital stats only .. 

#define FULL_ OUJ'PlTT 0 II I ouiputs individ111I inteipolated images • 
II 0 Final images only (corrected,Sum) 

// Interpolation KNOTS . 
#define KNOTSX : S II how many knots to use for 2D interpolation (X) 

· . #define KNOTSY · 4 . II how many knots to use for 2D interpolation (Y) 
. #define SUM KNOTSX S II do sum image smoothing with only I Knot 
~e SUM=KNOTSY 4 . 

l . . Flatten Base Class.,,,.,===========-=// 
// Flatten(lmage\Vidth, lmageHeight, Darklmage, lrisMask) . // 
// Darldmage - Background image that must be subtracted from each Data // . 
II image before collllction II 
// lrisMask - Mask applied to images ~here intensity information is // 
// unreliable in IID)' statistical way (light was blocked // 
// during imaging) //. ll-----------,;.;,...------11 
Flatten::Flatten(int Image Width, int lmageHeigbt, OM Image• Darklmage, OMlmagC- lrisMask) 

{ ' ' 

II save 
this->lrisMask = lrisMask; 

II ro. 
this->lmageWidth = Image Width; 
this->lmageHeight = lmageHeight; 

// calculate ·. · 
CalculateDarkLevel(Darklmage); 

// Interpolation Buffer 
KappaBuffer = new KappaFill(lmageWidth, lmageHeigbt, SUB_ SAMPLE_ SIZE); 

} ' ' ' 

l,...,.._..;.... ______________ _,,I 

// -Flatten() - destructor II 

ll-----------------1 
Flatteli::-fianen() 

{ 
// clear 
this->lrisMask = NUU; 

//clean 

} 

delete KappaBuffer; 
KappaBuffer = NUll.; 

Jl-------------.------,1 
//Calculatel>arklevel(Darkl~e) - determines the amount to subtract from II 
II · each Data image based on the collected // 
// dark currcnt image. // 11·--------...---------.1 
void flatten::CalculateDarlcLevel(OMlmagC- Darklmage) 
{ 
//.is then:on? 



it{!Oarklmage) 
{ 
DarklmageLevel -= O; 
return; 
} 
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Ii use a histo~m to do analyze the bffers 
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Histogram DarklmageHistogram(l2, (unsigned short•)Darklmage->Data{), 
· Darklmage->Width()•DarkJmage->Height(), true); 

II Get the Darlc level (Mode of image) · • 
DarklmageLevel -= DarklmageHistogram.GetMode(); 

II is it out.of the expected range? 
if{DarklmageLevel > DARKJMAGE_MODE_ TOLERANCE) 

{ . 

58 

// this is an em>r! So always echo 
fprintflstderr, "WARNING:: Dan: Image tolerance error. Mode of the dark image {%i) is above %i\n", 

DarklmageLevel, DARK_IMAGE_MODE_TOLERANCE); . . 
// resume after a reset 
DarklmageLevel -= 0; 

} 
} 

ll . l 
// SubtractDarklmage(Datalmage) - adjust the data image by the Dark Level // 
// calculated from the dark cum:nt image. // 
II NOTE:: Points that were collected at SA TURA TJON (409S) will be preserved // 
/I as saturated pixels. · .fl 
II . l 
void Flatten::SubtractDarklmage(OMlmagC- Datalmage) 

{ 
fl if Darklevel is O early exit 
if{!DarklmageLevel) return; 

II our input is 12 bits, so set our Siltura1ion point at 409S (2" 12)-1 
unsigned shon• Data= (unsigned shon•)Datalmage->Data(); 
long Points= lmageWidth • lmageHeight; 

} 

while(Points) . 
{ 
// preserve saturated.pixels 

if{*Data < SATURATION_POINT_l2BJTI 
•Data = max(O, •Data - DarklmageLevel); 

else 
•Data= SATURATION_POJNT_l2BIT; fl occasional blip OVER SaturationPoint, so lock it in 

// update the counters · 
Data++; 
Points-; 

} //Points 

ll'-----------------11 
II lnterpola1eBackground(Datalmage)- Fill the passed in Kappa // 
II Object with the background interpolation of the Data Image// 
// and adjust for OC interpolation offseL 
11-----------------t.l 
OMlmage• Flatten::lnterpolaieBackground(OMlmage• Datalmage, float &lnterpolatedDCDifJere!)Ce) 

{ 
// Interpolate the background now 

OM Image• Backgroundlmage = KappaBufTer->Execute(Datalmage, II Data to interpolate 
lrisMask, II mask to apply during interpolation · · 

SUB_SAMPLE_SIZE, II SubSampleSize 
.KNOTSX, II KnotsX 
KNOTSY,//KnotsY 

48, II TilesX 
38, II Tiles Y 

0.0, II SDiv I 
0.0, II SDiv2 
().30); II KeepPen::ent 

// Advanced step #I) We have found that after interpolation there is sometimes 
II a remaining OC offset (although small). The following step 
II is run to. detennine the size of that offset and to adjust 
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// th~ i~ge and bufl'er_for that amount. 
Histogram DifferenceHistogram( 16, NUU., 0, false); 
Jong• DifferenceTable = DiffercnceHistogram.GetTablc(); 
itllrisMaslc) { . . 

// Data ·. ·. . 
· unsigned shon• !Data= (unsigned shon•)JrisMask->Data(); 
unsigned 11hon• Data= (unsigned shon*)Datalmagc->Data(); 
float• BData"' (float•)Backgroundlmage->Data(); 

// fill the Difference Table . 
int Points-= lmageWidth • JmageHeight; 
whik:(Points) · 
{. . 

ifl(•JData) && (•Data!= SA1URATION_POINT_l2BIT)) 
{ . 

II on the subtraction . • . 
/ta) add an offset so that there is room to fluctuate around a gaussian mode · 
// b) ~ factor of JO for a Mode _calculation to within 0.J 
//-c) round up · . 

} 

int value= (int)((BIN_SIZE_J2BIT+ (*Data· •BData) • 10.0) + 0.50); 
if{(value> 0) && (value< SATURATION_POINT_l6BIT)) 
Difference Table( value)++; 

// update our pointers 
Data++;· 
BData++; 

.. )Data++; . 
//.and OUJ' COIDlter 

Points-; 
·) //-ooverentirespace 

} /I Have an Iris 
else 

{ 
// Data 
· unsigned shoJt• Data = (unsigned ilhon•)Dinalmagc->Data(); 
float• BData = (float•)Backgroundlmagc->Data(); 

// fill the Difference Table . . 
int Points= Image Width • lmageHejghl; 
while(Points) 

{ 
ifl•Data != SATURATION_POJNT_J2BIT) 

{ 
II on the subtraction . 
// a) add an offset so that there is room to fluctuate around a gaussian mode 
// b) use factor of JO for a Mode calculation to within 0. J 
// C) round up . 

} 

int value= (int)((BIN_SIZE_J2BJT + (•Data - 0 BData) • 10.0) + 0.50); 
itl( value> 0) && ( value < SATURATION _POINT_ I 6BIT)) 
DifferenceTable[value )++; 

// update our pointers 
Data++; 
BOata++; 

// and our counter 
Points-; 

} // cover entire space . 
} //No Iris. 

// Now the Histogmm ·calculations . 
// set our range from Oto 65534 
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DitTerenceHistogram.SetCutOflt-), SATURATION_POINT_l6BJn; // valid range is now O-(SATURATION_POINT_l6BIT-J) 
// calculate the Gaussian Mode · 
double~Dev; . // Standard Deviation of the Satitracted image 

// how much did it vary? 
lnterpolatedDCDifference = (DiffermceHistogram.GetCalculatedGaussianMode( &SDev) • BIN_ SIZE_ 12B]T) / 10.0; 

// apply to the B_ackGround Image 
float• ·BData = (fli>at•)Backgroundl_magc->Data(); 
Jor(int Point= 0; Point < Image Width• JmageHejght; Point++) 

BOata{Point) =Jnax(0.Of, BData{PointJ+ lnterpolaied{)CDifference); 
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ti for the Kappa-Buffer allow a negative offset since we may need this 
/I.to adjust in the BuildSumlmage step ·usec1 in interpolative flattening 
// in the Brightlmage case the grid is no longer used · 

float• FilledGrid = KappaBuffer->GetFilledGrid(); . . 
int Points= KappaBuffer->GetGridWidtl() • KappaBuffer->GetGridHeighl(); 
fol(int Point.= O; Point< Points; Point++) 
. FilledGrid{Point] += lnteipolatedOCDiffen:nce; 

//.Done 
return Backgroundlmage; 

} 
ll 1 
// CalcuhitelmageMean(lmage) - calculate the Mean ~fthc image passed in // 
11-----------------,--11 
float Flatten::CalculatelmageMcan(OMlmage• Image) 

{ 
II data type? . 

il{lmage->DataType() = OMI_ UNSIGNED _SHORT) 
{ 
//-calc mean .. 

int64 Totallntensity = O; 
int PointCmmt -= O; 
int Points= lmage-.>Width() * lmage->Heighl(); 
unsigned shon• Data= (unsigned shon*)lmage-.>Data(); 

ifUrisMask) 
{ , • • C 

unsigned shon• lrisData = (unsigned shon•)irisMask->Data(); 
fol( int point = O; point < Points; point++) 

{ 
ift:lrisData[point]) 

{ . 

Totallntensity += Data[point];. 
PointCount++; · 
} 

} 
} 

else 
{ 
fol( int point = 0; point < Points; point++) 

{ . 

Totallntensity ~ Data(point]; 
PointCount++; 
} 

} 
return (floatX(double)Totallntensity / PointCount); 
} 

else iflJmage->DataType() = OMJ_FLOAT) 
{ 
//·ca.le mean 
double Totallntensity = O; 
intPointCount = 0; 
int Points= lmage->Width() • Jmage->Height(); 
float• Data= (float*)lmage-> Data(); 

ift:JrisMask) 
{ 
unsigned shon• lrisData = (unsigned shon•)JrisMask->Data(); 
fol(int point·= O; point< Points; point++) 

} 

{ . 

il{lrisDatil{p>int)) 

} 

{ . . 

Total_lnteilsity -+-= Data(point]; 
PoiritCount++; 
} . 

else 
. ,{ . 

foi(int point= O; point < Points; point++) 

62 



63 

{ ' . . 

Totallntensily += Data(point]; 
· . PointCount++; 
. } 
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} 
· return {float)(Totallntensity I PointCount); 

} . . 

Ilda? 
retuml.O;. 

} . 

11·--------------------1 
ii OM Image• Fla~lmage(Datalmage, BackGroundlmage," Brightlmage, TargetMean) II 
II Now apply everything we have to construct the final ~ed image and II 
II return thaL II 

//-------------------· 
OMlmage• Flanen::Flanenlmage(OMlmage• Datalmage, OMlmage• Backgroundlmage, 
· · OMlriulge• Brightlmage, float Correctionfactor) 
{ 
//JNP1Jf: 
// Datalmage OUT I 2 bit image with data ranging from offset O to 4096 
II Bacqround Image - interpolation of the Datalmage with the DNA removed 
// .Srightlmage - Nonnalized Illumination profile 
II 
// OUTPlrr: . 
II Correctlmage - a 1·6 bit image that is offset so that the mode (0 level) 
// starts at 4096. Data values are scaled by SCALE_FACTOR 
II above this bin. Typically IO so that data -ranges between 
// 4096 and 4096 + 40960. This will prevent data bordering 
// on saturation from reaching saturation due to correction 
II alone. (Unless intensity is boosted by more than 30%) 
//BASIS: . 
// It is assumed that our Raw Data Image is constructed es follows 
II Data = (Targetlntensity + AdditiveEnor) • MultiplicativeEnor 
II : = Targetlntensity • MultiplicativeEm,r+ AdditiveEl1tll' • MultiplicativeEnor 
II . ·. . . . . 

II The additive enor (in the ideal aise) is assumed to be a uniform 
II fluorescent layer that descnl>es the illumination profile. Using this 
II assumption a series of backgrounds can be mCIJ!ed io fonn an approximation 
II of the illumination profile (used in lntCJJ)Olative Flattening). 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

In either case, the AdditiveTenns contribution iscompletdy removed during. 
the subtraction step. The only question the previouse assumption brings up, 
is whether or not the (shape)MultiplicativeError = (shape )AdditiveError 
and can therefore be used for the flat fielding step. 

So now to recover the Targetlntensity. Tenn do the following. 
a) Subtract the InterpolatedBackground (Additive • Multiplicative) 
b) Divide by the Brightlmage . 

• c) Adjust the 1inal tenn based on intensity comet ion etc ... 

