a2 United States Patent

Schwartz et al.

US008271251B2

US 8,271,251 B2
Sep. 18, 2012

(10) Patent No.:
(45) Date of Patent:

(54) AUTOMATED IMAGING SYSTEM FOR
SINGLE MOLECULES

(75) Inventors: David Charles Schwartz, Madison, W1
(US); Rodney Runnheim, Madison, W1
(US); Daniel Forrest, Madison, WI (US)

(73) Assignee: Wisconsin Alumni Research

Foundation, Madison, WI (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1591 days.

(21) Appl. No.: 11/052,836

(22) Filed: Feb. 9, 2005
(65) Prior Publication Data
US 2005/0234656 Al Oct. 20, 2005

Related U.S. Application Data

(60) Provisional application No. 60/542,469, filed on Feb.
9. 2004.

(51) Int.CL

G06G 7/58 (2006.01)

G06G 7/48 (2006.01)
(52) US.CL .o 703/12; 703/6
(58) Field of Classification Search None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,133,022 A * 7/1992 Weideman 382/172
5,796,861 A * 8/1998 Vogtetal.ccocevenn 382/128
6,294,136 Bl 9/2001 Schwartz

OTHER PUBLICATIONS

Jing et al., Automated High Resolution Optical Mapping Using
Arrayed, Fluid-fixed DNA Molecules, PNAS, 1998, 85, 8046-8051.*
Zhang et al. Automated Data Collection with a Tecnai 12 Electron
Microscope: Applications for Molecular Imaging by
Cryomicroscopy, J. Struct. Biol. 2001, 135, 251-261.*

Ott, Acquisition of High-Resolution Digital Images in Video Micros-
copy: Automated Image Mosaicking on a Desktop Microcomputer,
Microscopy Research and Technique, 1997, 38, 335-339.*

Burt et al., (ACM Transactions on Graphics, 1983, 2(4), 217-236).*
Grades, (Doctoral Dissertation, 1999, Fachbereich Geosciences,
Johannes Gutenberg University, Landau, Germany, 1-150).*

Larkin et al. (Optics Communications, 1997, 139, 99-106).*
Sugiyama et al. (MVA, IAPR Workshop on Machine Vision Appli-
cations, Dec. 13-15, 1994, 127-130).*

Jaroslav Kaustky et al., “A new wavelet-based measure of image
focus”, Pattern Recognition Letters, 2002, pp. 1785-1794, vol. 23.
Eric Krotkov et al., “Focusing”, International Journal of Computer
Vision, 1987, pp. 223-237, vol. 1.

(Continued)

Primary Examiner — Larry D Riggs, 11
(74) Attorney, Agent, or Firm — Quarles & Brady LLP

(57) ABSTRACT

There is provided a high throughput automated single mol-
ecule image collection and processing system that requires
minimal initial user input. The unique features embodied in
the present disclosure allow automated collection and initial
processing of optical images of single molecules and their
assemblies. Correct focus may be automatically maintained
while images are collected. Uneven illumination in fluores-
cence microscopy is accounted for, and an overall robust
imaging operation is provided yielding individual images
prepared for further processing in external systems. Embodi-
ments described herein are useful in studies of any macro-
molecules such as DNA, RNA, peptides and proteins. The
automated image collection and processing system and
method of same may be implemented and deployed over a
computer network, and may be ergonomically optimized to
facilitate user interaction.

9 Claims, 6 Drawing Sheets

Ceicin R | B Vbt |

i i | -
i | -

ool Gl S it}
Chaisd S

i1 AN R B0 eSS B B
5 S CHEE S e S E
5 e wE R poR A
o omw osmww B 28w
o v AR SR 3
P k. -
?‘i} BN N BB PER B e

US 8,271,251 B2
Page 2

OTHER PUBLICATIONS

N. Ng. Kuang Chern, et al., Proceedings of the 2001 IEEE Interna-
tional Conference on Robotics and Automation, Seoul, Korea, May
21-26,2001.

Lai et al., Nature Genetics, 23:309-313, 1999.

Zhu et al., Science 293(5537): 2101-05, 2001.

Cluster W (http:/www.ebi.ac.uk/clustalw/index html).

Fragment Assembler (http:/bio.ifomfirc.it’ ASSEMBLY/assemble.
html.).

The International Ergonomics Association (http://www.iea.cc/).
(http://www.fftw.org/).

* cited by examiner

U.S. Patent

Sep. 18, 2012

Sheet 1 of 6

US 8,271,251 B2

Eveaid Lol | Sk el |

Lbwewad St

i F.

A SIS R
B N

2o Be 9
PMTT TN 2

S 51640 54
ECLIRE . I

WE e

e EBEE 1B sgigzi

W7 BT W Set

Figure 1

U.S. Patent

%wwmwr g%;':”

Sep. 18,2012 Sheet 2 of 6 US 8,271,251 B2

Ve 17

Hew s

W T8

Vi 3

T

Yo 19

B
W e

Ve 71

iim Ve B

BT vy

e 8

fa T v e

pa Ve Vi 28

Ra Vi 0 i 25

BT vyt W 37 e W
BT vt Vi St }gm B
B vmu i 5 ; wda [0S
BT et BT Veww i e TV
B v BT v

S k]

B Vw3

Lol b Sk

TS B

[

& Lalen iy 1
=

Totol Vies 5

i

Condidiiors: RIS

A

Duares Cven 1o Fi lﬁ

e |

Figure 24

U.S. Patent

gk 4

Sep. 18, 2012

HET

Sheet 3 of 6

T

%& Ty

trbke

FEAE wews |[EEUE vesn
s HEE et
gr G5 e T
. N Ll s T
e vesyt (ST vy i el
B istone : .
EHE veen (DEET Vel W
. e Wk DR
T e (BT vewn : : i
: i i : e
IR veens (TUEE e : : e
FEEE wewwm T vesw : :
FESE wwew (TRE vesm :
Lt g Sl 5 G Pl el
Vo S [0 P ot s e
& Laplene Arieraly §">

irboenlty Vo

Yotal Tios: (500
-

P

Lo Lawwn T Fie E

Figure 7B

US 8,271,251 B2

U.S. Patent Sep. 18, 2012 Sheet 4 of 6 US 8,271,251 B2

P

FIG. 3A Sub-

U.S. Patent Sep. 18, 2012 Sheet 5 of 6 US 8,271,251 B2

P
o
g

b)

FIG. 3B Sub-Image 2 "S2"

U.S. Patent Sep. 18, 2012 Sheet 6 of 6 US 8,271,251 B2

(c)

(d)

(c)

FIG. 3C

US 8,271,251 B2

1
AUTOMATED IMAGING SYSTEM FOR
SINGLE MOLECULES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application Ser. No. 60/542,469 filed Feb. 9, 2004, incorpo-
rated herein by reference as if set forth in its entirety. This
application also relates to U.S. patent application Ser. No.
10/777,850 filed Feb. 13, 2004; U.S. patent application Ser.
No. 10/888,517 filed Jul. 12, 2004; and U.S. patent applica-
tion Ser. No. 10/888,516 filed Jul. 12, 2004, each of which is
incorporated herein by reference as if set forth in its entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

The work described in this disclosure was conducted with
United States Government support, grant number DE-FG02-
99ER 62830, awarded by the Department of Energy. The
United States Government has certain rights in the invent-
ion(s) of this disclosure.

BACKGROUND OF THE DISCLOSURE

1. Field of the Disclosure

The present disclosure relates to a high throughput auto-
mated single molecule image collection and processing sys-
tem that requires minimal or limited initial user input. Optical
images of single molecules and fragments elongated and
fixed within microfluidic channels can be automatically col-
lected, maintaining correct focus, and the images prepared for
further data processing. A computer-based analysis can be
performed on each image thereby obviating the problem of
uneven illumination in fluorescence microscopy, and provid-
ing an overall robust imaging operation. Embodiments
described herein are thus useful in studies of any macromol-
ecules such as DNA, RNA and proteins.

2. Description of the Related Art

Modern biology, particularly molecular biology, has
focused itself in large part on understanding the structure,
function, and interactions of essential macromolecules in liv-
ing organisms such as nucleic acids and proteins. For
decades, researchers have developed effective techniques,
experimental protocols, and in vitro, in vivo, or in situ models
to study these molecules. Knowledge has been accumulating
relating to the physical and chemical traits of proteins and
nucleic acids, their primary, secondary, and tertiary struc-
tures, their roles in various biochemical reactions or meta-
bolic and regulatory pathways, the antagonistic or synergistic
interactions among them, and the on and off controls as well
as up and down regulations placed upon them in the intercel-
Iular environment. The advance in new technologies and the
emergence of interdisciplinary sciences in recent years offer
new approaches and additional tools for researchers to
uncover unknowns in the mechanisms of nucleic acid and
protein functions.

The evolving fields of genomics and proteomics are only
two examples of such new fields that provide insight into the
studies of biomolecules such as DNA, RNA and protein. New
technology platforms such as DNA microarrays and protein
chips and new modeling paradigms such as computer simu-
lations also promise to be effective in elucidating protein,
DNA and RNA characteristics and functions. Single mol-
ecule optical mapping is another such effective approach for
close and direct analysis of single molecules. See, U.S. Pat.

20

25

30

35

40

45

50

55

60

65

2

No. 6,294,136, the disclosure of which is fully incorporated
herein by reference. The data generated from these studies—
e.g., by manipulating and observing single molecules—con-
stitutes single molecule data. The single molecule data thus
comprise, among other things, single molecule images,
physical characteristics such as the length, shape and
sequence, and restriction maps of single molecules. Single
molecule data provide new insights into the structure and
function of genomes and their constitutive functional units.

Images of single molecules represent a primary part of
single molecule datasets. These images are rich with infor-
mation regarding the identity and structure of biological mat-
ter at the single molecule level. It is however a challenge to
devise practical ways to extract meaningful data from large
datasets of molecular images. Bulk samples have convention-
ally been analyzed by simple averaging, dispensing with rig-
orous statistical analysis. However, proper statistical analy-
sis, necessary for the accurate assessment of physical,
chemical and biochemical quantities, requires larger datasets,
and it has remained intrinsically difficult to generate these
datasets in single molecule studies due to image analysis and
file management issues. To fully benefit from the usefulness
of the single molecule data in studying nucleic acids and
proteins, it is essential to meaningfully process these images
and derive quality image data.

Effective methods and systems are thus needed to accu-
rately extract information from molecules and their structures
using image data. For example, a large number of images may
be acquired in the course of a typical optical mapping experi-
ment. To extract useful knowledge from these images, effec-
tive systems are needed for researchers to evaluate the
images, to characterize DNA molecules of interest, to
assemble, where appropriate, the selected fragments thereby
generating longer fragments or intact DNA molecules, and to
validate the assemblies against established data for the mol-
ecule of interest. This is particularly relevant in the context of
building genome-wide maps by optical mapping, as demon-
strated with the ~25 Mb P. falciparum genome (Lai et al,
Nature Genetics 23:309-313, 1999.

In the Lai et al. publication, the P. falciparum DNA, con-
sisting of 14 chromosomes ranging in size from 0.6-3.5 Mb,
was treated with either Nhel or BamHI and mounted on
optical mapping surfaces. Lambda bacteriophage DNA was
co-mounted and digested in parallel to serve as a sizing stan-
dard and to estimate enzyme cutting efficiencies. Images of
molecules were collected and restriction fragments marked,
and maps of fragments were assembled or “contiged” into a
map of the entire genome. Using Nhel, 944 molecules were
mapped with the average molecule length of 588 Mb, corre-
sponding to 23-fold coverage; 1116 molecules were mapped
using BamHI with the average molecule length of 666 Mb,
corresponding to 31-fold coverage (Id at FIG. 3). Thus, each
single-enzyme optical map was derived from many overlap-
ping fragments from single molecules. Data were assembled
into 14 contigs, each one corresponding to a chromosome; the
chromosomes were tentatively numbered 1, the smallest,
through 14, the largest.

Various strategies were applied to determine the chromo-
some identity of each contig. Restriction maps of chromo-
somes 2 and 3 were generated in silico and compared to the
optical map; the remaining chromosomes lacked significant
sequence information. Chromosomes 1, 4 and 14 were iden-
tified based on size. Pulsed field gel-purified chromosomes
were used as a substrate for optical mapping, and their maps
aligned with a specific contig in the consensus map. Finally,
for chromosomes 3, 10 and 13, chromosome-specific YAC
clones were used. The resulting maps were aligned with spe-

US 8,271,251 B2

3

cific contigs in the consensus map (Id at FIG. 4). Thus, in this
experiment multi-enzyme maps were generated by first con-
structing single enzyme maps which were then oriented and
linked with one another. For a number of chromosomes that
are similar in size, such as chromosomes 5-9, there are many
possible orientations of the maps. Such maps may be linked
together by a series of double digestions, by the use of avail-
able sequence information, by mapping of YACs which are
located at one end of the chromosome, or by Southern blot-
ting.

In short, optical mapping is powerful tool used to construct
genome-wide maps. The data generated as such by optical
mapping may be used subsequently in other analyses related
to the molecules of interest, for example, the construction of
restriction maps and the validation of DNA sequence data.
There is accordingly a need for systems for visualizing, anno-
tating, aligning and assembling single molecule fragments.
Such systems should enable a user to effectively process
single molecule images thereby generating useful single mol-
ecule data; such systems should also enable the user to vali-
date the resulting data in light of the established knowledge
related to the molecules of interest. Robustness in handling
large image datasets is desired, as is rapid user response.

A prior system relating to the present disclosure contained
scale and angle values that were stored within the system. The
correlation of images to determine precise alignment was
accomplished by comparing “bright spots” in the images—a
very slow process that entailed identification of the bright
regions in each successive overlapping region, all in “image
space.”

Although the use of a Laplacian filter algorithms have been
used previously in automatic focusing applications (E. Krot-
kov. Focusing. International. Journal of Computer Vision. 1
(3):223-237,1997; N. Ng Kuang Chern, et al. Practical issues
in pixel-based autofocusing for machine vision. Proceedings
of the 2001 IEEE International Conference on Robotics and
Automation. Seoul, Korea, May 21-26, 2001; J. Krautsky, et
al. A new wavelet-based measure of image focus. Pattern
Recognition Letters 23:1785-1794, 2002) they were not opti-
mized for the purpose of imaging single molecules in an
optical mapping application and were not available in a code
library form that could be used in this laboratory. This may be
due to the fact that varying types of tissues (cells, DNA, etc.)
each present their own set of automatic focusing challenges
making a robust general purpose automatic focus algorithm
impractical. Moreover, most cameras are sold independent of
microscopes and vendors are not aware of the type of trans-
lation gear necessary for various applications. Thus, innova-
tive solutions applying the most current technology to the
automatic focus concept was necessary; the system according
to the present disclosure integrates cameras, translation
equipment and software—together which are not available as
apackage for this particular application. An example of this is
the “tiling” step; it is uniquely designed to solve the specific
problem of automatically focusing “out of focal plane bright
fluorescent objects.” Recently, Zeiss offered an automatic
focusing routine that works solely with a Hamamatsu camera;
this system remains inadequate for an optical mapping appli-
cation such as the one described herein, however. Zeiss focus-
ing hardware also appears to relate only to intensity focusing.

In summary, the present disclosure describes a novel, auto-
mated solution to a single molecule optical mapping applica-
tion.

SUMMARY OF THE DISCLOSURE

This disclosure provides devices and methods for auto-
mated collection of images of single molecules and their

20

25

30

35

40

45

50

55

60

65

4

assemblies, and for preparation of these single molecule
images for further processing in external system(s). Both the
devices, such as computer systems, and the methods for auto-
mated collection and processing provide for an overall robust
imaging operation. The systems may include one or more of
the following features, or may utilize all of them. Focus is
advantageously automatically maintained during image col-
lection. During the image processing step, the uneven illumi-
nation of fluorescence microscopy may be substantially
reduced or eliminated by a flattening process. Offset of over-
lap may be determined between images and adjusted. Overly-
exposed (bleached) region of overlap on one image of each
pair of overlapping images may be automatically overwritten
with stronger (unbleached) data from the identical region of
overlap from the second image in the pair, the second image
having been exposed to a light source only once. The resulting
overwritten images then may be virtually merged to form a
superimage or montage for visualization in the systems, yet
remain as separate image files for further processing else-
where. Following a collection, the quality of automated
focusing process during that collection may be assessed using
a diagnostic tool. The automated collection and processing
systems may be implemented and deployed over a computer
network. Further, the systems and methods of these embodi-
ments may be ergonomically optimized to facilitate both
required and optional user interactions.

In accordance with the embodiments, there are provided
automated image collection and processing computer sys-
tems and methods for collection of single molecule images,
wherein the single molecule images comprise signals derived
from single molecules or single molecular assemblies or
polymers, any or all of which may be elongated and fixed. The
systems may comprise single molecule image collection
computer system with a user interface capable of displaying
one or more areas on a surface, (e.g., a microscope slide) for
preparation of automated collection of images. The user inter-
face may allow a user to select one or more areas to be imaged
and to initiate automated image collection. User selection of
one or more areas for imaging, as well as initiation of auto-
mated image collection and processing, may be ergonomi-
cally optimized. The methods may comprise one or more of
the steps: visualization and selection within a user interface of
a computer system of one or more microchannels or other
areas on a surface such as a microscope slide containing
single molecules, their assemblies or polymers; and initiation
of automated image collection and processing with no further
user intervention if desired. Such processing may include one
or more of the following steps or processes: automated focus-
ing during automated image collection; automated image
flattening; image overlapping and image overwriting and
merging. The flattening and overlapping steps are order inde-
pendent following collection provided they precede the over-
writing and merging step.

In other embodiments there are provided computer sys-
tems and methods for automated image collection and pro-
cessing of single molecule images in which single molecule
images are derived from optical mapping of single molecules,
and in which single molecules are individual molecules or
individual molecular assemblies or polymers. In various
embodiments the single molecule is a DNA molecule. In yet
other embodiments the single molecule is an RNA molecule,
a peptide or a protein.

In other embodiments there are provided computer sys-
tems and methods in which a user may locate and define
control points and pass depth for one or more areas on a
surface containing single molecules and fragments, both of
which define the boundaries of the image collection given the

US 8,271,251 B2

5

magnification setting, the image size and the size of each area
selected. In various embodiments, the surface is a microscope
slide.

In other embodiments there are provided computer sys-
tems and methods in which a series of overlapping optical
images of the single molecules or single molecular assem-
blies or polymers is automatically collected within the area(s)
defined by the control points and pass depth. In other embodi-
ments within the computer systems and methods, the series of
overlapping optical images is automatically collected main-
taining correct focus. In other embodiments image process-
ing methods following automated collection may comprise
one or more of the following steps and/or the following com-
puter system components: automated image flattening using
the automated image flattening component; image overlap-
ping using the automated image overlapping component; and
overwriting and merging using the overwriting and merging
component. The order of the image flattening and overlap-
ping steps is unimportant provided both occur prior to auto-
mated image overwriting and merging.

According to other embodiments, there are provided com-
puter systems and methods in which automated focus may be
achieved by one or more of the following steps or processes:
application of a Laplacian filter to small regions within reach
of'the optical images to define areas of focus based on contrast
in image intensity; generation of point-of-focus values rep-
resenting varying focal planes for the image which, when
accompanied by corresponding Gaussian distribution curves,
together may represent focal planes of single molecule image
data in sharpest focus; retention of the most frequently
observed point-of-focus values and removal of remaining,
outlying values from the analysis; and application of a
smoothing spline function to the most frequently observed
point-of-focus values to interpolate a final focus solution, a
calculated focus value, for the image.

According to other embodiments, there are provided com-
puter systems and methods in which the most frequently
observed point-of-focus values may comprise a predeter-
mined number (e.g., five) of the most frequently observed
point-of-focus values. According to yet other embodiments,
there are provided computer systems and methods in which
each of' the small regions of an image may comprise a region
small enough to accommodate at least a predetermined num-
ber of tiles, e.g., 100, in each image. According to yet other
embodiments each of the small regions of an image may
range from 8 by 8 pixels to 16 by 16 pixels, yet within each of
the images the size the small region may be uniform through-
out. According to yet other embodiments each of the small
regions of an image may comprise a 10 by 10-pixel region.

According to other embodiments there are provided com-
puter systems and methods in which the series of overlapping
optical images is automatically flattened or substantially flat-
tened, during which background and other illumination that is
not generated primarily from the single molecules, single
molecular assemblies or polymers is substantially reduced or
removed from the images and the remaining illumination is
normalized for further processing. A series of flattened opti-
cal images may result from this process. The automated
image flattening step may comprise automated lessening or
removal of dark noise from the total image intensity of each
image; automated interpolation and substantial or complete
removal of the image background noise of each image; and
automated normalization of remaining image intensity using
a sum image if a light source other than a laser light source is
used. If a laser light source is used, normalization of the
remaining image intensity of each image may be achieved
using a single image of the background illumination pattern

20

25

30

35

40

45

50

55

60

65

6

instead of a sum image. The dark noise reflects image inten-
sity present with no illumination source, and is determined
automatically from an image taken at the beginning of every
collection with the camera shutter closed.

In other embodiments there are provided computer sys-
tems and methods for automated image flattening in which
the background illumination pattern of each image is auto-
matically modeled in an iterative process including one or
more of the steps: application of a smoothing spline function
to interpolate the low frequency components and to remove
the high frequency components, and removal from the analy-
sis of any pixel intensity values above two standard deviations
from the mean following the fit. The iterative process is ter-
minated when the standard deviation reaches its nadir. In
these or other embodiments the automated image flattening
component may be used for this process.

In other embodiments there are provided computer sys-
tems and methods in which the initial offset estimate for
alignment within each pair of adjacent overlapping optical
images may be determined automatically within the series of
overlapping optical images using the automated image over-
lapping component. In these embodiments, the resulting sub-
offsets may be used to determine error of initial offset esti-
mate and to adjust offset estimate for more precise alignment
within each pair of overlapping images.

In other embodiments there are provided computer sys-
tems and methods for automated image overlapping using the
automated image overlapping component which may com-
prise one or more of the following: determination of initial
offset estimate of alignment between each pair of adjacent
overlapping optical images; revision of scale and angle val-
ues; calculation of sub-offsets to determine error of initial
offset estimate; and addition of the sub-offsets to the initial
offset estimate to yield adjusted element and line (E/L) dis-
tances for more precise alignment within each pair of adja-
cent overlapping optical images.

According to yet other embodiments there are provided
computer systems and methods in which adjacent overlap-
ping images include those collected sequentially within a row
or column that overlap one another, as well as images in series
that are flanked on either or both sides and overlap with
images in the adjacent columns or rows.

In another embodiments there are provided computer sys-
tems and methods for automated image overlapping in which
the initial offset estimates are based on the LUDL motor
movement, the skew between the axes of the microscope state
and the camera detector, and scaling. Scaling is the difference
in size between one step of motor movement and the number
of pixels the image moves.

According to yet other embodiments, there are provided
computer systems and methods in which sub-offsets are
employed, and within each pair of sequential flattened optical
images within the series of flattened optical images, flattened
image intensity data within a region of overlap exposed to a
light source more than once may be automatically overwritten
with data from the identical region of overlap on an adjacent
flattened image exposed to the light source only once; the
resulting series of overwritten optical images replaces the
series of flattened optical images.

In another embodiment of the present disclosure there are
provided computer systems and methods for automated
image overlapping in which calculation of sub-offsets may
comprise location of the best correlation (peak) within the
data patterns of the overlapping regions of adjacent images,
which method comprises one or more of the ordered steps:
preparation of the image data within sub-images for transfor-
mation and correlation analysis; and computation of a Cross-

US 8,271,251 B2

7

Correlation Function (CCF) through a Fast Fourier Transfor-
mation (FFT). Computation of a CCF through an FFT
comprises transformation of image data from intensity to
frequency space, point-wise multiplication of the transform
coefficients; frequency whitening of the results of the point-
wise multiplication process; application of a Laplacian filter
to the results of the frequency whitening; and execution of an
inverse FFT of the product to yield the CCF. The CCF pro-
vides a pair of sub-offsets defining the relative error from the
initial offset estimate.

In other embodiments there are provided computer sys-
tems and methods for automated image overlapping in which
preparation of the image data for transformation and correla-
tion analysis may comprise one or more of the ordered steps:
copying overlapping regions of each pair of adjacent overlap-
ping optical images into separate work areas to produce a
copy of each of these regions (sub-images); calculating the
average intensity of each of the sub-images and normalizing
pixel intensity values within each of the sub-images; adding a
pad-area and a fill-area, respectively, along two edges of each
of the sub-images, filling of each of the pad- and fill-areas
with predetermined values in a predetermined manner.

In other embodiments there are provided computer sys-
tems and methods for automated image overlapping in which
the addition of pad-areas and fill-areas and filling these areas
as part of the preparation of image data may comprise one or
more of the ordered steps. A pad-area and a fill-area, respec-
tively, are appended along two adjacent sides of each sub-
image such that the pad-area extends as a border along the
edge of one side of the first sub-image and abuts and is
adjacent to the fill-area bordering along the entire, adjacent,
second side of that sub-image; the positions of the adjacent
pad- and fill-areas on the first sub-image are switched with
respect to each other on the second sub-image. For the one of
the sub-images, the pad-area is filled vertically with smoothly
interpolated values that range between those along the top and
bottom edges of the sub-image, and the fill-area of that sub-
image is filled with zeros. For the second sub-image, the
pad-area is filled horizontally with smoothly interpolated val-
ues that range between those along the right and left edges of
the sub-image, and the fill-area of the second sub-image is
filled with zeros.