For example, when equalizing images, CorrectionFactor should be set as 
follows. {Assume we are normalizing to the first image) 

Mean ·<onectionfactor 
Image) 1.3 1.0 (Meintain) 
lmage2 · I .2 I .3 / I .2 (Brighten) 
lmege3 • I.I 1.3 / I.I (Brighten} 
lmage4 1.4 1.3 / 1.4 (Pim) 

NOTE: ifthe13rightlmage is NOT normalized, then the Correction Term must 
be'set to accomplish this (CorrectionT enn •= BrightlmageMean) 

//Set up·somebuffer access points 
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OM Image• Flatll)'lage = new OMlnuJge{lmageWidt!!, lmageHeight, OMI_ UNSIGNED_ SHORT, OMI_INTENSITY); 
unsigned short• Aat ="(unsigned shon•)flatlmage.:::il)ata(); 
unsigned-short•·lulw =~unsigned short•)Datalmage->-Data(); 
Hoat• Additive.;,{float")BackgroundlJ113ge->Data(); 
float• Multiplicative =-(Aoat•)Brightlmage->Data(); 

. //"scaling 
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CorrectionFactor •= SCALE_F ACTOR; 
· II traverse the image · 

int Points-= Image Width • lmageHeigbt; 
float FlatValue; 
while(Points) 
. { 

// I) .If it's saturated, leave it there 
ift•Raw < SATURA TION_POINT _12BIT) 

{ . . 
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// 2) subtract the background image from the raw image, 
// adjust it by the mode correction 

FlatValue =. (floatX•Raw) - (• Additive); 
// 3) divide by the Sumlmage 

FlatValue /= *Multiplicative; 
/14) Equalize using Correction Term (also used to adjust for BrighiProfileMean if 
II . · . it was not normalized) · 

FlatValue • .. CorrectionFactor; 
II S) line it up a.round the 4096.0 point 

FlatValue +c BIN_SIZE_12BIT; 
/16) clip it 

iflFlatVelue < 0.0) Flat Value= 0.0; . 
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else iflflatValue> SATURATION_POJNT_l6BIT) FlatValue= SATURATION_POINT_l6BIT; 
// 7)save it 

•flat= (unsigned shortXFlatValue + 0.5); 
} 

dse 
•Flat= SATURATION_POINT~l6BIT; 

// update pointers 
Flat++; 
Raw++; 
Additive++; 
Multiplicative++; 
Points--; 

} // points 

II relllm the corrected image 
return Flatlmage; 

} //proc 

tt-••··················································~······················•11 
// Bright Image Flattening Processing Object // 

/I=========.================.=====// 
Brightlmageflatten::BrightlmageFlatten(char* DarlclmagePathName, char* BrightlmagePathName, 

· char* lnputlmagePath, char* Outj,utlmagePath, 
char*• lmagelDs, long lmageCount, 
boo) Calculatelris, boo) Equalize) 

{ . . 
// For now let's do some tmung too 
timeb StanTime,StopTime; 

II time tracking · 
ftime(&StanTime); 

// Useing . •·· 
·1nitialize(DarlcJmagePathName, BrightlmagePathName, Calculatelris); 

I/ Flatten each image 
schar lmageName[IQ24); 
'float ConectionFactor = 1.0; 
. ifloat BaseConectionfector., 1.0; 
'fol{ int lmageNuml>et ~ {); lmageNumber < lmageCount; lmageNumber++) 

. { . 

II Load this image 
sprintfl)mageName,~AIS• DIR_SEP ~wo/os.omi", lnputlmagePath, lmagelDs[lmageNumber]); 

OMlmage• Rawlmage-= new OMlmQe(lmageName); 

II Subtract the Dark Image leyel 
FlattenObjcct->SubtractDarlcJmage( Raw ln'lage); 
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I/ Interpolate tlle Background . 
float DCEnor, II could track this in verbose mode? 
OM Image• Backgroundlmage = FlanenObjcct-> lnterpolateBackground(Rawlmage, DCEnorj; 

. · 11 are we equa!izing? 
if(Equalize) 

{ . . . 

JI NOTE: This fonn of equalization is a bit naive. It assumes that 
// there are no large additive errors (outoffocus blobs) moving 
II the image mean up or down; 
II Approach I) Normalize and compare to the bright image to find an offset 
// and throw out_ bad points (probably iterative, will not worlc 
I/ when a better filter is used, thus eliminating the profile) 
II Apporoach 2) Clip top until SDev is some %of the image mean - definitely itmtive 
// but can be speed up ·by using a Histogram. · 
II calculate the Background Mean · 

float ThislmageMean = FlattenObject->CalculatelmageMean(Backgroundlmage); 
iftlmageNumber-= 0) · 
BaseCorrectionfactor = ThislmageMean; 
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CorrectionFactor = BaseCorrectionFactor / ThislmageMean; 1/ 1_.0 for first, adjust to first for the rest 

} 

II now flatten. it . 
OMlmage•·Correctlmage = FlanenObject->Flattenlmage(Rawlmage, Backgroundlmage, Brightlmage, CorrectionFactor); 

II Write it 
I/ build name 

_· sprintftlmageName, "%s" DIR_ SEP "correcto/os.omi", OutputlmagePath, lmagelDs[lmageNumber]); 
II set the name · 

Correctlmage->SedmageFilename(lmageName ); 
// and write it out 
Correctlmage-> WriteToFile(true); // yes - we do. want them compressed 

//cleanup for this pass 
delete Raw Image; 

} 

delete Backgroundlmage; 
delete Correctlmage; 

II Now save the BrightSmootb Image - COMP AT ABiLITY ISSUE - CAN REMOVE AT SOME POINT 
sprintftlmageName, "%s" DIR_ SEP "brightsmooth.omi" ,OutputlniagePath); 
BrightSmoothlmage->SetlmageFilename(lmageName); 
BrightSmoothlmage->WriteToFile(true); 

// timing output 
ftime( &Stop Time); 
fprintftstderr, "Total run time REAL:\n"); 
Jong Total= (StopTime.time • 1000 + StopTime.millitm) 

-{StanTime.time • l000 + StanTime.millitm); 
fprintftstderr: Time: %ld.%ld Seconds\n", Total/ 1000, Total% 1000); 

} . 

11-------------------tl 
// -BrightlmageFlatten() - destructor // 
ll . . II 

BrightlmageFlatten::~BrightlmageFlanen() . 
{ . 

delete DarkJmage; 
Darldmage o;: NULL;· 

delete lrisMaskJmage; 
lrisMasklmagec: NULL; 

delete Brightlnge; 
Brightlmage = NUU; 

delete BrightSmoothlmage; 
BrightSmoothlmage = -NµLL; 

. delete F.lattenObject; 
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FlanenObject = NULL; 
} . 

69 

11~---------'----------t,I 
II Jnitililize(BrightlmagePathName; Calculatelris) 
ll. . I 

II 
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void BrightlmageFlanen::lnitialize(cha~ DarkJmagePathName, cha~ BrightlmagePathName, bool Calculatelris) t . . . 
II Step one .:.. Load the Dade Image 

if{DarkJmagePathN11me) 
DarkJmage = new OMlmage(DarkJmagePathName); 

// Load Bright Image 
Brightlmage "'. new OMlmage(BrightlmagePathName); 

// Calculate the iris 11111Sk 
if{Calculatelris) 
JrisMasklmage = · Findlmageframe(Brightlmage); 

// Initialize a Flatten object 
FJattenObject-= new Fletten(Brightlmage->Width(), Brightlmage->Height(), 

Darldmage, JrisMesklmage); . 

// Calculate the Background Mean 
float BrightlmageMean = FlattenObject->CalculatelinageMean(Brightlmage); 

II the new image 
OMJmage• NonnalizedBrightlmage = new OMJmage(Brightlmage->Width(), Brightlmage->Height(), 

OMI_FLOAT, OMI_INTENSJTY); 
float• NonnBuffer= (float•)NonnalizedBrightlmage->Data{); 
unsigned short• BrightData = (unsigned short•)Eirightlmage->Data(); 
int Points= Brightlmage->Width() • Brightlmage->Height(); 
fol(int point= O; point< Points; point++) · 

{ . . 

float NonnValue = BrightData(point] / BrightlmageMean; 
if{!NonnValue) . 
NonnBufferfpoint]= 1000.0; // let it dim to almost nothing if it's at zero (very rare, underthtdris in any case) 

else . 
NonnBufferfpoint] = BrightData[point] / BrightlmageMean; 

} . 

II save the Brightlmage (iris.onii most times) as brighsmooth.omi. with the mask applied 
// This is for compatability with the current processing. When/if this becomes a large 

· II processing object, drop this write stage. · 
ift)risMasklmage) 

{ 
unsigned short* !Data= (unsigned short*)lrisMesklmage->Data(); 
unsigned short* SData = (unsigned short*)Brightlmage->Data(); 
int Points==lrisMasklmage->Width()*lrisMasklmage->Height(); 
fol( int i=O;i<Points;i++) 
SData[i]&=IData[i]; 

} . 

BrightSmoothJmage = Brightlmage; 
Brightlmage = NormalizedBrightlmage; 

} 

11••····~·································~··~·~················· .. ·············•11 // lntert,olative Bright Jmage Flanening Processing Object // ,~.....,.;========·'"========· ==================,II 
II . . . II 
// FJatMastei{Darklmagll!athName,lrislmagi!PathName,BrightlmagePathName, II 
// JnputlmagePath1DutputlmagePath,lmageJDs[J,lmageCount, // 
// Ta'l!etMeen,AutDProcess,Equalize,SubtractUsingSumlmage) II 
// Initializer for the flattening object // 
// DarlclmagePathName - name end path of,~e darkimage to use II 
// lrislllll!gePathName -·name and path of th!: irisimage to use. // 
// lnputlmagePath - Path to the list of input images // 
// OutputlmagePath . .:. Path to the list of output images II 



II 
II 
II 
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II 
II. 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
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JmageJDs• •. . - list of image )D's .. . . II 
lmageCount - count of the images in thelmagelDs list , II 
PassCowtt - how many passes was this collection run in? // 
TargetMean - Target Mean of all flattened images - only set II 

whm this object is initialized in ii parallel · II 
setting. If in sequential mode let this object // 
initialize this value. If in parallel mode, send II 
one group ofimages, use the TargetMean it · // 
generates, and pass it on to all subsequmt II 
FlatMaster objects. II 

AutoProcess - if this flag isset, the object is constructed and II 
then immediately begins to ptoc:ess the data, // 
otherwise processing must be coordinated externally// 
This feature is useful for the VisualFlatteliing // 
application. // 

Equalize - Set to true if want to use the Target Meari and also// 
equalize all of the images by aligning to the // 
background average intensities // 11·--------...;..----------t,/ 

FlatMaster::FlatMaster{ char"' DariclmagePathName, · 
char"' lrislmagePathName, 
char"' lnputlmagePath, char"' OutputlmagePath, 
char"'• JmagelDs, long JmageCount,long PassCount, 
double TargetMean, 
bool AutoProcess, 
bool Equalize) 

{ ··. . 
// copy all of our path/data since this is just a prep phase 

strcpy(this->DarlclmagePatbName, DarlclmagePathName); 
strcpy(this->lnputlmagePath, lnputlmagePath); · 
strcpy(this->OutputlmagePath, OutputlmagePath); 

// optional field . , 
if{lrislmagePathName) strcpy(this->lrislmagePathName, JrislmagePathName); 
else this->lrislmagePathName[O] = O; 

// list oflmage)Ds 
this->PassCount = PassCount; // how many passes 
RawlmageCount = JmageCount; II how many images 
this->lmagelDs = new char"[JmageCount]; fl generate a list of 1D's 
fol(int i = O; i < lrnageCount; i++) 

{ 
this->JmageJDs[i) = new char[32); 
strcpy(this->lmagelDs[i], lmagelDs[i]); 
} 

II ourTargetMean - should be O in sequential mode 
this->TargetMean = TargetMean; · 
this->AutoProcess= AutoProcess; 
this->Equalize = Equalize; 

II Initialize our Pass's List 
SetPassSizes(); 

fl some initial pointer settings 
Darlclmage = NULL; 
Jrislmage = NUU-; 
fol(int i = 0; i < IMAGES_PER_PASS; i++) 

{ 
Raw]mageUst(i) = NULL; II Raw images 
FlattenList[i] = NUU; II Flattening object for corresponding Raw Image 
Backgroundlist(i) = NULL; II Interpolated backgrounds . 
Co!TeCtList[i] = '.~LL; II Corrected images 
} 

JrisKappaMiisk = 'NUU.; 
// Sumlmage buffers 

Sumlmage = NULi;; 
SumFill = NUU.; 

// Now if we're auto processing - go for it 
ift:AutoProcess) · 
ProcessEntirclmageSct(); 

} 
JI . 
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// -FlatMasteJ() - object destnH:tor fl• 
-11·-------~--;.....------1,1 
RatMaster::-FlatMasteJ{) 

{ . 

II Clean up our JmagelDs list 
_fol'{int i=-O;i<RewlmageCount;i++) 

delete lm~IDs(i]; 
. delete JmagelDs; 
II clean up our pass list · 
delete PassUst; 

II remove our Dane Jmage object 
delete Darlcl~; 

II remove our Iris Image object 
delete lrislmage; 

II remove any raw images that were loaded and buffers used. 
fol(int i = O; i < IMAGES_PER_PASS; i++) 

{ 
delete RawlffUll!djst[i]; 
dele,e Back.groundList[i]; 
delete Correctl..ist[i]; 
delete flanenList(i]; 
} 

delete lrisKappaMask; 
II Sumlmage buffers 
delete SumJmage; 
delete SuinFiU; 

} 
II . . I 
// ProcessEntirelmageSet() - when AutoProcess is set, no external methods are// 
// being accessed, so process it all automatically // 
II . . . I 

~oid FlatMaster::ProcessEntirelmageSet(void) 
{ 
II For now let'!i do·some timing too 
timeb StartTime;stopTime; 
#ifVERBOSE MODE 
timebTimel,Timc2; 

#endif 
// time tracking 
ftime(&StartTime); 

II Step one - Load the Dade Jmage -
LoadDarklmage(); 

II Step two - Lnad the Iris Jmage 
Loadlrislmage(); 

II Step four- calculate the Iris Mask 
CalculatelrisJmage(); 

II set up our loop of passes 
fol(infi=O;i<NumberOfPasses;i++) 
{ 

1/ifVERBOSE_MODE 
'ftime(&Timel ); 
lprintl{stderr:Loading Images for Pass %i\n" ,i); 
LoadRawlm~); II Loads the Raw Images based on the pass 
ftime(&Time2); 
ReportTime( &Time I ,&Timc2); 
lprintf{ stderr, • Subtracting Darlc lmage\n "); 
SubtractOarklmage(); II Subtract Dark Image data and apply the iris as well 
ftime(&Timel ); 
ReportTime( &Time2,&Timel); . 
fprintf{stderr, • Jnterpolating Bltkgrounds\n"); 
Jntel'J)Olatelmagcs(); 
:ftime(&Time2); 
ReponT1me( &Timel,&Timc2); 
lprinttlstderr,• Building Sum lmage\n"); -
BuildSumJmag«); II build the sum image outof the Filtered images 
ftime(&Timel ); 
ReportTime(&:Time2;&Timel ); 
lprinttlstderr," Aatteiling Jmages\n•); 
Flanenlmages(); II Fiiltten the ·1mages 
ftimf(&Timc2); 
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ReponTime(&TimeJ,&Time2); 
fprinttlstderr,• Save lmages\n•); · 
S_aveFlattenedlmages(); // Write the data out 
'SaveSumllllll8c(); 
ftime(&TimeJ); . 
ReponTime(&Time2,&TimeJ ); 
/lsd liO top ofloop is back in sync 
memmove(&Timc2,&Timel,sizeofltimeb)); 

·'41else . 
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uiadRawlmagcs(); // Loads the Raw Images based on the pass 
Subtrac1Darldmage(); II Subtract Dane Image data and apply the iris as well . 
lntetp0latelmages(); // uses the Kappa-lib routines to interpolate our backgrounds 
BuildSumlmage(); // build the sum image out of the Filtered images 
Flattenlmages(); // Flatten the Images 
-Seveflettenedlmages(); // Write the data out 
SeveSumllllll@C(); // write out the iris'd sum image: for this set 

-4kndif . . 