In yet other embodiments there are provided computer
systems and methods for automated image overlapping in
which the pad- and fill-areas represent borders wherein the
width of the border is equal to no more than twice the
mechanical error associated with optical image collection in
the system.

According to other embodiments there are provided com-
puter systems and methods for automated image overlapping
in which normalization of pixel intensity values within each
of the sub-images is achieved, when the intensity value of
each of the pixels is greater than the average intensity, through
a natural log-transformation of the ratio of each pixel inten-
sity value to the average intensity; when pixel intensity is less
than the average intensity, normalization is achieved by sub-
traction of 1.0 from the ratio of the pixel intensity value to the
average intensity.

In other embodiments there are provided computer sys-
tems and methods for automated image overwriting and
merging, using the automated overwriting and merging com-
ponent, with the use of the sub-offsets and within each pair of
adjacent overlapping flattened optical images, may include
the automatic overwriting of bleached pixel intensity data
within a region of overlap exposed to a light source more than
once, with the stronger pixel intensity data from the identical
region of overlap on an adjacent overlapping image exposed

20

25

30

35

40

45

50

55

60

65

8

to the light source only once; the resulting series of overwrit-
ten optical images containing overwritten regions may
replace the series of flattened optical images. The methods of
automated image overwriting and merging also may include
automated merging of the overwritten regions within each
pair of adjacent overwritten optical images to produce a
single virtual superimage for visualization in the system; the
series of overwritten optical images may be merged in the
sequential order the raw images were initially collected.

In yet another embodiment of the present disclosure there
are provided computer systems and methods for automated
image overwriting and merging in which a linear blending of
intensity values may be achieved in a transition region
between the overwritten regions and non-overwritten regions,
in which the intensity values at the edge of the overwritten
regions are identical or substantially identical to those in the
non-overwritten regions and in which the transition region is
of a predetermined width, e.g., 20 pixels wide.

In yet another embodiment of the present disclosure there
is provided a method for automated image overwriting and
merging in which, despite merging for visualization of con-
tents of the entire microchannel or other area imaged, each
overwritten image may be retained as a separate file on a
processing computer.

In another embodiment of the present disclosure there are
provided computer systems and methods for automated
image collection and processing of single molecule images,
in which a diagnostic computer tool that is not a required
component of said system may be utilized to manually assess,
after image collection is complete, the quality of image focus-
ing performed by the automated image focusing component
of the system during image collection. In yet other embodi-
ments there are provided computer systems and methods in
which manual assessment of image focusing performed by
the automated image focusing component may be ergonomi-
cally optimized.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a screenshot showing the user interface used for
initiating image collection. It depicts inputting control point
information from the microchannels.

FIG. 2A is a screenshot showing the automated focus diag-
nostic tool interface, indicating LUDL position (in steps) at
each view prior to application of the algorithm for focus
analysis.

FIG. 2B is a screenshot showing the automated focus diag-
nostic tool interface, following application of the algorithm
for focus analysis. Areas of green represent an increase in
contrast, while areas of red represent a decrease in contrast.

FIGS. 3A and 3B are screenshots taken during the over-
lapping process. These sub-images—copies of only the over-
lapping regions of two adjacent optical images—show fluo-
rescing single molecules and fragments in a microscope slide
channel. Pad-areas and fill-areas have been added as borders
as described below to perform the CCF through a FFT.

FIG. 3C is a screenshot of the CCF diamond-shaped region
that is searched for the correlation peak in the overlapping
process as described below.

DETAIL DESCRIPTION OF DISCLOSURE

Relevant Terms

The following disciplines, molecular biology, microbiol-
ogy, immunology, virology, pharmaceutical chemistry, medi-
cine, histology, anatomy, pathology, genetics, ecology, com-
puter sciences, statistics, mathematics, chemistry, physics,

US 8,271,251 B2

9

material sciences and artificial intelligence, are to be under-
stood consistently with their typical meanings established in
the relevant art.

As used herein, genomics refers to studies of nucleic acid
sequences and applications of such studies in biology and
medicine; proteomics refers to studies of protein sequences,
conformation, structure, protein physical and chemical prop-
erties, and applications of such studies in biology and medi-
cine.

The following terms: proteins, nucleic acids, DNA, RNA,
genes, macromolecules, restriction enzymes, restriction
maps, physical mapping, optical mapping, optical maps (re-
striction maps derived from optical mapping), hybridization,
sequencing, sequence homology, expressed sequence tags
(ESTs), single nucleotide polymorphism (SNP), CpG
islands, GC content, chromosome banding, and clustering,
are to be understood consistently with their commonly
accepted meaning in the relevant art, i.e., the art of molecular
biology, genomics, and proteomics.

The following terms, atomic force microscopy (AFM),
scan tunneling microscopy (STM), flow cytometry, optical
mapping, and near field microscopy, etc., are to be understood
consistently with their commonly accepted meanings in the
relevant art, i.e., the art of physics, biology, material sciences,
and surface sciences.

The following terms, database, database server, data ware-
house, operating system, application program interface
(API), programming languages, C, C++, Extensible Markup
Language (XML), SQL, as used herein, are to be understood
consistently with their commonly accepted meanings in the
relevant art, i.e., the art of computer sciences and information
management. Specifically, a database in various embodi-
ments of this disclosure may be flat data files and/or struc-
tured database management systems such as relational data-
bases and object databases. Such a database thus may
comprise simple textual, tabular data included in flat files as
well as complex data structures stored in comprehensive data-
base systems. Single molecule data may be represented both
in flat data files and as complex data structures.

As used herein, single molecules refer to any individual
molecules, such as macromolecule nucleic acids and pro-
teins. A single molecule according to this disclosure may be
an individual molecule or individual molecular assembly or
polymer. That is, for example, a single peptide molecule
comprises many individual amino acids. Thus, the terms
“single molecule,” “individual molecule,” “individual
molecular assembly,” and “individual molecular polymer”
are used interchangeably in various embodiments of this dis-
closure. Single molecule data refers to any data about or
relevant to single molecules or individual molecules. Such
data may be derived from studying single molecules using a
variety of technology platforms, e.g., flow cytometry and
optical mapping. The single molecule data thus comprise,
among other things, single molecule images, physical char-
acteristics such as lengths, heights, dimensionalities, charge
densities, conductivity, capacitance, resistance of single mol-
ecules, sequences of single molecules, structures of single
molecules, and restriction maps of single molecules. Single
molecule images according to various embodiments com-
prise signals derived from single molecules, individual mol-
ecules, or individual molecule assemblies and polymers; such
signals may be optical, atomic, or electronic, among other
things. For example, a single molecule image may be gener-
ated by, inter alia, atomic force microscopy (AFM), flow
cytometry, optical mapping, and near field microscopy. Thus,
electronic, optical, and atomic probes may be used in produc-
ing single molecule images according to various embodi-

20

25

30

35

40

45

50

55

60

65

10

ments. In certain embodiments, various wavelengths may be
employed when light microscopy is used to generate single
molecule images, including, e.g., laser, UV, near, mid, and far
infrared. In other embodiments, various fluorophores may be
employed when fluorescent signals are acquired. Further,
single molecule images according to various embodiments of
this disclosure may be multi-spectral and multi-dimensional
(e.g., one, two, three-dimensional).

Asused herein, genomics and proteomics data refers to any
data generated in genomics and proteomics studies from dif-
ferent technology platforms; and biomedical data refers to
data derived from any one or more biomedical technology
platforms.

As used herein, the term “contig” refers to a nucleotide
(e.g., DNA) whose sequence is derived by clustering and
assembling a collection of smaller nucleotide (e.g., DNA)
sequences that share certain level of sequence homology.
Typically, one manages to obtain a full-length DNA sequence
by building longer and longer contigs from known sequences
of smaller DNA (or RNA) fragments (such as expressed
sequence tags, ESTs) by performing clustering and assembly.
Various clustering programs are known; some of which are
publicly available. See, e.g., “CluserW” and “Fragment
Assembler”, each of which is available on the World Wide
Web.

Asused herein, the term “single molecule assembly” refers
to larger single molecule fragments assembled from smaller
fragments. In the context of nucleic acid single molecules,
“assembly” and “contig” are used interchangeably in this
disclosure.

The term “array” of “microarray” refers to nucleotide or
protein arrays; “array,” “slide,” and “chip” are interchange-
able where used in this disclosure. Various kinds of nucleotide
arrays are made in research and manufacturing facilities
worldwide, some of which are available commercially. (e.g.,
GENECHIP microarray system by Affymetrix, Inc., LIFE-
ARRAY microarray system by Incyte Genomics). Protein
chips are also widely used. See Zhu etal., Science 293 (5537):
2101-05, 2001.

The terms “microfluidic channel,” “microchannel” and
“channel” may be used interchangeably in various embodi-
ments of the disclosure, and refer to the individual lanes on a
microscope slide on which single molecules and single mol-
ecule fragments have been deposited, elongated and fixed for
optical imaging and mapping. A microchannel may contain
several single molecules and fragments. Furthermore, single
molecules may be fixed in areas that are not in the shape of
channels but, instead, as spots, blots, wells, or any other shape
that will allow optical imaging of its contents, and may none-
theless be referred to as channels and the like in this disclo-
sure.

The terms “image” and “frame” may be used interchange-
ably and refer, with each exposure, to the entire area captured
by the camera.

The term “overlap” or “overlapping” refers to 1) the pro-
cess of determining the offset or relative distance between
images adjacent to one another, or 2) a region common to
adjacently-positioned images within a channel. The term
“offset” refers to the relative shift in position, in terms of the
number of pixels in X/Y coordinates, that the first image must
be moved to align it to overlap with a second image, i.e., (0,0)
in the first image is located at location (X,Y) in the second
image.

The term “sub-image” is the area within each image of a
pair of adjacent images that roughly overlap as determined
with an “initial offset estimate” based on LUDL movement.
The initial offset estimate is then corrected to achieve a more

US 8,271,251 B2

11

perfect alignment between overlapping images when sub-
images from adjacent images are compared by a Fast Fourier
Transformation (FFT) process. The term “sub-offset” refers
to the number of pixels that the first sub-image must be moved
to align it for overlapping with the second sub-image, cor-
recting the initial offset estimate.

The term “pad-area” refers to an artificial extention of a
sub-image filled with interpolated data values. The term “fill
area” relates to the artificial extension of a sub-image filled
with zeroes. The typical size of the fill-area increases the
dimensions of the sub-image on all four of its sides. The FFT
performed in this system requires the preparation of both
pad-areas and fill-areas.

The phrase “adjacent overlapping optical images” includes
pairs of images collected in series within a column or row that
overlap one another, as well as images in series that are
flanked on either or both sides and overlap with images in the
adjacent columns or rows.

The term “frequency whitening” refers to normalization of
FFT coefficients to unit magnitude (length).

The terms “overwriting” and “merging” may be used inter-
changeably in the context of the component of the system
described below in which the bleached data from an overlap-
ping region of the microscope slide exposed to a light source
more than once is overwritten with stronger, i.e., more
intense, data from an identical region of overlap from the an
adjacent imaging area on the microscope slide.

The terms “automated” and “automatic” may be used inter-
changeably in various embodiments of the present disclosure,
and refer to 1) the components of the computer system of this
disclosure—either collectively or individually—that
describe a system for image collection requiring, once initi-
ated, no human intervention, or 2) processing steps disclosed
herein that require, once initiated, no human intervention for
completion.

The terms “tile” and “image” in certain portions (merging
step) of the autocollection process may be used interchange-
ably and refer to the 1316 by 1032-pixel image of the microf-
luidic channel produced by the CCD camera. However,
within the automated focusing component “tiling step” por-
tion of the autocollection process, a tile is a 10 by 10 group of
pixels within an image for the purpose of calculating a focus
(energy change) value for that region.

The terms “flattening” or “flat fielding” may be used inter-
changeably and refer generally to the processes of removing
the effect of the background illumination and controlling for
the brightness of the image.

The “tiling step” in the automated focusing process
described in this disclosure refers to the application of a
Laplacian filter to small regions within each image to define
areas of focus based on contrast in image intensity.

The term “identical” in “identical region of overlap on an
adjacent, sequential image exposed to a light source only
once” means the area of overlap between two adjacent images
that is defined by collection of the second of the two images.

The term “primarily” as used when referring to illumina-
tion generated from images of single molecules and their
assemblies relates specifically to the illumination from the
genomic molecule itself as opposed to light reflected from the
camera lens or surface such as a glass microscope slide, the
intensity signal present in an image with no illumination
source, or the uneven illumination due to the intensity shift of
the illumination source from the center to the edge of the
image.