NextlmageSel{); II Handle int~) pointers 
} 

· ftime(&StopTime); 
fprintf{stderr, "Total run time REAL:\n"); 
ReportTime( &'StartTime,&StopTime); 
} 

II . I 
II ReponTime(StartTime,StopTime)- zap.this later, but for now dumps time // 
II ·stats es we process. Real Time not process tiine. // 
II . . . .. I 
void f'JatMester::ReportTime(timeb• StartTime,timeb• StopTime) 

( 
Jong Total=(StopTime->time•Jooo+StopTime->millitm) 

{StanTiJite->tirne• I ooo+StartTime->millitm ); 
fprintfl:stderr: Time: %1d.%Jd Seconds\n",Total/1000,Total%1000); 
} . 

Jl•---------------------1, 
II SetPass"'Sizes() // 
II This procedure detennines the optimum number of passes and the size for II 
II each pass. It saves this data in a list to be used for moving through II 
// the images. // 
11------------------f,/ 
void FlatMilsler::SetPassSizes(void) 

( 
II allocate our PassList 

int Passl..ength"' RawlrnageCount I PassColDll; II working on sub increments 
// spol collection wiU use shon passes with high depth 

ilt(Passl..ength < IMAGES_PER_PASS 12) && (PassCount > I)) 
( 
Passl..e!Jgth'"' RawlmageCount; 
PassCount = I; 
} 

II warning if this set is too small 
il{Passl..ength < IMAGES_PER_PASS / 2) 

( 
fprind{stderr, "lnW ARNING: Flattcn"\n"); 
•fprintf{'Stderr, "Ratten is operating on a reduced image set. \n"); 
fprintf{stderr, "Only %i images supplied per pass where a range of\n", PassLength); 
fpriritf{stderr, "o/oi to %i is desircd.\n", IMAGES_PER_PASS/ 2, IMAGES_PER_PASS); 
} . 
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int CollectionPasses = {PassLength + IMAGES _PER_FASS a 1) / IMAGES _PER_PASS; // each with this.many passes 
NumbeiOfPasses =-CollectionPasses • PassCount; · · // and so our total is ... 
PassList = new long[Numbe!OfPasses]; // allocate it · 

II traverse the list and fill - only interested with the number of images 
. II per pass, not their actual ID's · 

fol{int FlatPass = O;"flatPass < NumbeiOfPasses; FlatPass++) 
{ 
// Which FlatPass aR: we in, in the,:ollection pass - confusing no? 81 

int CollectionOffSet ={FlatPass %:CollectionPasses); 
Passlist(flatPess] =='(PassLcngth / CollectionPasses); 
int Remainder .. Passl..eilgth % CollectionPesses; 
if{Rernainder &&. Colk,ctionOffset < Remainder) 



PassList[FlatPass ]++; 
} 

// initialize our pass settings 
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CurrentPass = O; II first pass offset 
CurrentStanlmage .. O; II First Image offset 
i JI proc . 
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/1·----'-------------'-------11 
II LoadDarltlmage() - Loads the Dart image fiom disk. If not present, the // 
// Darltlmage object pointer is set to NULL II 
II I 
void FlatMaster.:LoadDarltlmage(void) 

{ . 

// see if the string is NUU or not 
if{!Darlc1magePathName[0]) 

Darlc1mage = NULL; 

} 

else 
{ 
Darlc1mage=new OMlmage(Darlc1magePathName); 
if{!Darlc1mage) 

} 

{ 
// repon an error and exit - processing will resume as if no image exists 

fprintf{stderr,"Unable to load the Dark lmage\n"); 
return; 

} 

ll'--------------------11 
II Loadlrislmage() - Loads the Jris image fiom disk. If not present, the // 
// lrislmage object pointer is set to NULL · II 

ll'-----------------11 
void FlatMaster::Loadlrislmage(void) 

{ . 

// see if the string is NUU or not 
if{ !lrislmagePathName[ 0)) 
lrislmage = NULL; 

else 
{ 
hislmage = new OMJmage(JrislmagePathName); 
ift!lrislmage II !lrislmage->Data()) 

{ 
// repon an error and exit - processing will resume as ifno image exiSIS 
fprintf{stden.• Unable to load the Iris lmage\n"); 

} 

} 
} 

lrislmage=NUU; · 
return; 

11:.-----------------~I 
// Calculatelrislmage() - proc- the Iris image to find the intensity // 
// cutoff and therefore the Iris border. // 
11------------------1/, 
void FlatMaster::Calculatelrislmage(void) 

{ . . 

// early exit if there is no image to calculate 
ift!lrislmage) return; 
llifVERBOSE MODE 
fprintf{stderr,•Calcillating the iris image.\n"); 

#lendif . 
// hold the old version so can delete when done with this routine 
. OMJmagC- Timage = lrislmage; 
// find the iris •. Iris image will contain O's where the iris is and 
// Oxfflf what it isn't - an•J\ND mask 

lrislmage .. ,f-indlmagef rame{lrislmage); 
delete Tlmage; 

// Now we want to sub sample t_he.grid so that it hl!s the same "shape~ in it's 
II smaller form as it's correspoildii:ig source image 
II To Optimize the 'SubSample aJgorithm, convert all Ox ffft's to 0xOOff's 
II so that the Histogram range is still within 12 bits 
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unsigned short• !Data= (unsigned short•) lrislmage->Data(); 
.int Points"' Jrislmage->Width() • Jrislmage->Height(); · · 
for(int p-= 0; p <Points;p++) IData[p) &= 0xOOff; 
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II create an mtCIJIOlation object to handle the sub-sampling . . 
KappaFill* KappaMask = new KappaFill(lrislmage->Width{); lrislmage->Height(), SUB_SAMPLE_SIZE);. 
KappaMask->SubSample(lrislmage, lrislmage, SUB_ SAMPLE_ SIZE); 

II convert back to Ox fflf 
II shift lower 8-bits over and or with original -:- faster than iOtheri 
. for(int p-= 0; p < Points; p++) IData[p] j= (IData[p] « 8); . 

II now the clipped grid contains the Masked mask. .. dump from there to a 
II local unsigned short buffer and delete the original buffer · 
II BAD INTERPOLA TJON VALUE set to 0 
II Anything else set to Oxfflf .·· ·. 

JrisKappaMask = new unsigned short[KappaMask->GetGndWidth() • ·KappaMask->GetGridHeight()]; 
Points = KappaMask->GetGridWidth() • KappaMask->GetGridHeight(); . 
float• KData = KappaMask->GetSubSampledGrid(); 
for( int i = 0; i < Points; i++) · 

{ 
iftKData[i] = BAD_ INTERPOLATION_ VALUE) lrisKappaMask{i] "' 0; 
else lrisKappaMask[ i] = 0xfflf; 
} . 

II don't need this object any longer 
delete KappaMask; . 

) . 

ll ll 
· ll LoadRswlmages() - loads the list of raw images based on our cummt pass II ll .. . . I 

void FlatMasier::LoadRawlmages(void) 
{ . . . 

// a buffer for building our string name 
static charlmageName[1024]; 

II How many images should we load 
int PassSize = PassList[CurrentPass];· 

//load'm . 
for(int i = 0; i < PassSize; i++-) 

{ 
// clean up - maintain KappaFill Buffm 
delete RawJinageList[i]; 
delete BackgroundList[i]; 
BackgroundList[i] = NULL; 

ll build the image name path · .. 
sprintfUmageName, •%s• DIR_ SEP "rawo/os.omi", lnputlmagePath, lmageJDs[CunentStartlrnage+i]); 
Rawlrnagel..ist[i] = new OMlmage(lmageName); 

} . 

// Initialize Width and Height and Flatten Buffm on first pass 

} 

iftCurrentPass = 0) 
{ 
ll set up our global widths. and heights 

Width= RswlmageList[0]->Width(); 
Height= RswlmageList[0J->Height(); 

ll set up for thelargest pass (first pass is always the largest) 
for(int i "'O; i < PassSize; i++) 

Flanenµst{i] = new Flatten(Width, Height, DarkJrnage, Jrislrnage); 
// a buffer~ to construct the Sum Image (Background) 
SumFill = new KappaFill(Widtb, Height, SUB_SAMPLE_SIZE); 

} 

II . I 
ll SubtractDarkJmoge() - subtracts tbt dark image from the ·list of raw // 
ll and applies ihdris Image if it exis&ses well. // 
// Adjusted to use'the DarklmageLevd variable instead of doing a true image II 
/{subtraction. Commented lines remain. // 
ll------,-------------1,I 
void FlatMaster::SubtriK:tOarkJrnage(vciid) { . . 

// now base on the pass·size;'Subtracuway ... 
int JmageslnThisPass = Pass{.ist[CurrentPass]; . 
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fol(int i ~ O; i < JmageslnThisPass; i++) . . 
FlanenList(i)->SubtractDarklmage(R.ew)niagelist[i)); 

} 
ll'......;.---------------~I 
ll lnterpolatelmages() .- uses the Kappa Library Interpolation routine to fl 
ll . build an interpolated image of our background. // 
ll Find the amouni that we'll need to adjust the ll 
ll. il)terpolated image so that they line up comedy. ll 
ll . . I 
wid FlatMaster::lnterpolatelmages(void) 

{ 
fl how many iffl!lfles to process? . 

int JmageslnThisPass = PassList[CurrentPass]; 

// I: intel))Olate the Raw Image and place the interpolated image 
fl into the Buffer,l.ist . 

float lnterpolatedDCDifference; fl good enor reponing, but not used for now 
fol(int i=O;i<lmageslnThisPass;i++) 
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Backgroundl:ist{i]-= FlanenList[i)->lnterpolateBackground(RawlmageList[i], lnterpolatedDCDifference); 

} //proc 
fl . . . I 
// BuildSumlmage()- build the sum image out of the Filtered images ll 
I . I 
void FlatMaster::BuildSumlmage(void) 

{ 
fl Possible modes 

. fl I) Bright Image supplied . 
II a) Interpolate the image to get in floating point format and smoothed 
II b) Place in the Sumfill Buffer as would normally be 
112) Bright )mll@e not supplied . .· 
II a) Create a best guess Bright image from what we have (Median of all works well) 
// do not dip for the iris as it has already been compensated for in the initial 
II background inte,polation step · · 
// b) Find how niuch each interpolated image differs from this best guess at a shape 
// c )-Create a Bright image applying these calculated differences 50 that they 
// all line up properly - this is our Sumlmage 
II 3)Get the Mean value of the Sumlmage . 
114) Equalization is on 
/I ii)-<iet the Mean value of each interpolated image by once again finding how much 
II each differs from the Sumlmage and applying that difference to the Sumlmage Mean 
II How do we calculate the differences? 
II - Subtract the interpolated image from the target image, saving the difference in a buffer 
fl - find the mode in this buffer- this is the point where the majority of the differences 
// are in common. 
// Use this method to prevent bright "dome• blobs from altering our lmageMean by too much 

// Step one - buHd a buffer that contains the median of all the buffers 
// set up the Sum Image Interpolation object 

long Grid Width= 'SumFill->GetGridWidth(); 
long GridHeight =-SumFill->GetGridHeight(); 

// Pre~'Step - verify that the lrisKappeMask exists 
if{ !lrisKappaMilsk) 
{ . . 

II if noi create it with all Oxfflf values 50 the AND mask passes. 
JrisKappaMask= new unsigned shon[GridWidth • GridHeight]; . 
memset(lrisKappaMask, Oxff, sizeoftunsigned shon) • GridWidth • GridHeight); 

} . . . 

// now loop thro_ugh 1>ur images and save the median of the set as our Sumlmage point · 
float SonList{IMAGES_PER_PASS]; II Son the list in this space 
noat• BufferData{IMA<iES_PER_PASSJ; // our'list ofBuffers 
float temp; . // tcinp variables 'fbr swapping etc.. · 

// list 1>f Difference Tenns - additive offsets between:cach image and the sumimage 
float -Difl'e~nces{fMA<iES _PER _PASS); 

// how many i~ in this pass . 
int JmageslnThisPass = P~List(CurrentPass]; 

// only need to run this many j:>asses to have the Median value 
. long Middle= {lmagesln1liisl'ass + I)/ 2; 
// set up our Buffer.point~ . 
Tor(int i = O; i < JmageslnTliisPass; i++) 
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BufTerData(i] = FlattenList{i]->KappaBufTei:->CietFilledGrid{j; 
// and our Sumfill pointer· · · 
. flQat •Fill.= SumFill->CietClippedGrid(); 
//. loop through for each point 

long Points "' GridWidth • GridHeight; 
foJ(int p "' O; p < Points; p++) 

{ 
. II set our. points into the Sort List 

fol{int jc 0; i < lmageslnThisPass; i++) 
{ . 

II adjust for the difference at each point 
SortLlstm = •BufferData(i]; 

II move to nc:xt point for next pass 
ButrerData(i}++; 

} . . . . 
// Sort our list - only need to go half way to get our Median 
bool Swap = true; 

. long Count = 0; 
long ltterations; 
while(Swap && (Count<= Middle)) 

{ 
// set our swap count to none 

Swap = false; 
II now move·througli the list bubble soning it 

ltterations = lmageslnThisPass - I • Count; 
// try some poinier tricks instead of using amiy-dereferencing - hopefully faster m. 
float• S = SortLlst; 
float• Sp I .; SonList + I ; 
while(ltterations) 

{ 
if{•S > •Spl) 

{ 
//doaswilp 
temp=•Spl; 
•sp1 = •s; 
•s=temp; 

// we did a swap 
Swap=t:rue; 

} 
// update the twO pointers 

S++; 
Spl++; 

II nc:xt one . 
ltteratiom-; 

} // Single Pass of the Bubble Son 
// update our number of passes courn 
Count++;. 

} // Bubble Sort . . 
II and set the Median of the list into the Sumfill Buffer 

Fill(p] = SonLlst[Middle]; 
} // Points - Image itteration 

II - smth this buffer ( do a fill on it) 
SumFill->FillGrid( SUM_KNOTSX, II KnotsX 

· SUM KNOTSY,// KnotsY 
48, II TilesX 
38, II TilesY 
0.0, //,$()ivl 
0.0, /I-S()iv2 

0.30); //!lecpPercent 
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II Now detennine how m~ each imaEe varies vs. the median image and adjust them again to line up 
Histogram l)ifferenceHi~tl 6, NULL, O, false); · 
long• Tabe= DifferenceJ1ist.GetTable();. 

// loop through the images 
fol{int i "' O; i < lmageslnlliisPass; i++) 

{ 
// clear the Histogram 

memset(Tablc, O,'Sizeofllong) *--OitrerenceHist.GetTableLength()); 
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II .gd the soun:e pointer . 
float• Source-= Sumfill->GetFilledGrid(); 

// get the Difference Image Pointer 

US 8,271,251 B2 

float• Dlmage = FlattenList[i)->KappaBuffer->GetFilledGrid(); 
//the mask buffer-

. unsigned short* IKMask "'-lrisKappaMask; 
// now itterate through all of the points 
long Points 7 GridWidth ·• GridHeight; 
fol{int Point= 0; Point <.Points; Point++)· 

{ . 

// first see if we want to use this point at all! 
//,here wean omit for the iris'd locations.as strange anifacts may 
//-still appear here (only a difference image so is for the best) 

) 

iftlKMask(Point)) · 
{ 
// problem with the interpolate grids sometimes coming back beyond saturation 
II - so need to bounds check here 

. // add an offsd to keep our term always positive (Histogram limitation) 
int IDiff=(int)((Source[Point) • Dlmage[Point)) + O.S + 32000.0); 
IDiff== min(6400I, max(0, IDiff)); 
Table(IDifl]++; 

} 

// now return the Mode - this is our offset term 
OifferenceHist.SetCutOftl-1,64001 ); II the 6400 I points are excluded 
long Mode= DifferenceHist.OetMode(); · 

// do.a second check to make sure we're getting something reasonable 
// find the points that are 20"/4 of the Mode both above and below 
// and take the median in this range. With a mode value high enough 
// this should't effect the final value .. .much 
long Low,High,Mode20; 
Low = High = Mode; 
Mode20 = Table[Mode) • 20 / JOO; 

//Lowfinit 
while(Low && (Table[Low] > Mode20)) Low-; 

// High next 
while(High<64001 && (Table[High] > Mode20)) High++; 

// make it easy,just set ourcut-ofls 
i>ifferenceHist.SetCutOftlLow ,High); 
long Median = DifferenceHist.GetMedian(); 

// set our Difference Tenn 
DitTerenc,es{i] = (floatXMedian- 32000.0); 

} //Images 

// Now using our gathered list of differences, re-interpolate our final image 
// set up our Buffer pointers 

f01(int i = 0; i < JmageslnThisPass; itt) 
BufferData{i] = FlattenList[i]->KappaBuffer->GetFilledGrid(); 

// and our SumFill pointer 
Fill= SumFill->GetClippedGrid(); 

// loop through for each point · 
Poirits ==13ridWidth • GridHeight; 
ic>l(int p = O; p < Points; p++) 

{ 
// set our points into the Sort List 
fol(int i * 0; i < JniageslnThisPass; itt) 

{ . 

// adjust fur the difference at each point 
Sontist[i]= •BufferData[i] + Diffen:nces[i]; 

fl move to nex_t point for next pass 
BufferData{i)++; 

} 
II Son our list - only need[lo J!O half way.10 get our Median 
bool'Swap=true;. . 
long Count = O; 
long Jttcraiions; 
while(Swap &&(Count ce Middle)) 
{ 
II set our swap couill to none 
Swap= false; 

86 



US 8,271,251 B2 
87 

II now move through the list bubble soning .it 
Jnerations = JmageslnThisPms • .I - Count; . 

. II try some pointer tricks instead of using anay dereferencing -hopefully faster m 
float• S = SortList; · 
float• Spl = Sonl.ist + I; 
while(lnerations) 

{ 
ift•S > •Spl) 

{ 
lldoa swap 

temp= *Spl; 
*Spl -= .. •S; 

. •S-=temp; 
· II we did a swap 

Swap= true; 
·} . 

// update the two pointers 
S++; 
Spl++; 

1/natone 
Jnerations-; . 

. } // Single Pass of the Bubble Sort 
// update our number of passes coun1 
Comrt++;. 

} // Bubble Sort. . . ·. 
// and set the Median of the list into the SumFill Buffer 
Fill[p] = SortList[Middle]; 

} // Points - Image itteration 
II - smooth this median image as well 
. SumFill->FillGrid( SUM_KNOTSX,//KnotsX 

SUM KNOTSY, II KnotsY 
48, II TilesX 
38, II TilesY 

0.0, II SDivl 
0.0, II SDiv2 

0.30); II KeepPercent 
// now build the Sumlmage · 

iftSumlmage) delete Sumlinage; _ ·. 
Sumlmage = SumFill->Getlntetp0liltedlmage(); 

II Find our Sumlmage Average 
SumlmageAverage = Flanenl.ist[0]->Ca)culatelmageMean(Surn]mage); 

. II Are we equzlizing the set? By equalizing we mean that we'll normalize each image one to 
// the other assuming that any change in background levels indicates a difference in exposure times 
// (more light received) so that each image must be normalize for this difference in light 
// Jfwe don't equalize (now the default) this means we pass each image as is to the next Slage 
// We're repeating the first pass algorithm again because the intetp0lated image is likely slightly 
// different and may cause a small shift 
if{Equalize) 

{ 
// loop through the images 

fc;,J(int i = O; i < lmageslnThisPess; i++) 
{ 
II clear the Histogmm 

memset(Table, 0, sizeofllong) • DifferenceHist.GetTableLength()); 
l1'g~ the source pointer 
float• SolD'Ce-= SumFill->GetFilledGrid(); 

// gCl the Difference Image Pointer 
float• Dlmage = flanenUst[i]->KappaBuffer->GetFilledGrid(); 

II the mask buffer 
u•ned shon• IKMask = lrisKappaMask; 

II no~ inerate througb all of the poi!IIJ 
long4'oints = Grid:tl.idth • GridHeigbt; 
for{int Point "' O; Point< Points; Point++) 

{ 
ll first see if we want to use this point at all! 
//here w~i:Bn omit•for the iris'd locations as strange anifacts may 
II still appear here (only a difference image-ro is.for the best) 

iftlKMaskfPoint]) 
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{ .· . . . 
· II probh,m with the intelJ)Olate grids sometimes coming back beyond saturation 
II - so need to bounds check here · 
ti add an offsd to keep our term always positive (Histogram limi1ation) 

inl IDiff-= (intX(Source[Poim]- Dlmage[Point))-+-0.5 + 32000.0);• 
IDiff':" min(64001, max(O, IDiff)); 
Table[IDiff}++; 

) 
) ·. . . 

// now relUm the Mode - this is OUT offsei term 
DifferenceHist.SetCutOH{-1,64001 ); // the 64001 poims are excluded 
long Mode= DifferenceHist.GetMode(); . . . 

// do a second check 10 make sure we're getting something reasonable 
// find the points lhat are 20% of the Mode both above and below 
// and lake the median in this range. With a mode value high enough 
// this should' effect the final velue. • .mucb 

long Low,High,Mode20; · 
Low .,; High= Mode; 
Mode20 = Table[Mode) • 20 / I 00; 

//Lowfim 
while(Low && (Table[Low] > Mode20)) Low-;·. 

// High next . . .. 
while(High<64001 && (Table(High] > Mode20)) High+:t; 

// make it easy, just set OUT cut-offs 
DifferenceHisl.SetCutOfl{Low ,High); 
long Median= DifferenceHist.GelMedian(); 

-// Sd our Difference Tenn 
floal Difference= (float)(Median - 32000.0); 

. lmageMeans[i) = SumlmageAverage - Difference; 
} //Images 

} // EQUALIZING 

// now range check die Sumlmage so we don, a: divide by 0 
II b: divide by number< 0 · 
// c: anything over saturalion - clip it here. 
0oat• SumData = (float•)Sumlmage-"'DataO; 
Points= Sumlmage->Width() •·sumlrnage->Height(); 
for(inl p = O; p < Points; pH) . 
SumDa1a[p) = min( max(SumDa1a[p), 16.0f), 4095.01); 

} II proc 
l'l----------------"---1I 
// Flanenlmages() - finally ge110 do some work end Oanen our images // 
ll'-----------------11 
void FlalMaster.:Flanenlmages(void) 
.{ .. 
// line them all up on the fim Sumlmage set 

ifTTergetMean = 0.0) 
TargetMean = SumlmageAverage; 

inl lmegeslnThisPess = PessList[CunentPass); 
for(int lmageNumber= O; lrnageNumber < lmageslnThisPass; lmegeNumber++) 

{ . . 
// remove any prev1ouse image 
delete CorrectList[lmageNumber]; 

// The correclion factor 
float CorrectionFactor; 
if{Equalize) 

{ 
float CorrectionFactor = TargetMean / lmageMeans[lmageNumber]; 
Correc1ionfactor= (SumlrnageAverage • Correctionfactor); 
} 

else Correctionfactor= SumlmageAveragc; 
II Oanen'm 
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CorrectList[lmageNumber) = FlanenLlst[lmageNumber]->FJanenlmage(Rawlmagelist[lmageNumber), BackgroundList[JrnageNumber], 
Sumlmage, ComctionFector); 

} . 
} //proc 

II . •. II" 
• II SaveFlanenedlrnagcs()-~aves the list o~flanened images // · 
ll'-----....;...--------------1 
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void-FlatMaster::SaveRanenedlmages(void) 
{ . . 

// a buffer for building om string name 
static char imageName[1024]; 

// How many images should we save 
int PassSize = PassList[CurrentPass]; 

// write'm 
for{int i = O; i < PassSizc; i++) 
.{. . . 

II build the image name path· 
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sprintft)mageName,"o/os" DIR.,:_SEP "correct%s.omi", OutputlmagePath, lmagelDs[CurrentStartlinage + i]); 
II set the name . . . 

CorrectList(i]->SetlmageFilename(lmageName); 
II and write it out .. 

CorrectList[i]->WriteToFile(true); //yes-we do want them compressed } . . . . 

} 
l/'--------------...;...---1l 

· II SaveSumlmages() - Saves the Sum Image II 
II . .l 
void FlatMaster::SaveSumlmage(void) 

{ . . . 

// a buffer for building our string name 
static char JmageName[ 1024]; 

II Save our Sumlmage_ too . _ 
sprintfllmageName,"%s" DIR_SEP "Sumhnage%s.omi", OutputlmagePath, lmagelDs[CurrentStartlmage]); 

// now convert to unsigned shorts'and save . · · · 
OM Image• uSumimage = Sumlmage->CopyAsUSliort(); 
uSumlmage->SetlmageFilename(lmageName); 

// apply the mask if it exists 
ifllrislmage) 

{ 
unsigned short* !Data= (unsigned short*)lrislmage->Data(); 
unsigned short• SData = (unsigned short*)uSumlmage->Data(); 
int Points= Irislmage->Width() • lrislmage->Height(); 
for(int i = O; i < Points; i++) 
SData[i) &= IData(i]; 

} 
// only save it with the given name 

uSumlmage->WriteToFile(true); . 
// now if this is the midle image, save it as brightsmooth.cmi as well 

} 

iflCuff'ffltPass = NumbeJOfPasses/2) 
{ . 

sprintfllmageName, "o/os" DIR_SEP "brightsmooth.omi",OutputlmagePath); 
uSumlmage->SetlmageFilename(lmageName); 
uSumlmage->WriteToFile(true); 
} 

delete uSumlmage; 

II l 
// NextlmageSet() - Updates our pass settings // 
II . l 
void FlatMastc:r::NextlmageSet(void) 

{ 
// update our Pass settings 

} 

int PassSize = PassList[CurrentPass ]; 
CurrentStart!mage += PassSize; 
CurrentPass++; 
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EXAMPLE3 

Code for the Overlap Program of the System and 
Method Disclosed 

The command line used to run the program for sub-images 
Sl and S2, and CCF region shown in FIGS. 3A-C and dis
cussed below is: 

overlap rawl-2212017.omi rawl-2212016.omi-13 810 

94 
where (-13, 810) is the initial overlap estimate, meaning 

(0,0) in Sl is at (-13, 810) in S2. The output is: 
rawl-2212017.omi rawl-2212016.omi -35 774 0 

-35.22 774.42 0.700 0.361 

5 which indicates that the true offset is (-35, 774) and overlap 
is good (with zero status). The sub-pixel alignment from 
fitting the two-dimensional parabola is (-35 .22, 77 4.42) with 
a correlation peakof0.700 and a total variance of0.361. Note 
that (-13, 810) minus (-35, 774) equals (22, 36) which is the 
(sub-)offset of the correlation peak from the center of the 
cross-hairs. 