The term “dark noise” refers to the intensity signal present
in an image with no illumination source. The term “multipli-
cative noise” refers to the uneven illumination due to the

20

25

30

35

40

45

50

55

60

65

12

intensity shift of the illumination source from the center to the
edge of the image; the terms “bright” image and “sum” image
may be used interchangeably and represent multiplicative
noise. The term “additive noise” refers to light reflected from
the glass surface and glass slide.

A user interface, or a view, as used herein and interchange-
ably, refers to any kind of computer application or program
that enables interactions with a user. A user interface or
viewer may be a graphical user interface (GUI), such as a
browser. Examples of such a browser include MICROSOFT
INTERNET EXPLORER internet browser and NETSCAPE
NAVIGATOR internet browser. A user interface also may be
a simple command line interface in alternative embodiments.
A user interface of the invention(s) of this disclosure may also
include pug-in tools that extend the existing applications and
support interaction with standard desktop applications. A
user interface in certain embodiments of the invention(s) of
this disclosure may be designed to best support users’ brows-
ing activities according to ergonomic principles.

“Ergonomically optimized,” as used herein, refers to opti-
mization on the design and implementation of the assembly
system based on ergonomics principles. The International
Ergonomics Association defines ergonomics as both the sci-
entific discipline concerned with the understanding of inter-
actions among humans and other elements of a system, as
well as the profession that applies theory, principles, data and
methods to design in order to optimize human well-being and
overall system performance. Ergonomists contribute to the
design and evaluation of tasks, jobs, products, environments
and systems to make them compatible with a user’s needs,
abilities and limitations. Ergonomically optimized systems
according to this disclosure provide reduced error rate and
improved efficiency and quality in user interaction.
Automated Image Acquisition System

Overview. Optical mapping data collections for single
molecules may easily exceed 1000 images per microscope
slide; it has therefore become impractical for a technician to
oversee the capture of each image. Described herein are
embodiments of an automated single molecule image acqui-
sition and processing computer system and method that
allows a user to select control points and pass depth defining
one or more areas to be imaged, and to initiate the automated
image collection process without further intervention if
desired. During automated image collection within a micro-
channel according to one embodiment of the present disclo-
sure, a straight-line path is traversed between the selected
control points (e.g., beginning and ending) for each channel,
automatically focusing at each location and acquiring the
image. Currently, more than 100 images per microchannel are
collected and as much as 20 percent of each image frame is
overlapped with the previous and subsequent (or adjacent)
images within the defined imaging area, although the number
of' images per microchannel can be varied from 1-20, 21-50,
51-75,76-100, 101-125, 126-150, 151-200, and greater than
200. Likewise, the overlap may vary from 1-5 percent, 6-10
percent, 11-15 percent, 16-20 percent, 21-25 percent, 26-30
percent, 31-40 percent, or greater than 40 percent. The auto-
mated focusing component of this system permits and facili-
tates automated optical mapping of single molecules.

Following collection, the images are routed to processing
cluster where analysis is initiated. Image processing of the
system disclosed below is comprised of substantial or com-
plete removal of background intensity and normalization of
the remaining intensity (“flattening”) of the images, determi-
nation of precise alignment between adjacent, overlapping
images, the overwriting of data in overly exposed regions of
overlap, and the virtual merging of overwritten images (“mo-

US 8,271,251 B2

13

saicing”) to produce a superimage for visualization. Indi-
vidual raw and overwritten images resulting from the collec-
tion and processing system disclosed are maintained as
separate files. The overwritten image files are routed for fur-
ther processing in external systems not the subject of this
disclosure.

Suitable equipment. A LUDL MACS5000 may be used to
control the movement of the ZEISS inverted fluorescence
microscope state as well as the shutter (i.e., XY translation
(movement of the stage) the Z axis (focus)). Other stage
controllers, such as the LUDL MAC 2000, may be used.
Advantageously, the controller should be rapid and accurate,
i.e., must translate for location to location both quickly and
with a minimum of error (5000 nm X and Y, £100 in focus).
Rapid, high-resolution (with CCD chip) and highly-sensitive
cameras that allow the imaging of dim objects are advanta-
geously used; currently available examples include the used;
currently available examples include the PENTAMAX CCD
camera, the HAMAMATSU CCD camera and the ROPER
COOLSNAP HQ camera; the latter two are capable of pro-
ducing at least two images per second. The camera advanta-
geously has low noise, i.e., it substantially represents shape
and size of the molecule, as well as intensity of the image.
Most microscopes currently useful in the automated image
acquisition system use a HBO 100 Watt mercury lamp as a
light source, but a laser light source is preferred since it
provides more consistent illumination, avoiding the conse-
quences of dimming bulbs. A Spectra-Physics water-colled
laser may be used at one image collection station but diode
lasers currently are believed to provide advantageous results.
The type of laser chosen will depend upon wavelength
required for illumination. A substance such as OLYMPUS
immersion oil is advantageously used to reduce the refractive
index to view the image. A person computer equipped with an
operating system, e.g., MICROSOFT WINDOWS NT oper-
ating system, may be connected to both the LUDL controller
(computer interface: coordinates mechanical motions on the
microscope) and the CCD camera, and advantageously may
coordinate both systems, transferring collected images to the
processing cluster.

Embodiments of User Input and Automated Image Collec-
tion.

To prepare for automated image collection, the user advan-
tageously should first identify control points defining, for
example, the upper and lower (outer) boundaries of an area on
a surface (e.g., microscope slide) to be imaged. Collection
may be customized to an area of any shape, although in an
advantageous embodiment, the area is rectangular-shaped in
the form of a microfluidic channel or “microchannel” (“chan-
nel”) in which single molecules are elongated and fixed, e.g.,
within a molten or nonpolymerized gel composition on the
surface (e.g. slide).

If the single molecules are fixed on the surface in the form
of channels, as in one advantageous embodiment of the
present disclosure, the lanes are approximately 100 um in
width. Acceptable lanes can be fewer than 50 um, from about
50 to 75 pm, from about 75 to 100 um, from about 100 to
about 125 pum, from about 125 to about 150 um, and greater
than about 150 pm. Numbers of channels per slide may vary
from 1-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80,
80-90, 90-100, and greater than 100. It is appreciated that
some surfaces other than glass slides may facilitate higher
numbers of channels. At this time there are on average ten
channels per slide; it is currently possible to place between
about 48 and about 100 channels per slide although higher
numbers of channels require greater care. Advantageously,
there should be some empty buffer zone between channels for

20

25

30

35

40

45

50

55

60

65

14

data collection because bleed between channels may disturb
flow of the DNA and makes the surface (e.g., slide) unusable.
The user should identify the control points—here, for
example, the beginning and ending points on each of the
channels—by approximating the location of the center point
at both the top and the bottom of each channel or other area to
be imaged. These points define the upper and lower bound-
aries of a channel or other area within which images are
captured. In addition, depending on the level of magnifica-
tion, more than one column or row of images may be required
to image the entire contents of the channel or area. Therefore,
the user advantageously should also estimate and specify a
pass depth indicating the number of columns or rows of
images to be captured. The system will then center the num-
ber of columns or rows chosen along the line defined by the
two control points, overlapping images in adjacent columns
or rows as necessary. The pass depth thus defines the bound-
aries on opposite sides of the channel or area. These sequen-
tial images in a single column whose path is defined along a
channel or in several adjacent columns or rows within a
channel or collection area of an alternative shape or magni-
fication, comprise a “group” of images.

The user must supply certain information in the user inter-
face (FIG. 1), e.g., for data tracking purposes: identification
of the user, single molecule sample, sizing standard and
restriction enzyme. Most importantly, however, the user
should specify exposure time of the slide to the light source to
provide capture of usable image according to embodiments of
this disclosure. Specifically, the user should select an expo-
sure time that optimizes the number of gray levels in an
acquired image. These values can be optimized with routine
experimentation. Using the PENTAMAX camera the expo-
sure time is typically 5000ms; using COOLSNAP HQ or
ORCA camera with the laser system, the exposure time is
typically 150ms. The CCD chip for each of these cameras
returns the captured image data in a range between 0 (dark)
and 4095 (fully saturated) gray levels. Therefore, the optimal
mean background level is approximately 100 gray levels. The
optimal difference between mean background and mean data
level is 1000 gray levels or more, but the maximum gray level
of any data point must be less than saturation (4095).

Once the control points and pass depth are chosen for each
channel or area, and the sample and user information and
desired exposure time are added to the queue in the user
interface, the user can initiate automated image collection and
processing as disclosed herein with no additional user input
required. Images are collected first within the first of one or
more defined areas with as much as a 20 percent overlap
between frames (images). In an advantageous embodiment of
the present disclosure, collection of images within a micro-
channel may take place in a single column or, in alternative
embodiments and depending on the level of magnification
chosen, collection may take place in two or more adjacent,
overlapping columns or rows of images. As an example,
particularly when a greater magnification is used for collec-
tion along a channel and thus more than one image is required
to capture the contents of the width of the channel, images are
collected first along the length of one side of the channel,
continuing from the level of the second control point, gener-
ally at the end of the channel, along the length of the opposite
side of the channel: overlapping frames in the adjacent col-
umn as they are captured, to the level of the first control point,
generally the top of the channel. In this way two (or more if
necessary) adjacent columns or rows of sequential images are
collected for each channel. A similar approach may be fol-
lowed to image a larger or different shaped area according to
various embodiments of this disclosure. Once one channel or

US 8,271,251 B2

15

area is imaged completely, collection continues on with the
next area in the user-specified order. However, the user may,
after collection is complete, examine collection problems or
ensure that there were no problems with image collection
using The automated focus diagnostic tool, a software pro-
gram according to one embodiment of the present disclosure.
The automated focus diagnostic tool, although not itself
required for automated image collection and processing, may
be used to verify that the automated focus component has
functioned properly during prior image collection.

Following preparation of the user list of control points, the
first channel or area to be imaged specified on the list may be
“initialized.” Initialization of the channel or other area
involves generation of both a log file containing information
about the collection run itself, and an information file con-
taining identification information for the sample and user. It
also involves preparation of space on the storage device, (e.g.
hard drive) in which to store the images and further, defines
within the channel or alternative size area to be imaged the
coordinates of each image along the collection route.

To determine these coordinates for a channel according to
one embodiment, and given the pass depth, the width of the
channel, the (three-dimensional coordinates of the) control
points and the magnification setting, the program can make
multiple determinations, e.g., the upper left hand corner of the
first image to be made as well as the lower left and corner of
the last image in the first column, centering the columns or
rows within the area to be imaged between the control points.
Along the straight-line path that connects these two points
runs the left border of all sequential images in that column.
The coordinates of each of these planned images, allowing for
at most a 20 percent overlap between successive images, is
communicated via the LUDL controller to the stepper motor
which controls movement of the stage and, thus, advance-
ment of image collection along a channel. After one image
has been collected or captured the stepper motor moves the
stage the appropriate distance for focusing and collection of
the next image, and so on until the last image in the channel is
collected. Then collection either continues with one or more
adjacent columns or rows of images within the same area until
the entire group of images is captured for that area, or begins
for the next channel or area after its initialization. A surface
such as a microscope slide with ten channels, for example,
will require approximately five hours to image given a mer-
cury lamp used as a light source. In contrast, using a system
with a laser light source, ten channels can be completed at this
time in approximately 40 minutes. Once images have been
collected, their files are placed in a folder on another process-
ing computer.

Automated Focus System Overview. The automated image
collection system can be optimized to take advantage of the
fact that single molecule data lie in a distinct focal plane. One
of'the primary aims of the embodiments disclosed herein is to
maintain focus throughout image collection, despite the limi-
tation that even illumination in fluorescence microscopy is
nearly impossible. The standard method of focusing by image
intensity requires an assumption that an image is in focus if it
is the brightest of a continuous set (i.e., Z-stack,) comprising
sequential images taken throughout the range of focal view-
points, beginning with out-of-focus to in-focus, transitioning
again to out-of-focus. This method, however, allows the algo-
rithm to focus on bright regions which may in fact be out of
the primary focal plane. In addition, focus resolution is not
especially sharp. An automated focus system that may be
used with the present image collection system improves upon
the standard method by using Laplacian filtered image values,
solving the latter problem. To address the initial problem, also

20

25

30

35

40

45

50

55

60

65

16

in embodiments of the present disclosure, images may be
divided and analyzed in small regions referred to as “tiles™ as
a way of adjusting for bright regions out of the primary focal
plane (i.e., the “tiling step”). According to an advantageous
embodiment of the present disclosure given the type of cam-
eras currently in use, tiles are composed of 10 by 10 pixel
regions within an image. The main factor influencing tile size
is the image area of the camera after binning. Other embodi-
ments may reflect tiles of varying size; in practice, again
given current equipment capabilities, an acceptable range of
tile size is between 8 by 8 and 16 by 16-pixels. Generally, a
uniform tile size is used throughout the image, and within and
between full collections, although this is a fully adjustable
feature. Ideally, the image should be segmented into enough
tiles such that outliers disturb the fewest number of tiles. A tile
size that results in more than 100 tiles per image allows an
adequate number of them, for example, 50, to remain for
statistical analysis given the fact that many may contain out-
lier data and therefore will not be usable.

The point-of-focus value—the first approximation of

focus—of each tile is determined, with larger values repre-
senting tiles in better focus. A histogram is generated with
these values. The peak value (i.e., the most frequently
observed point-of-focus value), in addition to the four next
most frequently observed in-focus values (two values repre-
senting image positions on either side of the peak value in the
histogram) are used to compute a final focus solution, the
calculated focus value. The remaining, outlying values are
removed from the analysis, considered to be intensity sources
out of focus. Although the automated focus component is
fully-automated, the user may verify, after the fact, that in-
focus image collection has proceeded smoothly at each step
using An automated focus diagnostic tool, as described
below. Furthermore, this software provides a useful format
with which to describe in more detail the automated focus
component of the system. Example 1 below demonstrates an
automated focus component routine.
Automated focus diagnostic tool. The automated focus com-
ponent can be a fully-automated element of the automated
collection process. The automated focus diagnostic tool may
be used to aid examination of the automated focus process,
although this tool is not itself required for the automated focus
component to function according to this disclosure. As dis-
cussed above, the automated focus component automatically
selects the best focal plane for small regions or tiles within the
image, then compiles the best image from the tiles that are in
sharpest focus. This is based on the application of a Laplacian
filter to the intensity data to find the “edge energy” or “focus
value” for each tile in each of the focal planes or views. This
approach highlights regions in the image of a rapid intensity
change between pixels. The greater this calculated energy
value, the sharper focus of the image for that tile and, thus, for
the image.

In the automated focus diagnostic tool interface (FIG. 2A),
one of the windows shows, as specified by the user and for
each focal plane view, the number of LUDL steps between
these views. This value is set to 20 LUDL steps in embodi-
ments of this disclosure although this is a fully adjustable
feature. Other values as low as one or as many as about 100
may be used with intermediate values of at least 5, at least 10,
atleast 20, at least 30, at least 40, at least 50, at least 60, at least
70, at least 80 and at least 90. Positioned next to each number
of LUDL steps is the view button that allows the image for
that focal plane to be viewed. Using the automated focus
diagnostic tool, the user can manually initiate the algorithm
that applies the Laplacian filter at each of the focal planes in
an image. Once the filter is applied, the number of LUDL

US 8,271,251 B2

17

steps at each view is changed in the user interface to the
calculated focus value for the image at that view (FIG. 2B).
The largest of these energy values in the list corresponds to
the view (or within several LUDL steps of'it) with the sharpest
overall focus for the image. When the view; button is selected
next to this value, the image is shown with regions (tiles) of
color—for example, green tiles may indicate an increase in
contrast; red tiles may indicate a decrease in contrast. Each
tile can generate a corresponding curve so that a “family” of
curves is created. For most of the tiles the curve will be
bell-shaped (i.e., a normal distribution), but some may show
an aberrant shape which may indicate a feature in the image
that is positioned in other than the primary focal plane. A
histogram is generated, predicting the view (focus locations
for the image) at or near which the actual focus location lies
for that image. Any views greater than or less than two units
from this view are eliminated and are represented as black-
colored tiles in the image in the automated focus diagnostic
tool window. Finally, since the in-focus image may actually
lie at one of the 20 LUDL steps between each of the views
shown in the automated focus diagnostic tool interface, a
smoothing spline fit is applied and the interpolated focus
location is identified. Once this process has been completed,
the image is captured.

Image Processing Overview

The image processing function of the automated image
collection and processing system of this disclosure may con-
sist of one or more of four processes: flattening, overlapping,
overwriting and merging. Flattening and overlapping may
both be performed on the raw optical images and are order-
independent with respect to each other.

Flattening refers to removing as much background noise as
possible and/or normalizing for the level of illumination in
the raw image. The latter part of this step is advantageous due
to the effect of uneven illumination from the (non-laser) lamp
and objective lens. This has important implications for deter-
mining molecule length since length is determined from the
molecule’s integrated fluorescence intensity. Without image
flattening, a bright object at the center of the image may be
interpreted as having high fluorescence intensity values, lead-
ing to an overestimation in molecule size. Likewise, the size
of'an object at the outer edge of an image—perhaps a standard
used for sizing of single molecules and fragments—may be
underestimated without image flattening because it would
appear dim by virtue of its position at this less-illuminated
area of the image.

Overlapping relates to determination of offset of the align-
ment between adjacent, overlapping images. Initial offset
estimates for alignment are made based on LUDL movement;
sub-offsets resulting from a Cross Correlation Function
(CCF) performed through a Fast Fourier Transformation
(FFT) refine the initial estimates, more precisely aligning
these overlapping regions.

Overwriting and merging use the results of the overlapping
and flattening processes to overwrite pixels in any portions of
images exposed to a light source more than once (and thus
bleached), with the stronger unbleached image data from
identical regions of overlap of immediately adjacent images
exposed to a light source only once. Overwriting and merging
also virtually blend the flattened images into a single super-
image or montage for visualization in this system. A super-
image is a virtual (not physical) image that appears to reflect
the entire, continuous contents of the microchannel or other
area imaged. Individual overwritten image files are main-
tained in the system for further processing in an external
system not disclosed herein.

20

25

30

35

40

45

50

55

60

65

18

Embodiments of Image Processing

Flattening. The following description illustrates an image
flattening or flat fielding process in accordance with the
embodiments of this disclosure. The image flattening process
is used to remove optical artifacts in the collected raw image
set; it may be performed before or after the overlapping
process. The raw images contain four main components:
dark, additive and multiplicative noise, and the signal gener-
ated from the genomic data itself. The flattening process
consists of the following steps according to embodiments of
the present disclosure. First, the dark noise—the intensity
present in an image with no illumination source—is removed
or substantially lessened from the total image intensity. The
darknoise is determined from an image taken at the beginning
of every collection with the camera shutter closed. Next, an
interpolated image of the background is built. To correctly
model this background illumination pattern which includes
additive noise—light reflected from the glass surface and
glass slide—a substantial or large number (for example,
greater than the 90th percentile) of the bright pixels from the
image are removed. However, since a number of the remain-
ing bright pixels in the image represent not background but
single molecule fluorescence, an iterative process may be
executed to interpolate the low frequency components and to
remove these high frequency components. Specifically, a
smoothing spline function is applied to the data and any pixels
with intensity values above two standard deviations from the
mean following the fit are removed. The remaining data are
re-fit and, once again, values above two standard deviations
are removed. This process is continued until the standard
deviation reaches its nadir. The remaining intensity shape is
an estimation of the raw image background.

It has been determined empirically that between four and
16 images can be used to mitigate the error associated with the
use of a lamp versus a laser as the light source. Thus, for each
series of 16 raw images collected, 16 interpolated background
images are generated as described above. From this series of
background images a single sum or bright image is produced
that satisfactorily represents the background illumination in
the corresponding set of raw images—including the multipli-
cative noise—uneven illumination dueto the intensity shift of
the illumination source from the center to the edge of the
image. Thus, the sum image represents the shape of the non-
laser illumination source. The sum image is in fact a median
composite image of the interpolated background images
(with dark noise removed), generated by using the median of
the intensity values at each pixel location from the 16 images.
No sum image is produced when using a laser light source
since a laser removes the error associated with differences in
illumination; instead, a single background image is used in
place of the sum image. Regardless of light source, the inter-
polated background image is subtracted from its raw data
image; the result is then divided by the sum image intensity
which has been normalized to a mean of 1.0. The background
and sum images are applied to complete the calculation:

= £
LoiamTovjecrtLaaastiverrror) Lsum (Objec=Corrected

LorarTosjecd) Lswn)tLsagitiveError) Lsum)
Subtract off the background image illumination, where this is
represented as the product of 1 ;4,0 errorl

Sum

Lorar (Wsadiciverrror) Lsuwm)) = Object) Lsuom)

Divide by the normalized bright image (with mean=1.0) to
recover just the “correct” intensity term:

Lorar (UsagiciveError) Lsum))/ (ISum):(IObject)

US 8,271,251 B2

19

The product of image flattening is a series of flattened
images, stored in individual files, corresponding to the origi-
nal raw images. Example 2 describes the flattening compo-
nent of the system according to one embodiment of this
disclosure.

Determination of sub-offsets. The stepper motor drive

LUDL controls movement of the microscope stage and this,
along with the magnification of the objective lens, provides a
rough alignment estimate (initial offset estimate) between
overlapping images along a microchannel or within an area of
alternative size or shape. The initial offset estimate may be in
error, e.g., by 50 or more pixels, but is sufficient to estimate
the overlapping areas of adjacent images. Furthermore, even
if there is no slippage of the microscope slide over time, the
slide on the stage and the detector in the camera themselves
are not perfectly aligned. Either before or after flattening, an
overlap step corrects for the mechanical errors (slipping of
gears between motor and microscope stage) during image
collection. As with the flattening process, the overlapping
process is performed using the original raw images. The
product of the overlapping process is a pair of sub-offsets,
values more precisely indicating the position of one image’s
area of overlap relative to the other’s; the sub-offsets thus
correct the initial offset estimate which is based on LUDL
movement, possible skew between the axes of stage and cam-
era detector, and scaling—the difference in size between one
step of motor movement and the number of pixels the image
moves. Thus, each of the sub-offsets comprises the initial
displacement of the stage movement plus the mechanical
error associated with its slipping.
Correction for Skew of Camera and Stage Axes and Mechani-
cal Error. Overlapping regions of the raw images may be
aligned initially with the assumption that there is no geometry
distortion present—that is, they differ by only linear shifts of
the microscope stage which require only linear adjustments
for precise alignment. Although the E/L. (Element/Line) dis-
tances that the image moves across the camera detector are
analogous to the X and Y axes distances moved by the micro-
scope stage, a correction must be made to account for the
possible skew between the axes of stage and detector, as well
as scaling. These factors vary between—not within—collec-
tions due to physical movement of the camera, such as after
cleaning, and selection of magnifying power, for example.
Since the scale and coordinates of the stage are known, E and
L are calculated as follows:

E=element=scale*(X*cos 6+Y*sin 0)

L=line=scale*(—X*sin 0+ Y*cos 0),

where the scale is given in pixels/step and its initial value is
determined by the magnification of the microscope (e.g.,
63X=1.89, or 100X=3); the angle is initially considered to be
180 degrees. Scale and angle are recalculated for each chan-
nel or other area when determining the conversion from
LUDL movement to estimate the degree of image overlap.
For example, if the microscope stage moved a distance X/Y,
one can compute a corresponding distance E/L, calculate
overlap, adjust E/L based on the overlap calculation results
and convert the results into a revised scale and angle for that
channel. Several of these calculations are performed and con-
sistent values in both scale and angle denote good overlaps.
The number of calculations required for the revised scale and
angle values, used subsequently in the overwriting and merg-
ing process, are based on the following: These values are
saved to a list that is sorted by angle; the standard deviation of
the sale values from the middle one-third of entries is com-
pared to a predetermined threshold value (empirically deter-

20

25

30

35

40

45

50

55

60

65

20

mined, 0.002 multiplied by the total number of entries and the
average scale value). When the standard deviation falls below
this threshold, the final revised scale and angle are calculated
as:

scale=VSUMETE+L "L)SUMX X+ 7))

O=arc tangent(SUM(E*Y-L*X)/SUM(E*X+L *Y)),

where SUM refers to the sum of the results of this calculation
from each of the entries in the middle one-third of the list.

The process of calculating the revised scale and angle

values relies on the collection of at least some images that
contain well-defined features such that they can be over-
lapped with only a rough estimate of scale and angle. The
more precisely scale and angle are estimated, the better the
correlation between overlapping images and, further, the
more likely the system will be able to process poor-quality
images such as those somewhat out of focus or with few
unique features.
Determining Offsets. The process of determining relative
offsets from the initial estimate of alignment between adja-
cent images comprises, in general, a comparison of shapes—
as opposed to intensity—of data within each region of over-
lap. This may be achieved with a Cross-Correlation Function
(CCF) performed through a Fast Fourier Transformation
(FFT). A Laplacian filter is first applied to the data. The FFT
for each of the overlapping areas in adjacent images is com-
puted and the transform (frequency) coefficients are multi-
plied in a point-wise manner, frequency whitening is per-
formed (i.e., normalization of transform coefficients to unit
magnitude (length)); finally, an inverse FFT of this product is
performed to yield the CCF in image space. The CCF is thus
based only on phase information and is less sensitive to
changes in image intensity. If only intensity data were used,
the correlation could be dominated by a few very bright spots
and not represent the best alignment of other features in the
images. The transformation thus ensures that all features are
used for correlation while minimizing the effects of extreme
intensity variation for purposes of precisely positioning two
images with respect to one another.