-#include l<asserl.b> 
. #include <math.h> 
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. #include·<systaypes.h> 
-#include <sys/stat.h> 
#include <st'1io.h> 
-#include <memlintok.b> 
#include <limits.b> 
#include <float.h> 
·#if USE FLOAT 
·#include <srfftw.b> 
#else/• USE_FLOAT•/ 
#include <.driftw.h> 
1'endif t- USE_FLOAT •1 
-#include <netinet/in.h> 
·-#include "fit...;.2d _pa:rabola.h" 

#include <string.b> 
• include <XI 1/Xlib.h> 
·#include <XI 1/Xutil.h> 
-#include <XI 1/cursorfonLh> 
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·#define CHA_RNULL"(char •) NULL 
-#define DISPLA YNULL (Display •) NULL , 
-#defme VlSUAi..NULL (XVisuallnfo •) NULL 

#define BUlTONEVENT ((XBunonEvent •) &event) 
-#defineCONFIGEVENT ((XConfigureEvent •) &event) 
·#define MOTJONEVENT ((XMotionEvent •)~&event) 

. #define BlJJT-ONEVENTS (ButtonPressMask J13uttonReleaseMask) 
·#define MOTIONEVENTS (BunonMotionMaslQ 
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·-#def me OTHEREVENTS (ExposureMask I Str:uctureNotifyMask I\ 
PointerMotionHintMesk I LeaveWindowMask) · 

#define EVENTS . fBI.ITTONEVENts I MOTIONEVENTS I OTHEREVENTS) 

;ildefine F ALSE-COl::OR'0 
·,#define DISPLA y_BUFFERS I 
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#def1J1e PRIME TRIM 1 
#deflJIC ZERO FILL 0 
#def1J1e PHASE CORRELATION I 
·#deflJI~ LAPLACIAN 1 
#define USE WISDOM 0 
#define fill PAD 100 
#def1J1e FILL-SMOOTH 1 

. #defme FILL-WEIGHTED I 
#def1J1e FILL-HALVES 1 

-#defme FILL:BOTH 0 
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#defme EXITl(X, Y) { (void) fprintftstden, X, Y); exit(l);} . 

#def me EXIT2(X, Y, Z) {(void) fprintftstdCJT, X, Y, Z); exit(l);) 

/ldefme min(a, b) 
#defme max(li, b) 

#define NC 256 
· #defme MC (NC - 3) 

#ifflLL PAD 
1/ifFILL-SMOOTH 

((a)> (b)? (b): (a)) 
((a)< (b)? (b): (a)) 

static void smooth(arr, len, stride, width) 

fl'lw real •arr: 
unsigned int · t~ . 
unsigned int stride; 

· int width; 
{ . 

fl\w real •worlc; 
int - i; 
int j; 

#iffllL WEIGHTED 
int - k .. width; 

#endif,. fill WEIGHTED •t 
ffiw_real - sum= 0.0; 
int cnt=0; 

MAU.OC_OR_ELSE_LINTOK.(worlc, Jen, ffiw_real); 

for(i = j'" 0; i < (int) Jen; ++i,j += stride) · 
wortc[i) = an(j]; 

for (i = 0; i < width; -t+i) ( 

#iffllL WEIGHTED 
for er= i; j < width; -++j) { 

#endif,. FllL WEIGHTED*/ 
sum+-= wodc[i]; 
cirt++; 

#if FllL WEIGHTED 
) -

#endif,. FIIL _ WEIGHTED */ 

} 
for(i .. j = O; i < (int) len;-++i,j += stride) ( 

-#iffllL WEIGHTED 
for (;idth'" 0; width <ca k &&. i +width< (int) len; ++width)· { 

-#else/* FILL WEIGI-ITED */ . 

• if(i +width< (int) ten) { · 
#endif /* Fill WEIGHTED*/ 

sum+-= work(i +.width); 
cnt++; 

} 
an{j] = sum / cnt; 

#ifflLL WEIGI-ITED 
. for (;idth .. O; width <-a k &&. i ·width>= 0; ++width) { 

·#else /* FILL. WEIGHTED •t 
if(i -width ;,c, 0) { 

-1/endif /* FILL WEIGHTED */ 

sum - work(i - width]; 
cnt-; 

} 
} 
FREE_LINTOK(worlc); 
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static-char •ominum(name) 
-ch!ir . •name; 
{ 

char . •ptr; 
int n; 

if((ptr= stm:hr(name, 'f)) !-=N\ILL) 
name = ++ptr; . . . 

if(((n = strlen(name) - 4) < 0) fl (strcmp(name + n, ".omi") != 0)) 
return (name); · 

name[n) = 'IO'; 
for (ptr = N\JLL; -n >= O; ptr = name+ n) { 

if(((nai:ne[n]< 'O') II {name[n] > '9')) && (name[n] != '·')) 
break; 

} 
return {ptr? ptr: name); 

} 

int main(argc, argv) 
int 
char 
{ 

argc; 
.. argv; 

char 
SllllCtSlat 
char 
long 
long 
long 
long 
long 
long 
long 
long 
long 
unsigned short 
unsigned short 
FILE 
int 
int 
int 
int 
int 
int 
int 
int 
int 
int 
fflw real 
fflw-real 
fflw-real 

mw:reai 
int 
int 
fflw real 
rffi\md _plen 
fflw _ complat 
fflw _ complc,i 
fftw _ complei 
rfflwnd_plan 
fflw real 
ffiw-real 
fftw-real· 

#def111~ NPTS 29 
·fflw real 
fflw-real 
fflw:real 

•me; 
buf; 

pipe(BOJ; 
id; 
type; 
sizey; 
sizex; 
nbyte; 
sizeyO; 
sizexO; 
sizeyl; 
sizexl; 

•amap; 
*bmap; 

•input; 
offx; 
offy; 
xminO; 
xmaxO; 
yminO; 
ymaxO; 
xminl; 
xmaxl; 
yminl; 
ymaxl; 

•a; 
-t>; 
suma; 
sumb; 

cnta; 
cntb; 

nonn; 
p; 
*A; 
•e; 
*C; 
q; 

~~; 

lo; 
hi; 

X'{NPTS]; 
YfNPTS]; 
Z(NPTS]; 
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fftw real 
fftw-n:al 
fftw-n:al 

V{NPTS]; 
AO; 

fftw=real 
fftw real 
fftw-real 
fftw-real 
~nsigned int 
unsigned int 
unsigned int 
unsigned int 
int 
int 
int 
int 
int 
int 
unsigned char 
Display. 
XVisuallnfo 

Al; 
XO; 
YO; 
ZO; 
ZV; 

width; 
height; 
fill width; 
fil(height;. 

dummy; 
i; 
j; 
k; 
I; 
m· , 

•map; 
•dpy; 

template; 
int nitemS; 
XVisuallnfo •visinfo; 
Visual *visual; 
unsigned int · depth; . 
Screen · •saeen; 
Colonnap colormap; 
XSetWindowAttn'butes xswa; · 
unsigned long · mask; 
Window · window; 
XGCValues values; 
GC gc; 
CUJSOT 

Atom 
Atom 
XSizeHints 
XClassHint 
XEvent 
Xlmage 
unsigned long 
Pix~ 

cursor, 
wm _protocols; 
wm_delete_window; · 

sizehints; 
-classhints; 

event; 
•image; 

•map32; 
pixmap; 

int min; 
int max; 
int clone=O; 

· int update = O; 
int x; 
int y; 
int dx= O; 
int dy=O; 
int cmap=I; 
int mx=O; 
int my=O; 
int off x = O· 
int otry=O; 

·#ifOISPLA Y BUFFERS 
fftw .:_ real . - •d; 
int e= O; 

#else/* OISPLA Y BUFFERS •t 
int bx; . 
int by; 

-1iendif t--DiSPLA Y BUFFERS •1 
Window - root; 
Window child; 

. int root_lli 

int root_y; 
int win_x; 
int · win_y; 
unsigned int keys_ buttons; 
float scale; 

'#if!FAJ.:SE COU>R 
unsigned short value; 
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. . 
. #endift- !FALSE COLOR •t 

XColor · · -:: celts{NC]; 

,. . 

•<:beck argument list ., . . . 

if<(a'llc != 5) && ((argc !-= 6) II (•argv[S] !-= ""'))) 
EXITl("usage: %s <filel>-<file2> <offit> <offy>\n",_argv[0]);. 

I* 
. • Read in map file .. , 

file = argvt I]; 
· if{stal(file, &buf) < 0) 

EXIT2("%s: unable to stat %s\n", argv[0], file); 
(void) sprintltpipe, "zcat -fo/oS", file); 
if({input= popen(pipe, "r")) =(FILE•) NULL) 
· EXIT2("%s: error opening %s~". argv(0J, pipe); 
if{fread(&id, sizeoftid), I, input)!= I) 

EXITl{"o/os: GTOr reading id\n", argv[0]); 
if{fread(&type; sizeofttype), I, input)!= I) 

EXl'.f Wo/os:-crror reading type\n", argv[0J); 
.type= iitoh)(type); · 
if{fread(&sizey, sizeoftsizey), l, input)!= I) 

EXITl(":%s: error reading sizey\n", argv[0]); 
sizey() = ntohl(sizey ); 

. if(fread{&siZCll, sizeoftsizex), I, input)!= I) 
EXITl("o/as: error reading sizex\n", argv(0J); 

sizexO = ntohl{sizex); · · 
if (fread( &nbyte, sizeoftnbyte), 1, input) != 1) 

EXJT1("_%s: error reading nbyte\n", ai'gv[0]); 
nbyte = ntohl( nbyte); 
(void)'fprintf{stderr, "id=%.4s, type=%ld, • 

"sizey=%ld, sizex;'¼,Jd, nbyte=,%1d\n", 
(char•) &id, type, sizeyO, sizex0, nbyte); 

assert(nbyte-== sizeoft•amap)); · · 
buf.st_size= sizeyO • sizex0; 
MALLOC_OR.:,_ELSE_LINTOK(amap, buf.st_size, unsigned short); 
if{fread{amap, nbyte, buf.st_size, input)!= (size_:,t) buf.st_size) 

EXIT2("o/as: enor reading o/os\n", argv(0J, pipe); · 
if (pclosc(input)) . 

EXIT2("o/os: enorclosiog %s\n", argv[0], pipe); 

file= Bll!\1(2); 
if~stat(file, &buf) < 0) 

EXJT2("o/as: unable to stat %s\n", argv(0], file); 
( void) sprintJlpipe, "zeal -f %s", file); 
ift{input= popei(pipe, "r"))= (FILE•) NULL) 

EXiT2("_o/as: enoropening %s\n", argv[0J, pipe); 
if(fread(&dummy, sizeoftdummy), 1, input)!= I) 

EXJTJ(""loS: enoi-reading id\n", argv(0]); 
assert(dummy= id); 
if{fread(&dummy, sw:oftdummy), I, input)!= I) 

ECITl{""las: enor reading type\n\ argv[0]); 
dummy= ntohl{dummy); · · 
assert(dummy-== type); . 
if{fread(&dummy;sizeoftdummy), I, input)!= I) 

EXITt(';'/as: enor reading sizey"\n~, argv(0]); 
sizeyl = ntohl(dwiuny); 
if(fread(&dummy;sizeoftdummy), I, input)!= I) 

EXITl("_o/os: error reading sizex'wia, argv[0]); 
sizex I = ntohl{ dummy); 
if{fread(&dummy, sizeof{dummy~:t. input)!= I) 

EXiTl(""loS: error reading nbyte\ii", argv[0J); · 
dummy = ntohi{dummy); 
ilssert(dummy·= nbyte); 
assert(nbyte = sizeof{•bmap)); 
buf:sl'Size=·sizeyl •-sizexl· 
MALLOC_OR_ELSE_LINTOK(bmap, buf.st_size, unsigned shon); 
if{fread(bmap, nbyte, buf;st _:size, inpui) != (size_ t) buf.st _size) 
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EXm("%s: enor reading %s\n", argv[0J, pipe);: 

if(pclose(input)) . · 

EXIT2("%s: enor closing %s\n", argv[0J, pipe); 

sizey.,; max(sizeyO, sizeyl); 
sizex = max(sizex0, sizexl); 
offx = ~toi(argv[3]); 
offy = atoi(argv(4]); 
xmin0 = max(0, -offx); 
xmax0=min(sizex0, sizexl •offx)-1; · 

yminO = max(0, -offy); 
ymaxO = min(sizeyO, sizeyl • offy). I; 
xminl = max(0, offx); 
xmaxl =min(siz.exl, sizex0+offx)-1; 
yminl = max(0, offy); 
ymaxl =niin(sizeyl, sizeyO+offy)-1; 

(void) fprintf{stderr, "(%d,%d) to (%d,%d)\n", 
xmin0, yminO, xmax0, ymax0); 

(void) fprintf{stderr, "(%d,%d) to (%d, o/od)\n", 
xminl,yminl,xmaxl,ymaxl); 

assen(xmax0 - xminO--= xmaxl • xminl); 
assen(ymax0 • yminO== ymaxl • yminl); 
if ((xmax0 <= llmin0) II ()'1118l10 <= ymin0)) { · 

FREE LJNTOK(amap); 
FREE-LJNTOK(bmap); 
if (XID8ll0 <= xmin0) . . 

(void) fpnntftstderr, "width--o/od!\n", xmax0 ~ llminO); 

if(ymax0 <= ymin0) . . . 