Because of the large number of images being processed,
calculating the CCF through a FFT is rapid and less laborious
than calculating the normalized CCF in image space. The
latter calculation, dividing the CCF by the local root mean
square (RMS) energy at each point, is conventionally used to
grade the CCF result. Performing the calculation in frequency
space instead, according to embodiments of the present dis-
closure, allows other filters such as frequency (spectral) whit-
ening to be applied. While it has been used successfully, a
disadvantage to this approach alone is that all transform com-
ponents are weighted equally, rather than being weighted
based on their significance. The best prefiltering has been
found to be approximately Laplacian rather than pure whit-
ening, thus a Laplacian filter is applied before the inverse FFT
is performed to generate the CCF. Several enhancements to
this basic method are used to increase robustness and accu-
racy according to various embodiments of the disclosure.
The FFT and CCF. To prepare the data for the FFT and CCF,
image data in the overlapping regions (no more than 20 per-
cent) of two images are copied into separate work areas, thus
creating from each full image a separate sub-image of its
overlapping region.

The average intensity within each sub-image itself is cal-
culated and is used to normalize the pixel intensity values in
each of the respective sub-images. Pixel intensity values
greater than the average intensity for the sub-image are nor-
malized to an average value of zero by taking the natural

US 8,271,251 B2

21

logarithm of the ratio of the pixel intensity to average inten-
sity, while pixel intensity values smaller than the average
intensity have the average intensity subtracted from and then
divided into them:
If Intensity Value>Ave [i.e., brighter than average|:
In(Value/Ave), and

if Intensity Value<Ave [i.e., dimmer than average|: (Value/
Ave)-1.0

where Value is the pixel intensity value and Ave is the
average intensity of the sub-image in which that pixel is
located. The result is a transformation with continuous
first derivative which minimizes the effects of very
bright features while preserving all features.

To overcome the periodic nature of the FFT, a standard
procedure employed to prepare the data for this procedure is
to add fill-areas containing zeros around the sub-images
being compared. An algorithm has been designed to improve
upon this standard method by preventing the creation of an
artifact pattern which could lead to a falsely high correlation
and, thus, imprecisely determine alignment position. In par-
ticular, the algorithm addresses the substitution of pad-areas
containing artificial data for some of the fill-areas containing
zeros in the standard procedure.

For each of the sub-images, a pad-area—a border, e.g., of
up to about 100 pixels in width—is added to the sub-image
along the two edges that, in the full image, would appear as a
boundary between overlapping and non-overlapping data.
(For purposes of the FF'T which assumes the data are periodic,
however, it is as if this boarder extends from all four sides of
the sub-image, and the border and sub-image data repeat in all
directions to infinity.) FIGS. 3A and 3B depict two sub-
images (S1 and S2, respectively). As shown in FIG. 3A, the
pad-area along the lower edge of S1 (a) is filled vertically with
smoothly-interpolated values that range between those along
top and bottom in S1. The adjacent fill-area in S1, (b), is filled
with zeros; this area extends the length of the sub-image,
displacing any interpolated values in (a). The same treatment
is applied in the second sub-image (S2, FIG. 3B), with the
exception that the locations of the zero-fill-area (b) and the
pad-area filled horizontally with interpolated-values (a) are
switched. Filling one area vertically and the other horizon-
tally minimizes any contribution of these border areas to the
size of the correlation peak while simultaneously removing
most of the problems associated with the discontinuities in
energy at the edges of the overlapping regions.

Each of the fill- or pad-areas represents a border of a width
that may vary depending upon size of sub-image and
mechanical error of the system. For speed of processing, the
sub-image and border together should be as small as possible
to minimize the number of calculations performed yet
account for existing mechanical error. For example, given a
full image width of 1316 pixels, the border may be 100 pixels
wide along the adjacent sides of overlapping regions of the
sub-image; this accommodates an error of plus or minus 50
pixels which represents typical mechanical error in the sys-
tem. This error represents the difference between initial offset
estimate and sub-offset calculation due to, for example, slight
movement of a microscope slide. Ideally, the border should be
no greater than twice the mechanical error. In no case should
the border width be larger than that of the sub-image. How-
ever, the border width may be greater than 100 pixels if the
combined sub-image and border width does not sum to a
maximum of 20 percent of the full image. The 20 percent
value was chosen because the present system disclosed
requires at least 15% of the pixels within the iris area to
overlap, in which case there is coincident data for merging the
images. The requirement for this degree of overlap virtually

20

25

30

35

40

45

50

55

60

65

22

guarantees that the area contains some unique features, even
on a “clean” slide, to facilitate precise alignment. In a system
without an iris, the amount of overlap would need to be
roughly twice the mechanical error in the system. For
example, if the present system were without an iris a 10
percent overlap (about 100+50 pixels) would suffice, but if
mechanical error could be reduced further (plus or minus 25
pixels), a 5 percent overlap would also be sufficient. A lower
limit given the current technology is roughly 10 pixels (i.e.,
10 rows of full image width or 10 columns of full image
height) of true overlap provided the overlapping region con-
tains unique features.

Data in each sub-image work space including the pad- and
fill-areas are then transformed from intensity- to frequency
space using a subroutine library. The library, which is avail-
able on the World Wide Web, provides a very fast implemen-
tation of the procedure, for example. The resulting transform
coefficients are multiplied point-wise, frequency “whitening”
is performed followed by application of a Laplacian filter, and
an inverse transformation of the product from frequency to
intensity space yields the CCF solution.

Search for Correlation Peak. Following the inverse FFT, the
resultant CCF image is searched to locate the correlation
peak. Peak values (intensities ranging from the true peak
value to one half of this value) and initial offset estimates are
collected and then fit with a two-dimensional parabola, a
model chosen for both its speed and its close approximation to
the shape of a Gaussian peak. Application of the Laplacian
filter before the inverse FFT “spreads out” the peak to a
Gaussian shape allowing its location to be precisely deter-
mined to sub-pixel resolution. A pair of sub-offsets is pro-
duced, indicative of relative distance in pixels from the (0, 0)
position, defining the correlation peak position of best align-
ment for the images. For example, if the initial LUDL esti-
mate of the offset is (980, 850) and the true offset is (987,
844), the location of this peak is represented by the pair of
sub-offsets (-7, 6) vis-a-vis the initial offset estimate, repre-
sented by the (0, 0) position. The bounds placed on the search
for the correlation peak are such that at least half of the real
image data in the two sub-images would still overlap if the
initial offset estimate varied by the displacement of the peak
within the CCF; this creates a diamond-shaped region to be
searched. FIG. 3C shows a screenshot of this region (d), the
open area where the cross hairs (c) would intersect at the
center representing two images requiring no change in align-
ment. The bright spot to the lower-right of the intersection
represents the Gaussian-shaped correlation peak. The direc-
tion and magnitude of the difference between the two repre-
sents the error in the initial offset estimate, indicating the shift
necessary to bring the two images into more precise align-
ment. Example 3 provides the code for the overlap program
used to align the subimages shown in FIGS. 3A and 3B; the
program reads in the “raw” (full) images (not shown) and
displays the results as indicated in the introduction to code.
The encircled single molecule fragments shown in FIGS. 3A
(S1) and 3B (S2) may be used as a sighting reference to
illustrate this shift in alignment. Note that a greater portion of
the upper of the three encircled fragments is shown in S2
(FIG. 3B) compared to the same fragment in S1 (FIG. 3A)—
that greater portion of the fragment being indicative of the
direction and magnitude of the shift of S1 to align with S2.
The shift is, however, relative since S2 could also be shifted to
align with S1. The peak value of the parabolic fit and the
deviation (RMS) of the fit from the peak values are used to
determine if the correlation is valid. A very good correlation
is considered to be greater than or equal to 0.2. A nearly
perfect correlation between unique images would be about

US 8,271,251 B2

23

0.8. Thus, initial offset estimates are determined for each pair
of overlapping images in a group. The CF-corrected (sub-)
offsets are added to the initial offset estimate to yield the
adjusted E/L distances, calculated for each image using only
the revised scale and angle values as discussed below and
used in the overwriting and merging process.

Overwriting and merging. The Overwriting and merging
component of the autocollection system directs overwriting
and virtual merging (mosaicing) of the overlapped areas,
resulting in a set of individual overwritten images replacing
the flattened images. It also allows a single virtual superimage
or montage to be visualized; this superimage reflects the
length of the microchannel or other imaged area on the micro-
scope slide, which extends beyond the microscope field of
vision. Original raw images are retained for re-processing if
necessary.

As each image is collected in succession, an area of the
microchannel or other area on the slide containing single
molecules and fragments is exposed to a light source.
Because there is an overlap up to about 20 percent of the
length of the image along both the upper and lower edges of
most image frames, if not also along one or both sides of the
images, one or more of these overlapped areas is exposed to
the light source more than once, leaving the signal in this area
“bleached”” Thus the intensity values at each pixel within
these areas are reduced due at least two if not more exposures.
For example, in one embodiment of the present disclosure, if
the width of a single microchannel and magnification setting
are such that imaging of the entire channel can be achieved
with a single column of images, the overlap (upper about 20
percent) portion of all but the first image is exposed to the
light source twice, while the lower overlap portion of all
images in the column is exposed only once. Overwriting of
the pixels restores the strength of the signal to the bleached
area(s) of an image by using the sub-offset information to
precisely align the regions of overlap. In this example, for
each pair of sequential images, this results in the signal from
the lower unbleached overlap area of the earlier-collected
image replacing the bleached signal in the upper area of the
subsequently-collected image. This process is repeated for all
images of a group in the overwriting and merging step in
embodiments of the present disclosure. As the bleached pix-
els are overwritten, each overwritten image is saved as an
individual file; subsequently, the images are virtually—but
not physically—merged with one another to display them in
a continuous superimage in this system, reflecting the con-
tents of the microchannel or other imaged area. The overwrit-
ing process ensures that the overlapping regions, for example
within pairs of sequential images, contain equivalent pixel
intensity values.

In addition, to ensure that no abrupt differences between
overlapped and non-overlapped regions are introduced in the

20

40

45

50

24

overwriting process, the data are smoothed in the about
20-pixel-wide transition region surrounding the overlapped
regions. This transition region is measured perpendicularly
inward from the edge of the non-bleached image which is
overwriting the bleached image. Within the transition region,
a linear blending of intensity values is achieved such that the
values at the edge of the overwritten region are identical to
those in the non-overwritten region of the image. This is an
important feature of embodiments of the present disclosure,
since it ensures that subsequent (newer, more sensitive) soft-
ware programs used on these images will not detect a differ-
ence at this interface to be a restriction site (i.e., cut by a
nuclease).

The final set of files resulting from the method and auto-
mated collection and processing system includes the original
raw images as well as individual merged (overwritten)
images, the absolute coordinates of each image, the relative
offset values used in the merging step and any other identi-
fying or relevant information for the sample, user or process-
ing of the sample.

The automated collection and processing system accord-
ing to this disclosure is ergonomically optimized. Established
ergonomic principles may be followed as discussed supra.
This optimization reduces user response time and increases
the overall system efficiency in processing large datasets.

According to this disclosure, the automated collection and
processing system in various embodiments may be imple-
mented in different programming languages, including, e.g.,
C, C++ used in Examples 1-3 and any other comparable
languages. Additional embodiments of this disclosure are
further described by the following examples, which are only
illustrative of the embodiments but do not limit the underlin-
ing invention(s) in this disclosure in any manner.

EXAMPLE 1
The Automated Focus Component Routine

The automated focus component routine is written to work
with an interface to a CCD camera. Since more than one type
of CCD camera may be used, C++ was used to develop an
abstract class to encompass a variety of camera classes. Dur-
ing the setup phase the type of camera is queried from the
object to determine both allowed binning values and optimal
exposure times. The automated focus component object also
assumes the existence of a translatable Z axis (motorized
objective column), in various embodiments with LUDL
access. Some classes that the automated focus component
object uses are not documented here (SmoothingSplines for
example) but are well understood in the art. The specifics of
the LUDL stage controller and varying CCD camera drivers
are also accessed through classes (as mentioned supra) and
provide for a clearer and more flexible solution.

US 8,271,251 B2
25 26

#include <math.h>

#include "AutoFocus.h" .