(void) fprintftstderr, "height=o/od!\n", ymn0 a yminO); 

(void) printft"%s %s %5d %5d 3\n", argv( I], argv[2), offit, offy); 

return (3); 
} 

width= xmax0-llmin0; 
#if PRIME_TRIM 

m=0; 
for (i = I; i <= (int) width; i-= 2) 

for(j = i;j <= (int) width;j.,. 3) 
for(k = j; k<>= (int)width; k •= S) 

for (I= k; I<= (int) width; I*= 7) 
if(l>m) 

· m=I; 
if((int) width!-= m) { 

xmax0 • (xminO +=(width• m) / 2) + m; 
xmaxl = (xminl +=(width• m) / 2) + m; 

(void) fprintflstderr, "width lrimmed from o/od to o/od\n", width, m); 
width= m; · 

} 
#endif ,._ PRIME TRIM */ 

height = ymaxO- ymin0; 
#if PRIME_TRIM 

m-=0; 
for(i = I; i <= (int) height; i *=2) 

for(j = i;j<= (int) height;j •= 3) 
for (k ""j; k <= (int) height; k •-= 5) 

for (I= k; I<= (int) height; I •= 7) 
if(l>m) 

m=I; 
ifi({int) height != m) { 

ymax0 .. (yminO+= (height- m)/2)+ m; 

ymax I = (yminl += (height- m) / 2) + m; 
('1>id) fprintftstderr, "height trimmed from o/od to o/od\n"; 

height, m); 
hejght= m; 

} . 

#endifl'" PRIME_TRIM •t 

•#if ZERO "FILL 
. fill_height .. ~ght • 2; 
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fill width= width • 2; 
#else-,• ZERO Fll.l. •t 
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fill_height~i(int) height• S > sizey)? (int) heiJbt: 

((int) height • IO> sizey) ? sizey / 5 : 
(int) height• 2); · 

·#ifFILL PAD 
if(-(fill)eight < height +FILL_PAD) && (height> FJLL_PAD)) 

fill_height ~.height+ FILL]AD; . . 

#endifl* FILL PAD•/ · 
~if PRIME TRIM 

m=INT-MAX; 
for..{i = l~i < m; i *= 2) 

for(i-= i;j < m;j *= 3) 
for(k= j; k <m; k ... S) 

. for(I= k; I< m; I*= 7) 

if(I >= (int) fill_height) 
m=l;· 

if«int) fall_height != m) { 
(void) fprind{stderr, "fill_height padded from o/ad to %d\n", 

fill_height·= m; 
) 

fill_height,m); . 

#endif /* PRIME TRIM */ 
fill width= (((int) width • 5 > sizex)? (int) width : 

- · ((int) width• 10 > sizex)? sizex / 5 : 

(int) width • 2); 

·llifFILL PAD 
if((fil( width< width+ FIU._PAD) &.& (width> FILL_PAD)) 

fill width= width+ FILL PAD; 
ilendif/* Fli.1. PAD •t -
#if PRIME TRIM 

m=INT-MAX· 
for(i<= J;i < ~ i *= 2) 

for.(j= i;j <m;j *= 3) 
for(k= j; k <m; k *= 5) 

for(l;..k;l<m;l*=7) 
if(I.>= (int) fill_width) 

m=-1; 
if((int) fdl_width != m) { 

(void) fprind{stderr, "fill_ width padded from o/ad to %d\n",. 

lill width = m; 
} -

fill_width,m); · 

#endif /* PRIME TRIM */ 

#endif/* ZERO FILL •t 
CALLOC_OJCELSE_LINTOK(a, fill_height • fill_ width, ff\w_real); 

CALLOC _ OR_ ELSE_LJNTOK(b, fill_height • fill_ width, ff\w _ mil); 

suma=0.0; 
sumb=O.O; 
cnta = height • width; 
cntb = height • width; 
k = yminO • siz,ex0 + ,uninO; 
I= yminl • sizex)·+ xminl; 

rn=0; 
for.(j = O;j < (int) height; ++j) { 

for(i= 0; i <(int) width; ++i, ++m, ++I, ++k) { 

suma - a(m) = ntohs(amap[k]); 
sumb-b1in] = ntohs(bmap(I]); 

) 
k - sizexO - width; 
I - size,tl • width; 
m -.•fin width • width; 

} - . 

fREE LIN1'0J({amap); 
F:REE=UNTOK(bDlllP,); 
suma /= cnta; 
sumb /= cntb; 

m=O; 
for.(j = O;j < (int) height;·++j) { 
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for (i = 0; i < (int) width; ++i, ++m) { 
a[m] = a[m] > suma? Jog(a(m] / sunia): a[m] / suma. 1.0; 
b(m] = b[m] > sumb? log(b[m] / sumb) : b(m] / su~b. 1.0; 

} . 

#lifFILL PAD 
lo= ;cm -width]; 
hi=a[m-1]; 

• for (i = width; i < (int) fill_ width; ++i, ++m) 
· #/if FILL HALVES . 

- if(i < (int) (width+ fill_width)n) 
a[m] = (hi • (width+ fill_ width - I - i • i) / 

(fill_ width • I a width)); 
else 

a[m] =(Jo• (i+ i +I• fill_width. width)/ 
(ftll_ width - I - width)); . 

#else r FILL HALVES •t . 
a[m] c; (hi • (fill_ width • I • i) + 

lo • {i ·width))/ (fill_ width· I - width); 
#endif t- FILL HALVES •t 

· #ifFILL BOTH 
m-= -fill width • width; 
Jo= b[ m"°- width]; 
hi=b[m-1]; 
for(i = width; i < (int) fill_width; ++i, ++m). 

#if FILL HALVES 
- if(i < (int)(width + fill_ width)/ 2) 

b[m) =(hi• (width+ fill_width. I -i. i)/ 
(fill_ width· I • width)); 

else 
b[m] =(lo• (i + i+ I •fill_width • width)/ 

(fill_ width - I - width)); 
#eJser FILL HALVES •t 

him]= (hi• (fill..:_width • I , i) + 
Jo• (i • width)) I (fill_ width. I • width); 

#endift-FILL HALVES•/ 
#endift- FILL-BOTH •t 
'#dset- FILL PAD•/ 

m += fill width • width; 
#lendif r FILL PAD •1 

} -
#ifFILL PAD 

for (i =-0; i < (int) width; ++i, ++m) { 
Jo = b[ m • height• fill_ width]; 
hi= b[m - fill_ width]; . 
for(j = height;j.c (int) fill_height; ++j, m += fill_width) 

#if FILL HALVES 
- if(j < (int) (height+ fill_height)/ 2) 

b[m] = (hi •(height+ fill_height • I - j- j) I 
(fill_ height • I • height)); 

else 
b[m] =(lo• (j + j + I • fill_height ·height)/ 

(fill_height • I • height)); 
#else t• FILL HALVES •t 

him]= (hi • (fill_height • I • j) + 
Jo • (j • height))/ (fill_ height· I • height); 

llendift-FILL HALVES •t 
·ilifALL BOTH 

.m-= 1fill_height ·height)• fill_ width; 
lo= a[m - height• fill_ width]; 
hi= a[m • fill_ width]; 
for (j = height;j < (int) fill_height; ++j, m += fill_ width) 

4/ifFILL HALVES 
- if(j < (int) (height+ fill_height)/ 2) 

· a[m] = (hi •(height+ fill_:height • I - j - j) / 
(fill_height- I - height)); 

else 
a[m] =(lo• (j + j + I • fill_height -height)/ 

(fill_height • I • height)); 
·llelset- FILL HALVES •t 

a[m]= (hi • (fill~height • I - j) + 
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. . Jo • (j ·height))/ (fill_height- I • height); 
-#endif,,. FIU. HALVES •1 . 
#endif,,. Fill._ BOTH ., 

. rn .,= (lill)~ight- height)• fill_ width; 
} 

~ifFJLL SM00111 . 
fof'(i =-width; i < {int) fill_ width; ++i) { 

if (i > (int){lill width - I + width)/ 2) 
. J:= fili_~width - i; · 

else 
j= i + I • width; 

// J= height• j I (fill_ width· width+ I); 
smoo1h( a + i, height, fill_ width, j); 

#ifFILL BOTH 
5l1100th(b + i, height, fill_ width, j); 

llendif r FIU._BOTH •1 
) . . . 
for.(j = height;j < (int) fill_height; ++j) { 

if'(j > (int)(lill height· I +height)/ 2) 
i-= fill_)leight - j; 

eJse 
i= j + I • height; 

// . i = width • i / {fill_ height • height+ I); 
smootb(b + j • fdl width, width, I, i); 

#ifFIU._BOTH ~ . . 
smooth(&+ j • fill_:width, width, I, •i); 

#endif r FHJ. BOTH •t . 
} -

#endif r FIU. SMOOTH •t 
#endif r FJU.-PAD •t 

sizey = fill_ i;;ight; 
sizex = fill_ width; 

#ifUSE WISDOM 
if((input = fopen("ffi.wisdom", "r")) != NULL) { 

(void) ffiw_import_ wisdom_from~file(input);: 

. (void) fclost.(input); 
) . . . 

p= rffiw2d_create_plan(sizey, sizex, FnW_REAL_TO_COMPLEX, 

#else t• USE WISDOM •t 
FnW_MEASUREI FFTW_USE_:WISDOM); 

p = rffiw2( create _plan(sizey, sizex, FnW _REAL_ TO_ COMPLEX, 
FnW_ESTIMATE); 

llendif t- USE WISDOM •t 
MALLOC_OR_ELSE_LINTOK(A,sizey •(sizex /2 + I), ffiw_complex); 
rffiwnd one ial to complex(p, a, A); 

-#if !DISPLA y BUFFERS 
FREE_LINlOK(a); 

·#endif r' !DISPLAY BUFFERS •t 
MALLOC_OR_ELSE_LINTOK(B,sizey • (sizex /2 + I), ffiw_complex); 
rffiwnd one real to complex(p, b, B); · 

#if !DISPLA y BUFFERS 
F'REE_LINTOK(b); 

#endif r !DISPLAY BUFFERS •t 
rffiwnd _ destroy _plan(p ); 

MALLOC_OR_ELSE_LINTOK(C, sizey • (sizex /2 + I), fftw_complex); 
norm = 1.0 l,(sizey • sizex ); 

#if PHASE CORRE.ATION 
·#if LAPLACIAN . 
-#define Q sqn(20.0 • ~P'J'S) · 
·#define,Q2'(~0.0 • -NPTS) 

norm !t..Q2 /2.0/M Pl; 
1/endif r LAPLACIAN•/ 
-#endift- PHA~_-CORRELATl"l>N •/ 

rn=0; 
foi{j·= O; j < sizey; ++j) { 

#ifPHA~E CORRELATION 
'-#ifLAPLACIAN . . 

surnb = (fftw_real)({j>siuy /2) ?-sil,ey • j :j) I siascy; 
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sumb •= sumb; 
llendif r LAPLACIAN •/ 
1/endif r PHASE_CORRELATION •t 

for{i = O; i < sizcx /.2 +I;*~ ++m) { 
·. mw _ real scale; 

1/ifPHASE CORRELATION· 

US 8,271,251 B2 

if((scale = sqn(A[m].re • A[m].re-t: A(m].im •· A[m).un) • 
sqn(B[m].re • B[m].re + B(in].im • B[m].im)) != O) 

-scale = nonn / scale; · 
·#if LAPLACIAN 

suma = (fftw_real) i / sizex; 
suma -= sums; 
scale •= exp(-sqrt(Q2 • (suma + sumb))); 

-#endif r LAPLACIAN •t 
#else t- PHASE CORRELATION •t 

scale~ nonn; . 
. 1/endift- PHASE CORRELATION*/ 

C[m)~ = (A[m].re • B[m].n: + A[m).im • B(m].im) • scale; 
C[m).im = (A[m].im • B[m].n: • A(m].re • B[m].im) • scale; 

} 
} ', 

FREE LINTOK(A); 
FREE-LINTOK(B); 

flifUSE:wisooM ' ' ' ', ', ' 
q = rffiw2d_create_plan(sizey, sizcx, FFTW_COMPLEX_TO_REAL, 

FfTW _ MEASURE I FfTW _ USE_ WISDOM); 
1/else t• USE WISDOM •I · · 

q = rffiw2( create _plan(sizey, sizex, FfTW _ COMPLEX_ TO _REAL, 
FfTIV _ESTIMATE); 

1/endif t- USE WISDOM •t . 
MAbLOC.:_OR_ELSE_UNTOK(c, sizey • sizex, fftw_real); 
rffiwnd~one_complex_to_real(q, C, c); · 
FREE LJNTOK(C); ·. ·. 
rffiwrd_desuoy _plan(q); 

#ifUSE ,WJSOOM 
if((input = fopen("ffi.wisdom•, -W")) != NUU.) ( 

(void) ffiw _ export_ wisdom_to_file(input); 
(void)'fclosc(input);. 

} 
1/endift- l:JSE_ WISOOM •t 

buf.st size= sizey •.siz,ex; 
#ifUSEFLOAT 

lo=FLT MAX; 
hi= •-'f'LT MAX; 
for(i=O;i <NPTS; ++i) 

V{i]=-FLT_MAX; 
1/clse/•USE FLOAT•/ 

lo=DBL MAX· 
hi= -DBL MAX; 
for{i =,O; i < NPTS; ++i) 

V{i]= -DBL_MAX; 
#cndif r USE FLOAT •t 

m = height •-:-width/2; 
for(i = O; i < buf.st_size; ++i) { 

if({j= i / sizex)> size)'/ 2) 
j-= sizey; 

if((k = i % sizex) >,sizcx / 2) 
it-= size:x; 

if.(((i < o ? -j : j) • :yr,dth + 
1k < 0? •k.: k) •height)> (unsigned) m) 

-continue; 
if(lo > c.[i)) 

lo=c[i]; 
•if(hi < r.(i]) 

.hi=.qi]; 
X0=k; 
yO=j; 
.20= c[i]; 
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suma =XO/ (sizex /-2); 
sumb = YO/ (sizey / 2); . . 
nonn = ZO •(LO· surna • surna) • (J.O • sumb • sumb); 
for()= Nl'TS • I; I>= 0;-1) 

if (nonn < V[I]) 
break; 

. while(++!< NPTS) { 
ffiw.:,real temp; 

temp= X[I); 
X[l)=XO; 
XO=temp; 
temp= Y[I); 
Y[l)=YO; 
YO=temp; 
temp= Z[I); 

. Z[l]=ZO; 
ZO=temp; 
temp= V(l); 
V(I]= nonn; 
nonn=temp; 

} 
} 
suma=O.O; 
sumb=O.O; 
nonn=O.O; 
m= •z; 

if(ZO> 0.03) { 
for(m= O; m <NPTS; ++m) { 

if(Z[m] <0.5 • ZO) 

l 

. break; 
suma += X{m] • Z[m]; 
sumb += Y(in] • Z[m]; 
nonn += Z[m); 

suma /= nonn; 
sumb /= norm; 

} . 

for (i = 0; i < NPTS; +-ti) { 
if(Z[i] < 0.5 • 1D) { 

V[i]=O.O; 
continue; 

} 
norm= ((X[i] • suma) • (X[i] • suma) + 

(Y[i) • sumb) • (Y[i) • sumb)); 
if(nonn < NPTS • M_2_PI • Z[i] / 1J)) 

V(i]= 1.0; 
else 

V(i]=O'.O; 
} . . 
m = fit_2d _parabola(NPTS, Z, V, X, Y, &AO, &A I, &XO, & YO, &ZO, &ZV); 
if((m < 0) 11 (ZD < 0.1)) { 

AO=*Z; . 
Al =-AO• M Pl 2 IQ; 
XO=suma; - -
YO=sumb; 
ZO=*Z; 

} 
ZV=O.O; 
j=O; 
for(i = O; i < NPTS; ++i) { 

if(Z(iJ < o.s • zo> { 
V(i)•-V(i]; 
continue; 

} . 
norm= (X[i) ·XO)• (X[i) - XO)+ (Y[i) ·YO)• (Y[i] • YO); 
if((norm > NPTS *M.::2_PI) && (Z[i] < 0.85 • ZO)) 

continue; 
norm= AO+ A I • norm -~i]; 
ZV += norm • norm; · 
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} 
ZV 7 sqrt(ZV / (j - J )); 
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if ((m >= 0) && (ZO >=' 0.J) && (ZO < ZV • (Q / 3.0))) { 
AO=•Z; 
Al =-AO• M_PJ_2 / Q; 
X0=suma; 
YO.;,sumb; 
11>"' •Z; . 

} . 

(void) fprintflstderr, "x0=%g, yO=o/og, zO=o/og, zv=o/og, zv/z0=%g\n", 
XO,:YO,ZD,ZV,ZV /'1JJ); : . . : 

for(i = NPTS • J; i >=" O;-i){ . 
if(Z[i] < 0.95 • ZO) 

continue; 
if ((X[i] == rint(X0)) && (Y[i) = rint(Y0))) 

break; . . 

} 
if(Z0<0.2) 

(void) fprintftstderr, "•••• ZO = %g\n", ZO); • 
if(ZV > 0.2 • (1.5 / Q)) . . 

(void) fprintftstderr, ••••• ZV = %g\n", ZV); · 
if(i <0) . 

(void) fputs("•••• WHAT!?•••~•. stdm);• 
else if(i != 0) · 

(void) fprintflstderr, ••••• peak at (%g,%g) not (%g,%g)\n", 
X[i], Y[i]; •x, •Y); 

if.((i < O) 11 (ZO < O.i) II (ZO < ZV • (Q / 3;0))) 
m=I; 

else if((ZO < 0.2) II (ZO <ZV • (QIJ.5))) 
m=2; 

else 
. m=0; 
(void) printf{"o/os o/oS-%5.0fo/oS.Of%d %8.2f%82fo/o.3f%.3f\n", 

argv[ I], argv[2], offii - rint(XO), offy - rint(YO), 

r 

. m, offii - XO, offy - YO, ZO, ZV • (Q / 1.5) / ZO); 
(void) fputs(••••• PHOOEY ••••\n", stdm); 
for(i = 0; i < NPTS; ++i) { . 

norm= AO+ Al • ((X[i] •XO)• (X[i]-X0) + 
. (Y[i] ·YO)• (Y[i) • YO)); 

(void) fprintftstdcrr, "v=%3g, x...,/43g, y=-%3g, z.=%.6f ", 
V[i], X[i], Y[i],Z(i]); 

(void) fprintftstdm, "p=%.6f d=%6.3f\n", 
norm, 100.0 • (Z[i]- norm}); 

} . . 

norm= (10.0-0.1)/ (hi - lo); 
(void) fprintf{stdm, "lo=%g, hi=o/og, norm=%g\n", lo, hi, norm); 
MALLOC_OR_ELSE_LINTOK(map, buf.st_size, unsigned char); 
for(i = O; i < buf.st_size; ++i) { 

j = (i / sizex + sizey / 2) o/o sizey; 
k = (i % sizex + sizex / 2) % sizcx; 
I= ((j > sizey /2? sizey-j :j) •width+ 

(k > sizex / 2 ? sizex • k : k) • height); 
I=: (I • height • width/ 2 + height+ width)/ (height+ width); 

·. if (((j = 0) && (k > 20) && (k < sizex - 20)) 11 . 
((k = 0) && (j > 20) && (j < sizey - 20))) 
map[i) = NC - 2; 

elseif(l= I) 
. · map[i]=NC- I; 
else { 

l=j•sizex+k; 
I= ((MC/ M_LNI0 / 2.0) • 

(log((c[l)- lo)• norm+ 0.1) + M_LNI0)); 
map[i) =(I< 0) ? 0: (I > MC)? MC: (unsigned char) I; 

} 
} 

• Open connection to X-Server· ., . 

118 



US 8,271,251 B2 
119 

. . 

if((dpy = XOpenDisplay(CHARNULL)) = DlSPLA YNUU.) 
EXJTt("%s: unable toamnect tli X-Windows servet'in", ergv[O]); 

,. 
• Ciel 8 pseud~lor visual 
•t 
t~mplate.class = PseudoColor; · 
visinfo = XGetYisuellnfo(dpy, (long) VisualClassMesk, 

. &template, &nitems); 
if(visinfo ~ VISUALNULL) 

·EXITJ("o/os: unable to get pseudo-color viswil\n", argv[O)); 
visual = visinfo->visual; 
depth c; visinfo->depth; 

t• 
• Get our own colonnap 
•t 
"Kreen = DefauliScreenOfDispley(dpy); 
colonnap = XCreateColonnap(dpy, RootWindowOfScreen(screen), 

visual, AllocAII); 

,. 
· • Calculete the sizehints 
•t 

width·-= siu:x > 640 ? 640 : siu:x; 
height~ sizey >512? 512: sizey; 
si;:ehints.flags = PSize I PPosition; 
if{ergcc= 6) { 

i = XParseGeometry(argv[5), &dx, &.dy, &width, &height); 
if(i & (Width Value I HeightVaJue)) { • 

size~ints.Dags &= -PSize; · 
sizehints.Dags I= USSize; 

} 
if(width > (uns.igned) sizex) 

width-= sizex; 
else if(width < funsigned) siu:x / 4) . 

· width• siu:x / 4; 
width= (width+ Oxf)& --Oxf; 
if(height> (unsigned) sizey) 

height = sizey; . 
else if (height <.(unsigned) sizey 14) 

height= sizey / 4; 
height= (height+ Oxf) & --Oxf; 
if(i &1XValue I YVelue)) { 

} 

· -sizehints.Oags &= -PPosition; 
sizehints.Dags I= USPosition; 

if(i & XNC@ative) 
dx += WidthOfScreen(screen} • width - 12; 

if(i & YNC@atiye) 
dy += HeightOfScreen(screen) • height·• 35; 

} 
else.{ 

} 

,. 

width= (width+ Oxf) & --Oxf; 
height .; (height + Oxf) & --Oxf; 

• Create a wi.ndow on·the screen ., 
xswa,border_pixel = MC; 
-xswa.bac~round _pix411 = O; 
xswa,colonnap = colonnap; 

. .,. 

mask= CWColonnapj CWBackPixel I CWBorderPixel; 
window= XCreateWindow(dpy, RootWfodowOfScreen(screen), dx, dy, 

width, height, 3, (int) depth, JnputOutput, . 
visual, mask, &xswa}; 

• Create ouniwn graphics·coriaext 
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., 
values.foreground= MC; . 
vafues.background-= O; 
mask= GCForeground I GCBackground; 
gc = XCreateGC(dpy, window, mask, &values); 

,. 
• Define our own cUJSOr 
•1 
cursor= XCreateFontCursol{ cipy, XC _crosshair); 
XDefineCursol{dpy, window, cursor); 

,. 
• Setup for ICCCM delete window ., 
wm_piotocois ~ XlntemAtom(dpy; ~WM_PROTOCOLS"; False); 
wm_delete_ window= XlntemAtom(dpy, "WM_DELETE_ WINDOW", False); 
(void) ~SetWMProtocols(dpy, window, &wrn_delete_window, I); 

,. 
• Set hints and propenies ., 
sizehints.x = dx; 
sizehints.y = dy; 
sizehints. width = width; 
sizehints.heighl = height; 
sizehints.min width.= {sizcx / 4 + Oxf) &--Oxf; 
if(sizehints.min_ width> 640) 

sizehints.min width = 640; 
sizehints.min_height = (sizey / 4 +Oxf) & --Oxf; 
if(sizehints.min_beight > 512) 

sizehints.min_height = 512; 
sizehints.max_ width= ((unsigned) sizex + Oxf) & --Oxf; 
width= DisplayWidth{dpy, DefaultScreen(dpy))- I 6; 
if(sizehints.max_width > (int) width) 

sizehints.max width= width; 
sizehints.max _ i;ight = ((unsigned) sizey + Oxf) & --Oxf; 
height= DisplayHeight(dpy, DefaultScreen(dpy))- 32; 
if(sizehints.max_height > (int) height)· 

sizehints.ma,i ,;_ height = height; 
sizehints.width inc= 16; 
sizehints.heig~ inc = I 6; 
sizehints.flags = (PSize I PPosition I 

PMinSize I PMaxSize I PResizelnc); 
(void) sprintflpipe, "o/oS • o/oS", ominum(argv[I)), ominum(argv(2])); 
XSetStandardProperties(dpy, window, pipe,pipe, 

None, a,gv, argc, &sizchints); 
classhints.res class = "view"; 
classhints.res - name= "view"; 
XSetClassHint(dpy, window, &classhints); 

,. 
• Wait for window to be mapped ., 

,. 

XSelectlnput(dpy, window, EVENTS); 
XMapWindow(dpy, window); 
XWindowEvent(dpy; window, ExposureMask, &event); 
(void) XGetGeomeuy(dpy, window, &root, &dummy, &dummy, 

&width, &height, (unsigned •) &dummy, &depth); 

• Create an image. 
!'1/ 

image= XCreatelmage(dpy, visual, depth, ZPixmap, 0, 
(char•) map, si2.eX, sizey, 8, 0); 

if{ image->bytes _per_ line == 4 • sizcx) { 
MALLOC_OR_ELSE_LINTOK{map32, buf.st_size, unsigned long); 
for (i = O; i < buf.st_size; ++i) 

JJ1Bp32[i] = map[i]; 
image->clata =(char•) map32; 

122 



123 

} . 

else iflimage->bytes_per_line != sizex) 
EXIT2("%s: I can't deal with o/od bytes per line!\n", 

argv[O), image->bytes_per_line); · 

, .. 
• Create a large pixmap 
•1 
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pixmap"' XCreatePixmap(dpy, window, sizex, sizey, dep1h); 
XPutlmagf:(dpy, pixmap, gc, image, 0, 0, 0, O; sizcx, sizey); 

r 
• l.;oop fon:ver ., 

ll "'{Sizex • width)/ 2; 
y·"',(sizey • height)/ 2; 
1 += (int) rint(XO); 
y += (int) riJit(YO); 
min=O; 
mBll;"' height; 
while.(!done) { 

XNcxtEvent(dpy, &event); 
switch (event.type) { 
case ClientMessage: 

if(event.xclient.message_type= wm_protocols && 
(Atom) event.xclient.data.1(0)- wm_delete.:_window) 
done-= 1; 

else 
. XBell(dpy,0); 
break; 

-case&pose:. 
update"'); 
break; 

case ConfigureNotify: 

r 
• 'Save new window size ., 

if(CONFIGEVENT->width > sizex) 
CONFIGEVENT->width = sizex; 

min= min • CONFIGEVENT->width I (int) width; 
width= CONFIGEVENT->width; 
if (CONFJGEVENT->height > sizey) 

CONFIGEVENT->height"' sizey; 
max = max • CONFIGEVENT->height l(int) height; 
height = CONFIGEVENT->height; 
update=); 
-cmap= I; 
break; 

case ButtonPresil: 
ease ·ButtonRelease: 

switch (BµJTONEVENT ->button) { 
case Buttonl: 

if(evei,it.type= ButtonRelease) { 

r 
• Make m fiiral movement ., 
x -= Bu;tirONEVENT->x - dx; 
if(x <O) 

-x-=O; 
else if(x • sizcx • (int) width) 

x•= sizex • width; 
y -= BUITONEVENT->y -~y; 
if(y <0) 

y "'.O; 
else if(y > sizey -(int) height) 

y = sizey - height; 
update= I; 

} . 
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,. 
• Save.location where button pressed 
•t . 
dx = BUTTONEVENT->x; 
dy = BUTfONEVENT->y; 
break; 

case Bunon2: 
if(eventtype== ButtonRelease) { 

t• 
• ~ake any final movement •t .. 