{/ backlash correction for the focus motor in Motor steps ~10 hdi steps -
#define FOCUS BACKLASH_COMPENSATION 100

// The default image border edge culling - often have bad plxels slong the -

// border — especially when binning.
#define DEFAULT_ FOCUS BORDER SIZE3

Vi ' /)

/ AutoFocus(LuldAccess.CCDAccess TlleSme) Constructor /

// LudlAccess — The ludl object - this allows us to move the focus motor //

/I CCDAccess — Access to the i nmagmg system Allows us to capture small //

" focus images.)
{// Algorithm: The basic approach of the autofocus object is to find the edge//
i energy in each of a series of images.” The image with the most/
" energy in the sequence is the most in focus. The best method //
/ " (to date) is to use a Laplacian convolution filter to detect //
/] these edges. The approach is to apply a convolution kemel //
Il to each pnxel in the image and divide this resultby the . /. -
i . "energy" under the kemel. Square the answer and you have /I
l " your edge energy. I/
i : "
I -1-1-1 111 I :
I -1-8-] 1 11 Result=(Laplacian* l.aplaclan) I/
1/ -] -1-1 111 (Intensity * Intensity) // .
/" Laplacian kemel Intensity Sum Kemel i
I/ /4 '
i A 3*3 kemel works best on a fine focus, wherea 5"5 seems to //
/i - work better when doing a coarse focus — it generatesa //
i smoother curve, thus suppressing background noise which can be //
i significant in the coarse focus case. It will also suppress //
i the edge energy that we are lookmg for, so don't use this //
i kemel in a fine focus. i
i ' i
* /I Second Stage Due to the fact that clumped DNA, floaters, or scratches //
/" in either the slide or cover slip may resultindata ~ //
i outside of the target focal plane, the results of the //

I/ above algprithm are grouped into tiles. Each image in the //

US 8,271,251 B2
27 28

i 2-stack is placed into a grid of N*M tiles. The convolution results //
/! " for each tile in the grid are stored separately. This way,//:

" data that comes into focus in separate foce) planes can’ //

I/ be filtered out. The tiles that contain the "maxima” of //

/] hits are used to generate a focus curve. From this curve, /

/8 the target Tocus location is mtetpolated /

I . M ')

ll - II

AutoFocus: AutoFocus(Ludl’ LudlAccess, CCD CAMERA' CCDAccss)

{
. {/ save our Lud] and CCD handles
this->LudlAccess = LudlAccess;
this->CCDAoccess = CCDAccess;
"/l Tile and Border size
this->BordesSize = DEFAULT_FOCUS_BORDER_SIZE;
this->AppliedBorderSize = DEFAULT FOCUS BORDER_SIZE; -
// lud] backlash compensation - icave as 8 varigble so it can be tweaked
lhls—>FocusBacklashCompensauon =FOCUS_BACKLASH _{ COMPENSATION
// clear the tiles
TileLists = NULL;
TilePeakLocations = NULL;
TilesWide = 0; ’
TilesHigh=0;
SlicesAllocated = 0;

// Mask ‘ K . :
MaskLeft = 0; - :
- MaskRight=0;
MaskTop=0;
MaskBottom=0;
CenterOn = tue;
// movement argets
TargetOffsets = NULL;
// Focus Kesnel
NeighborOffsets = NULL,
NeighbosCount = 0;
// final cusve results
LaplacianResults = NULL;
LaplacianTiledResults = NULL;
DY = NULL;
PeakHistogram= NULL;

// make sure our splines are cleared
- LaplacianSpline = NULL;
LaplacianTiledSpline = NULL;

// set our focus parameters based on the CCD Camera type
iRCCDAccess)

(.
switch{CCDAccess->GetCameraType())

{ .
case CCD_CAMERA_NONE: // No camera found
break;
case CCD CAMERA PENTAMAX /! Pentamax
this->TileSize = 8 -
this->ExposureTime = 0. 100;
this->Binning=6; -
break;
case CCD ¢ CAM-ERA PVCAM:
case CCD_CAMERA_ORCA:
lhxs»Tn,lcSme =§;
this->ExposureTime = 0.020;
this->Binning = 4;
break;’
}
}

./ 'set up some default lud] speeds
nf(LudlAccess && LudlAmoVahd())

US 8,271,251 B2
29 30

/I using smaller numbers actually does NOT effect times as much as you would think
/ as the ludl motors never really reach "high.speed” except at the beginning and end
// of the routine (Jarge traversal distances there)
" LudlAccess->SpeedFocusWrite(2500); ./ default is 20000 -~ semng max spwd
LudlAccess->SmnSpeedFocusze(250), // defaultis S000 - setting stant speed

)
/I"Error Log - stderr unless otherwnse specnﬁed
‘ErrorLog = stderr;

}

Il -]/
1

// ~AutoFocus() — destructor ' /i

-/
i

AutoFocns..-AutoFocns()

{ _

/1 wipe out the allocated focus buffers
. <CleanFocusBuffers();

} | |
II ll .
// double’ SaFocusExposmeTnme(double FocusExposuneTlme) M
/1 returns - rétums the value that we were able to set /

II II

double AutoFocus: SetFocusB(pomreTlme(doubIe FocusExposureTlme)

i venfy based on camera ~ some have] mm focus ume :
iRCCDAccess) -~ » R

(.
_swinCCDAWGaCammType())

{ S

case CCD_CAMERA_NONE: // No camera found -
return Q. IOO

case CCD_CAMERA_PENTAMAX: // Pentamax - . less than lOOms (~90 actually) wnll causea Hardwareldnver lock up
thls->ExposmeTnme max(0.100, FocusExposureTime); -] :
retum this->ExposureTime;

caseCCD_CAMERA_PVCAM:

caseCCD CAMERA_ORCA:
thns->£xposureT|me = max(0.001, FocusExpomreTlme),
retum IhlS->EXp0$llIETIme,

}

return 0.0;
} : :
1 : /

/! IntializeBuffers() ~ initializes the Autofocus buffers, retums if the //
/ buffers are already allocated correctly N

/I J/

bool AutoFocus: lnmahzeBuﬂ'ets(ml FocusSlepsReqmted int RequestedK emelWidth)

{

// The CCD must be initialized accumtely before running this step

/1 1) determine how many tiles we have in X and Y based on the CCD buffer
// dimensions, TileSize and BorderSize

/1 2) Allocate space to store the EdgeEnergy results for each image gnd

/1 3) Allocate space to store the tracking info to construct the focus curves

/] l)detenhine how many tiles we have in X and Y based on the CCD buffer
/I dimensioiss, TileSize and BorderSize
I HOCDAccess-> Valid()) retum false;

// adjust the border size to work with the kemel width, also adust the kemel to be ODD
if{ {{(RequestedKemneIWidth % 2))

" RequestedKemel Width++;

// now the bordersize
ApphedBordefSnze= max(RequesIechmeandth /12, BotderSue),

//'so how many tiles
int ReguestedTilesWide = (CCDAccess->GchocusBufferW|dth() 2* ApphedBordetStze))

/ TiteSize; -

US 8,271,251 B2
31 32

int Requsled’l' |lcsngh = (CCDAccwsoGaFocusBuﬁcrHexght() -2 ApphedBorderSm))
e / TileSize; _

V] so, do we need to re-allocate? .
if(RequestedTilesWide != TilesWide) |
. (RequestedTilesHigh != TilesHigh) |}
(FocusStepsRequested > SlicesAllocateéd)).

{
/l clear it all)
CleanFocusBuffers();
// re-allocate everything...
TilesWide = RequestedT: lls\mde,
TilesHigh = RequestedTilesHigh;
SlicesAllocated = FocusSlepsRequmed
{/ List of Grids -
typedef double* Ipdouble;
TileLists = new Ipdouble[ShcasAllocated],
for(int GridNumber = 0; GridNumber < SlicesAllocated; GridNumber++)
TlleLlsls[GndNumbcr] =new double[TilesWide * TllcSngh]
// Focus peak calc's’
TilePeakLocations = new int{TilesWide * TilesHigh);
{// Motor move offsets
TargetOffsets = new double[ShmAllocated],
DY = new double[SlicesAllocated);
// Final Laplacian results to be splined
LaplacianResults = new double[SlicesAllocated}; -
LaplacianTiledResults = new double[SlicésAllocated); — "~~~ T s
// Peak tracking (can view count here now)
. PeakHistogram = new int[SlicesAllocated);
// flag to reset the rest as well
KemelWidth = -1;
ResetFocusMask = true;
) 5

1/ Focus Kemel almuon :
if{RequestedK emelWidth != KemeIWIdth)

{
1/ define the focus kernel
KemelWidth = RequmedKemelWIdth
delete NeighborOffsets;
int FocusBufferWidth= CCDAecMetFomsBuﬂ'erWndﬂ:(), Co
NeighborCount = KemelWidth * KemelWidth - (KemnelWidth-2) * (Kemeandth 2))
Nenghmeﬁsas = new mt[NcnghborCoum],
int index =0;
int KemelRadius = KemelWidth / 2;
for(int y = -KemelRadius; y <= KcmelRadms, y-H)
for(int x = -KemelRadius; x <= KemelRadius; x++)

{ : : :
ifly = KemelRadius || x == KemelRadius || y = -KemelRadius J| x == -KemelRadius)

{
Nenghbo:Oﬂ“sets[mdcx] =y* FocusBuﬁ'erWndth + x,
index++;
}
}

} .
“ /! Set up the focus mask
if{ResetFocusMask)

{
" // Masking
delete TileMask;
TileMask = aeéw bool[TilesWide * TilesHigh];
// has it been:set? 1f not default to full screen
if{!MaskRight && !MaskBottoth)

{ o
MaskLeft=0;

MaskRight:= TilesWide - 1;
MaskTop =0,

MaskBottom:= TitesHigh - l
CenterOn = u'uc,

}

US 8,271,251 B2

33

int MaskWidth = MaskRight - MaskLeft + 1;
_int MaskHeight = MaskBottom - MaskTop+ l
if{CenterOn)
. UnMaskedCells = MaskWidth * MaskHenght,
else .

34

UnMaskedCells = TilesWide * Tllw}hgh MaskWndth b MaskHclght,

. for(im y = 0, y < TilesHigh; y++)
- for(int x = 0; x< TilesWide; x++)

{
if{(y >= MaskTop) && (y.<= MaskBomm) &&
(x >= MaskLeft) && (x <= MaskRight))

{
TileMask[y * TilesWide + x]= CenterOn;
} ' .
ese”
TileMask[y * TilesWide + x] = 1CenterOn;
-}

” Donc :
ResetFocusMask = false
})

{// done .
. vetumn true;

}

. . 1
1/

/I CleanF ocusBuffers() - clean up the current focus buffers. o

P 7 Eeea——
i

void AutoFoqus::CleahFocusBuﬂ‘ers(void) '

{
List of Grids
if{TileLists)

"

{
for(int GridNumber = 0; GridNumber < SlicesAllocated; GndNumberH)

- delete TlleLlsts[GndNumber],
delete TileLists;
TileLists = NULL;

)
- Il Tile masking
delete TileMask;

. TileMask=NULL; -~

1/ clear the neighbors amay
delete NeighborOffséts;
NeighborOffsets = NULL;

-1l Focus peak calc's
delete TilePeakLocations;
TilePeakLocstions = NULL;

{// Motor move offsets
delete TargetOffsets;
TargetOffsets = NULL;

// Final Laplacian results to be splined
delete LaplacianResults;
LaplacianResults = NULL;
delete LaplacianTiledResults;
LaplecianTiledResults = NULL;
delete DY; -

DY =NULL;

// clean the splines
delete LaplacianSpline;
LaplacianSpline = NULL;
delete LaplacmnTlledSplme'
LaplacianTiledSpline= NULL;

// no more peak histogram

. delete PeakHistogram;
PeakHistogram = NULL;
)

ll V7

I SetFocusMask(ﬂoat IndentPercent, bool CenterValue)

"

- I Tile in the range of LEFT--RIGHT and TOP-BOTTOM are set to CENTERVALUE, "

/I the remaining tiles are set to !{CENTERVALUE
1 — J/

"

US 8,271,251 B2
35

void AutoFocus 'SetFocusMask(ﬂoat IndentPercent, boo) CenterValue)

(.
! don‘l Iet it mnge too far! And convert to a fracnon
IndentPercent = max(0 .0f, min(IndentPercent, 100.0f)) / 100.0f,

1/ validate ranges
MaskLeft = max(0, (int)}(T: 1Iszd= 1) * IndentPercent));
* MaskRight = min(TilesWide - 1, (im)(TilesWide- 1) * (1.0 - lndentPercem))),
MaskTop = max(0, (int)}(T llesngh 1) * IndentPercent));
MaskBottom = min(TilesHigh- 1, (mt)((T ilesHigh- 1) * (1.0 - lndcmPelcent))),
CenteiOn = CenterValue; .
RcsetFocusM_asl_c = true;
II) : . 1/
i LaplaclanFocusAlgomhm(ImageNumber) - does a Laplacian filter on the //
/I lmageNumber buffer in the CCDAccess object. The results are stored in //
/l the Tile array. associated with that ImageNumber. i

A 0 I : I

/! -1 8-1 LaPlacian Filteron each pixel — with some small border to //
i o«1-1-1 omit edge noise of CCD chip /!