} 

,. 

min +c BtnTONEVENT->x - mx; 
max -tc BtnTONEVENT->y - my; 
cmap= I; 

• Save location where button pressed · · 
•t 
mx = BUTfONEVENT->x; 
my= BUTfONEVENT->y; 
break; 

case Bunon3: 
if(event.type= ButtonPress) { 

#ifOJSPLA Y BUFFERS 
- e=(e+ I) %3; 

· · d = (e? e= I ? a : b : c); 
Jo= DBL_MAX; 
hi= -DBL_MAX; .. 
for(i = 0; i < buf.st_size; ++i) { 

if(lo > d[i]) 
Jo= dfi]; 

if {hi < d[i]) 
hi= d[i]; 

} 
nonn = (10.0 - 0.1) / (hi - lo); . 
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(void) fprintflstderr, "kr-%g, hi="/4g, nonn="log\n"; 
lo, hi, nonn); 

for (i = 0; i < buf.st_size; ++i).{ 

} 

if(e=0) { 
j = (i / sizex + sizey / 2) % sizey; 
k = (i % sizex + sizex / 2) % sizex; 
if (((j = 0) && (k > 20) && (k < sizex - 20)) 11 

} 

((k = 0) && (j > 20) && (j < sizey - 20))) { 
map[i] = NC - 2; 
continue; 

I = j* sizex + k; 
} 
else 

l=i; 
I= ((MC/M LNJ0/2.0) • 

(log((d[I] :-lo)• nonn + 0.1) + M_LNJO)); 
map[i] = ((I < 0)? 0 : 

(I > MC)? MC: (unsigned char) I); 

XPutlmage(dpy, pix!JlllJ), gc, image, 

update= I; 
min=O; 

. max = height; 
cmap= I; 

,f#etse t• DJSPLA Y BUFFERS */ 

• O, 0, 0, 0, sizex, sizey); 

bx·;;;;,off x + BUlTONEVENT->x; 
by= of(y + BUlTONEVPIT->y; 
j = (by+ si~ / 2) % sizey; 
k =(bx + sizex / 2) % sizex; 
I = j •·siEex + k; 
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(void) fprintf{stdar, "x = %Id, y = %Id, p = %g (o/od)\n", 
· ·bx• sizex + sizex / 2, 

by - sizcy + sizcy / 2, 
bx < sizcx ? by < sizey ? 
c[I) : 0.0 : o:o, 
bx < sizcx ? by < sizey ? 
map[by ~ sizex +bx]: 0: 0); 

XDrawPoint(dpy, window;gc, 
.. .. . BlTITONEVENT->x, BlJITONEVENT->y); 

#endif I" DISPLAY BUFFERS •1 . 
} -
break; 

} 
break; 

case MotionNotify: . 
if (MOTIONEVENT->state & Button I Mask) { 

1-·· 
• Only do this for button I ., ' 

while (XCheckMaskEvent(dpy, Bunonl MotionMask, &event}) 
continue;- . . 

(void) XQueryPointer(dpy, window, &root, &child, 
&root_x, &root_y, . 
&win_x, &win_y, &keys_bunons); · 

if(keys_burtons & BunonlMask) { 

I-
• Only ifbutton is still pn:sscd ., 

} 

X-= win_x • dx; 
dx=win x; 
,j-= winy • dy; 
dy-=win_y; 
update= I; 

} ·. 
if(MOTJONEVENT->state & Button2Mask) { 

,. 
• Only do this for bunon 2 

· .. , 

} 

while (XCheckMaskEvent(dpy, Button2MotionMask, &event)) 
continue; 

(void) XQueryPointer(dpy, window, &root, &child, 
&root_x, &root_y, 
&win_x, &win_y, &keys_bunons); 

if(keys_bultons & Button2Mask) { 

I-
• Only if button is still pressed ., 

} 

min-+-=win_x-mx; 
mx=win_x; 
max -+-= win_y • my; 
my=wiD.:,y; 
cmap'" J; 

break; 
case LeaveNotify: 

} 

· XUninstallCdlonnap(dpy, colormap); 
break; 

if(update) { 
if((off_x = x)<'()) 
. off x= O· 
else if(off 'x > sizex --{int) width) 

off x = sizex • width; 
if{'(off_y= y)<O) 

128 



US 8,271,251 B2 
129 

off_y=O; 
else if(off_y > sizey • (int) height) 

off_y = sizey • height; 
XCopyArea(dpy, pixmap, window, gc, 

off'_x, off_y, width, height, 0, O);. 
update= O; 

} . 
if(cmap) { 

#define LNl00(2 • M_LNI0). 
(void) fprintf{stderr, "min= %.6f, max= %.6f \r", 

0.1 •expm)(min•LNJOO/.width)/nonn+lo,. 
·. ·. 0.1 •expml(max • LNIOO/height)/nonn+lo); 

scale= 6S53S.O • height/ (MC • (max •width· min• height))i 
for(i = O; i <= MC; ++i) { . 

if(i • (int) width<= MC• min) { 
: cells[i].red = cells(i].green = OxOOOO; 

#ifF ALSE COLOR . . 
- cells[i].blue = 0xOOOO; 

#else t• FALSE COLOR •t 
;ells[i).blue = Ox7fff; 

#endif/* FALSE_COLOR •t 
} 
elseif(i • (int)height>-=MC• max) { 
· cells[i].red = Oxfflf; · 

#ifFALSE COLOR . 
- cells[i).gieen = cells[i).blue = 0xfflf; 

#else/* FALSE COLOR •t 
cells[i].gieen = cells[i].blue = 0xOOOO; 

#endif /* FALSE COLOR •t 
} -
else { 

#ifFALSE COLOR·. 
- j = 6 • scale• (i • width· MC • min); 

switch (i / 6S536) { 
case 0: 

case I: 

case 2: 

case 3: 

case 4: 

cells[i].red = I • 0xfflf • j; 
cells[i].green = 0xOOOO; 
cells(i].blue = Oxfflf; 
break; . 

cells(i].n:d = 0xOOOO; ·. 
cells[i].green = j - I • 0xfflf; 
cells[i].blue = Oxfflf; 
brealc; 

cel.ls[i].red = 0xOOOO; 
cells(i].green = Oxfflf; 
cells(i].blue = 3 • Oxfflf • j; 
bn:ak; 

cells[i].red = j - 3 • Oxfflf; 
cells[ i).green = Ox fflf; 
cells[i).blue = OxOOOO; 
brealc; 

cells[i].red = 0xfflf; 
cells[i].green = S • Oxfflf - j; 
cells[i).blue = 0xOOOO; 
break; 

case 5: · 

} 

cells[i].red = 0xfflf; 
cells[i).green = OxOOOO; 
cells[i).blue = j • 4 • 0xfflf; 
break; 

•1/else /* F Ai::SE _ COLOR •t 
value= scale • (i • width• MC • min); 
celJs[i].red = cells[i].green = cells[i].blue = value; 

'#endif/* FALSE <:-OLOR •t 
} - . 
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cells[i].pixel = i; . . 
cells[i].flags = DoRed ·1 DoGreen I DoBlue; 

} . 

cells[NC • I ).red = 0xOOOO; 
cells[NC ~ I ).green = Ox7ftf; 
cells(NC ~ I ].blue= OxOOOO; 
cells[NC • I ].pixel .,; NC • 1; .. 
cells[NC • J J.flags.c DoRed I DoGreen I Do Blue; 
cells[NC - 2].red .. OxOOOO; 
cells[NC - 2).greeit = OxOOOO; 
cells[NC - 2].blue"' OxOOOO; 
cells[NC - 2 ).pixel = NC • 2; . 
cells[NC- 2).flags"' DoRed I DoGreen I DoBluc; 
XStoreCololS(dpy, colonnap, cells, NC); ' 
cmap-=O; 

} 
XCJoseDisplay(dpy); 

.. #ifDJSPLA Y BUFFERS 
FREE LINTOK(a); 
FREE-LJNTOK(b); 

#endif r DJSPLA Y BUFFERS •1 
· FREE UNTOK(c); 

rewm(m); 
} 

132 



US 8,271,251 B2 
133 

It should be understood that the description, specific 
examples and data, while indicating exemplary embodi
ments, are given by way of illustration and are not intended to 
limit the present invention( s) in this disclosure. All references 
cited herein for any reason, are specifically and entirely incor- 5 

porated by reference. Various changes and modifications 
which will become apparent to a skilled artisan from this 
disclosure are considered part of the invention(s) of this dis
closure. 

In the appended claims, the articles such as "a," "an," "the" 10 

and the like can mean one or more than one, and are not 
intended in any way to limit the terms that follow to their 
singular form, unless expressly noted otherwise. Unless oth
erwise indicated, any claim which contains the word "or" to 

15 
indicate alternatives shall be satisfied if one, more than one, or 
all of the alternatives denoted by the word "or" are present in 
an embodiment which otherwise meets the limitations of such 
claim. 

We claim: 
1. A computer-implemented method for processing a series 

of overlapping optical images, comprising: 

20 
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d) applying a Laplacian filter to said frequency 

whitening results to produce Laplacian filter 
results; and 

e) transforming said Laplacian filter results from 
frequency to intensity space to produce said 
Cross-Correlation Function, wherein said Cross 
Correlation Function provides said pair of sub
offsets; and 

producing adjusted element and line distances for more 
precise alignment of said overlapping regions of said 
first optical image and said second optical image by 
adding said sub-offsets to said initial offset estimate; 

overwriting and merging said first optical image and said 
second optical image to create a merged image, 
wherein said order of said steps of said flattening and 
said overlapping are order-independent when both of 
said steps occur prior to said-overwriting and merg
ing; and 

displaying said merged image on a user interface. 

2. The computer-implemented method of claim 1, wherein 
said first optical image and said second optical image are 
collected in series within a column or row that overlap one flattening a first optical image and a second optical image; 

aligning overlapping regions of said first optical image and 
said second optical image, wherein said aligning com
prises: 
determining an initial offset estimate of alignment 

between said first optical image and said second opti
cal image based on initial scale and angle values; 

25 
another, or are collected in series within a column or row that 
overlap one another within the colunm or row and also over
lap with other images in adjacent colunms or rows, said other 
images flanking either or both sides of said first optical image 
and said second optical image. 

30 

calculating a pair of sub-offsets to determine an error of 
said initial offset estimate comprising identifying a 
location of the best correlation (peak) within data 
patterns of a first sub-image and a second sub-image, 
wherein said first sub-image and said second sub- 35 

image are regions of said first optical image and said 
second optical image, respectively, that overlap as 
determined by said initial offset estimate, said identi
fying comprising the ordered steps of: 
1) copying said first sub-image into a first work area; 40 

2) copying said second sub-image into a second work 
area; 

3) calculating an average intensity and normalizing 
pixel intensity values within each of said first sub
image and said second sub-image; 

4) adding a pad-area along a first edge of each of said 
first sub-image and said second sub-image; 

45 

5) adding a fill-area along a second edge of each of 
said first sub-image and said second sub-image, 
wherein said second edge is adjacent to said first 50 

edge on each of said first sub-image and said sec
ond sub-image; 

6) filling each of said pad-areas and said fill-areas 
with predetermined values in a predetermined 
mamier; and 

7) calculating a Cross Correlation Function for each 
image of said first sub-image and said second sub
image, comprising the steps of: 

55 

a) transforming said image data from intensity to 
frequency space to produce transform coeffi- 60 

cients; 
b) multiplying, in a point-wise fashion, said trans

form coefficients to produce point-wise multipli
cation results; 

c) frequency whitening said point-wise multiplica- 65 

tion results to produce frequency whitening 
results; 

3. The computer-implemented method according to claim 
2, wherein said initial offset estimate of alignment is based on 
the LUDL motor movement, the skew between the axes of a 
microscope stage and a camera detector, and scaling wherein 
said scaling is the difference in size between one step of said 
LUDL motor movement and the number of pixels a detected 
image moves across the camera detector. 

4. The method according to claim 1, wherein said adding of 
said pad-areas and said fill-areas and said filling of each of 
said pad-areas and said fill-areas comprises the ordered steps 
of: 

1) appending a pad-area and a fill-area respectively along 
two adjacent sides of each of said first sub-image and 
said second sub-image such that said pad-area extends 
as a border along the edge of one side of the first sub
image and abuts and is adjacent to said fill-area border
ing along the entire, adjacent, second side of said first
sub-image, and the positions of said adjacent pad-area 
and fill-area on said first sub image are switched with 
respect to each other on the second sub image, wherein 
said fill-area on said second sub-image borders along the 
entire side adjacent to said pad-area for said first sub
image; 

2) filling said pad-area vertically with smoothly interpo
lated values that range between the top and bottom edges 
of said first sub-image; 

3) filling said fill-area of said first sub-image with zeros; 

for said second sub-image, filling said pad-area horizon
tally with smoothly interpolated values that range 
between those along the right and left edges of said 
second sub-image; and 

4) filling said fill-area of said second sub-image with zeros. 

5. The method of claim 4, wherein each of said pad-area 
and fill-area represents a border wherein the width of said 
border is equal to no more than twice the mechanical error 
associated with optical image collection in the system. 
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6. The method according to claim 5, wherein said normal
izing pixel intensity values comprises for each pixel: 

if an intensity value of said pixel is greater than said aver
age intensity, a natural log-transformation of the ratio of 
said intensity value of said pixel to said average inten- 5 

sity; and 
if said intensity value of said pixel is less than said average 

intensity, subtracting 1.0 from said ratio of said intensity 
value of said pixel to said average intensity. 

136 
merging of said first overwritten image and said second 

overwritten image to produce a single merged image for 
visualization in the system; 

merging said single merged image with a series of over
written optical images in the sequential order in which 
said series of overwritten optical images were initially 
collected to produce a single virtual superimage. 

8. The method according to claim 7, wherein a linear blend
ing of intensity values is achieved in a transition region 

7. The method according to claim 6, wherein said overwrit
ing and merging comprises: 

for each of said first optical image and said second optical 
image, overwriting bleached pixel intensity data within 

10 between said overwritten regions and non-overwritten 
regions, wherein said intensity values at the edge of said 
overwritten regions are identical to those in said non-over
written regions and wherein said transition region is 20 pixels 
in width. a region of overlap exposed to a light source more than 

once with the stronger pixel intensity data from the 15 

identical region of overlap on either said flattened first 
optical image or said flattened second optical image 
exposed to said light source only once to produce a first 
overwritten image and a second overwritten image to 
replace said flattened first optical image and flattened 20 

second optical image, respectively; and 

9. The method according to claim 8, wherein each image 
within said series of overwritten optical images is retained as 
a separate file on a processing computer, despite said merging 
for visualization of contents of said microchannel or other 
area. 

* * * * * 
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