/I Square the result for each pixel. Also keep a sum of the squareé of /f

o
' //msmeCCDBuﬂ'u

/I the intensities of each pixel for normalization. y/ B
/I now Divide the SumofSquares of the filtered pixels by the SumOfSquares/
/. of the intensity plxels to remove the illumination dependence "
ll

/!
vond Auto‘Focus anlacwnFocnsAlgomlm{lm ln-ageNmnber) .

.unsigned short* FocusData= CCDAcccss»GﬂFocusDam(lmageNmnba),
int FocusBufferWidth = CCDAccess->GetFocusBufferWidth();
int FocusBufferHeight = CCDAccss->GctFocusBuﬂ'crHcight();‘

// padding from edges (center in image as much as possible)
int LefiPad = AppliedBorderSize + ((FocusBufferWidth - AppliedBorderSize * 2) % TileSize)/ 2;
int TopPad = AppliedBorderSize + ((FocusBufferHeight - ApphedBorderSnze * 2) % TileSize)/ 2;
int LineAdjust = FocusBuﬁ'er\Vldth TileSlzz.

] wh:ch is our Target Grid?
double'(ind Tllelets[lmageNumber],

" Travctse the i image
intCell=0;
for(int h = 0; h < TilesHigh; h++) .

{
for(int w= 0; w < TilesWide; w++)

{
// skip if masked off
iR TileMask[Cell])

{

Grid[Cell] = 0.0;
Celb+;
oo;nix’_we; :

} . .
[/ variables to track in our algorithm
double EdgeEnergy = 0.0;
{/ offset tracking’
m TnleCometOffset = ((h * TileSize + TopPad) * FocusBuﬂ'er\\hdth) +
: (w * TileSize + LefiPad);
// raw data pointer is then...
-~ umsigned shon‘ Data = &FoalsData[Tlld:omerOﬁ'set],

// calc the laplsclan values for the entire tile space.
fortint Height = 0; Height < TileSize; Height++)

{ ' .
Tor(int Width =0; Width < TileSize; Widih'+)

{
{/ energy below this tile
int IntensityEnergy =1 + ('Data),
int 'Value = NeighborCouit * (*Data);
for(int n= 0; n < NeighborCount; n++)
{ :

36

US 8,271,251 B2
37

int] = *(Data + NeighborOffsets[n]); .
IntensityEnergy +=1%I; - '
Value =1;

}
/I Add up the encrgy
EdgeEnergy += ((double)Value * (double)Value)l (double)lmensnyEnetgy
// Next data point
Data++;
-} /I Width (tle) }
// advance to next Pw
Data += LineAdjust;
} // Height (tile)
// set the tiles value into the gnd
Grid[Cell] = EdgeEnergy,
Cell+; -
} // TilesWide
} / TilesHigh
}'/} . ~/

1 YFocusAlgorithm(JmageNumber) — focus by intensity only "
1.

'/
/!

void Aquocus::lFomsAlﬁorilhmﬁm 'lmchumbef)

{

1/ eccess the CCDBuffer
unsigned short* FocusData = CCDAccwsoGﬂFocusta(lmageNumba),
int FocusBufferWidth = CCDAccess->GetFocusBufferWidth();

" int FocusBufferHeight = CCDAccess->GetFocusBufferHeight();

// padding from edges (center in image as much as possible)
int LefiPad = AppliedBorderSize + ((FocusBufferWidth - AppliedBordesSize * 2) % TileSize) / 2;
int TopPad = AppliedBorderSize + ((FocusBufTerHexghl ApphedBorderSlze *2)% TlleSlze) / 2
int LincAdjust = FocusBufferWidth - TileSize;

1/ which is our Target Grid?
- double* Grid = TlleLlsls[lmageNumber],

// Traverse the image
imCell=0;
for(int h= 0; h < TilesHigh; h++)

{ .
for(int w = 0; w < TilesWide; w++)

{
// skip if masked off
if!TileMask{CelI])

{ -
Grid{Cell] = 0.0;
Cell+;
continue;

}
/! offser tracking
int TileComerOffset= ((h * TileSize + TopPad) * FocusBuﬂ'erWldth) +
(w * TileSize + LeﬁPad)
// raw data pointer is then...
unsigned short* Data = &FocusData[T |IeCome10ffset],
int Totallntensity = 0;
-/l cale the laplacian values for the entire tile space.
for(int Height = 0; Height < TileSize; Height++)

{
for(mt Width = 0; Width < TileSize; WIdlh‘H’)

// energy below this tile
“int Value = *(Data + FocusBuﬂ’chndth +1);
Totallntensity = max(Value, Tolallnlenstty),
// Next data point
Data++;
} // Width (tile)
// advance to next Pw
Data += LineAdjust;
} // Height (tile)
// set the tiles value into the grid
Grid[Celi] = Totallntensity;

38

US 8,271,251 B2
39 40

- Cell+,; :
} // TilesWide
.}‘ #/ TilesHigh

/- : : : /N
/1 AnalyzeSlopes() analym the TileLists[] to determine between slices, /'
/1 where the energy terms are headed. - . /I
/1 We want to track all of the tiles that form'a majority and are headed //
/! into focus (rising slope) or out of focus(decreasing slope) together. //

/I An absolute slope check is too variable, so calculate a standard devistion//
.// and call anything within an SDev 0f 0.0 2 0 slope (mdelemunate) /"

bool AutoFocus: AnalyzeSlopes(vold)

{

// use the followmg throughout - how many cclls are thcn m our lmage?
int-Cells = TilesWide * TilesHigh;

#/ Step one — analyze each slice looking for a distinct peak, as more than

i onk peak is giving us ambiguous information.
/I - this peak is found by finding a point with a lesser value on xt's Icﬁ
/ and a lesser value on it's right

~ # Step 2 - Find the most common peak location - this is the deﬁnmon of
/" being in focus.” Keep anything that has a peak wnhm 1 bin of -
n our mode in the "Histogram”
/I For now we're taking the location of "THE" peak, as removing mfonmnon tends to be .
/I dangerous and is causing strange results in extreme cases. The algorithm tends
// 10 be more stable if we just use step 2 to remove outhets)
" for(int Cell= 0; Cel < Ca; CalF) — - e G e e

{
- /1 skip if masked of
if{ 'TxleMask(Cell])

{
TnlePeakhocauons[Cell] =.1;
continue; .

}
// where is thie peak FOR THIS CE.L
int Peakindex =-1; :
// the intensity value of that peak
double Peakl = -99999.0;
//'the intensity value of the runner up:
double Peak2 = -99999.0;
1/ "Le" is the valud in the slice at index - 1
// "CGenter” is the value in the slice at index
I 'R:ght'isthevalueintheslieeat index + 1
double Left;
double Center = TileLists[0)[Cell};
double Right = TileLists[1]){Celi};
// are we starting with a "Lefi most™ peak
iffCenter> Right)

{
Pezk] = Center;
Pezkindex = 0;

} .
// progress through this slice
foi(int lmageNumbef = 1; ImageNumber < lmagsCaptumd l lmageNumberH)

/{ shifi.over one unit
Left = Center;
Center = Right;
. Right= Tnlel.nsls[lmageNumber+ 1][Cell};
// are we a peak?
.if{Left < Center && Right < Center)

..{ .
iflCenter> Peak2) 77 bigger than our runner up?
£ - - .
if{Center > Peakl) //than our firstpeak?
{ . -
Peak2 = Peakl; // yup so shift down one and place

Peak] = Center; // the new center as the peak
Peakindex = ImageNumber; / track our peak

}

US 8,271,251 B2
41 42

else Peak2 = Center; // just replace the runner up
} / 1arger then the runner up peak value (peak2)
} // it's a peak
} // traverse the entire slxce
1/ are we ending with 8 "Right most” peak .
~ Left = Center; .
Center = Right;
1f(Centet> Left) // right side has 8 nsmg slope

{
if{Center > Peak}) - / is the helght grealer than our first found peak?

{
// Peak}l = Center; //thenew cemcraslhepmk :
Peakindex = ImagesCaptured - 1; // track our peak (mdex)
) // have a stonger peak (than peakl)
} #/ have & right most peak
// Store the index of the peak for this slice in the i mgc
TilePeakLocations{Cell} = Peakindex;
} // Cell

/I Step 2 - Find the most common peak location - this is the dcﬁnmon of '
i being in focus. Keep anything that has 8 pcak within 1 bin of
/i - our mode in the "Histogram")
ValidPeakTiles=0; -
memset(PeakHistogram, 0, sizeof(int) * lmangaptured),
11131l the Histogram with our index values - .
~ for(int Celi = 0; Cell < Cells; Cell++)

{
1/ skip if msked off
if{!TileMask[Cell}) continue;
// otherwise tabulate the peak .
if{TilePeakLocations[Cell] = -l) // skip the "no-pmk" case - pmty close to unpossib]e?

{
Pnkastogmm[’l‘nlePeakLmauons[Cell]]*-k,
ValidPeakTiles++;

}

}
// find the peak
int MaxHits = 0;
int MaxIndex =-1;
. for(int ImageNumber =0; lmgeNumber < lmangaptund ImageNumberH)

{
lﬂPeakaslogmm[lmgeNmnber] > Maans)

{
MaxHits = Peaanstogram[lmgeNumbcr],
MaxIndex = ImageNumber;

}

}
/! remove anything that isn't a peak or edjacent to the peak
for(int Cell = 0; Cell < Celis; Cel++)

{

if{!TileMask{Cell]) continue;

ifi((TilePeakLocations[Cell} < MaxIndex - 1) {|
(TilePeakLocations{Cell] > Maxindex + 1)) &&
(T ilcPeakLoaﬁom[Cell] 1=-1))

<
TilePeakLocations{Cell} = -l / invalidate it
ValidPeakTiles—; :
N
3
4/ if there are any tiles left retum true —has o be true actually, but
"# keep this retum vifioe in, in case we'slter lhe algorithm more in the future

. if{ValidPeakTiles)
fetum true;

{l.otherwise this algorithin has failed
retum false;

)

/. ; : : "y
1 . //

US 8,271,251 B2
43 44

I int DoFocus(Steps, StepSize) I
1! Steps — number of focus slices to take (dcpth of z-stack) /A
/1 StepSize — how many lud] micro-steps between each slice . N
{/ returns FOCUS FAIL on failure - I
/I Otherwise it retumns.the number of steps that the stage had to be moved "
#/ 1o bring the image into focus. (dFocus steps between last location and //
" _ this locatum) : SN
ll - l s

int Aulol-'ocus Dol-'ocus(lm Steps,lm SlcpSlze,lm RequestKemelWidth, bool UseTlledSpllne)

{
_ I/ #define FOCUS_TIMING_ECHO 1
* Il #idefine FOCUS_TIMING_ECHO_2
#ifdef FOCUS TIMING_ECHO
- LARGE_INTEGER PerfonnanceFrequency; : '
LARGE_ " INTEGER StarfFirstMove, StartSetup, DoneFocmSetup :
LARGE_| _INTEGER DoneFocusSequence, DoneAnalysis, DoneFinalMove; . -
#Hifdef FOCUS_TIMING_ECHO_2
LARGE_ INTEGER SendTrigger, VValidReceived, FrameEndReceived, AnalymsDone, LudlMoveDone,
double VValidTime =0; - _
double FrameEndTime = 0; ’
double AnalysisDoneTime = 0;
double LudIMoveDoneTime = 0;
#endif
PerformanceFrequency.QuadPart = 0;
QueryPcrfommmeFrequy(&PerformanceFrequmcy),
#end:f :
' //Just beginning, 50 clear!he count
ImagesCaptured = 0;

// First- move to place us at the start of our run — half the distance r.overed
int FustMotorMove = -((SIGPS 1)* Stq)Slze) 12;

// Timing of our capture

1/ 1) Move to Stant position + BacklashCompensauonD:smme (LUDL).
1/ 2) Initiate move to real Focus Start Position . (LUDL)

// 2a) Initialize Focus mode — paramaters set already (CCD)

/I 2b) Poll wait for move complete - (LUDL)

/1 3) Stant focus image exposure : (CCD)

/' 3a) Whait for the FocusMoveSafe() signal (CCD)

/1 3b) Full move to next focus location : (LUDL)

/l 3c) Analyze tile - 2 (we are sure this ones in buﬁ'cr) (AUTOFOCUS)
/I 3d) Make sure lud] done moveing
/1 3e) loop to 3 until all images acquired -

// 4) Wait and analyze final image - (CCD/AUTOFOCUS)
11 5) Stop Focus Sequence (CCD) .

/1 6) Construct the Focus curve and pick the target point (AUTOFOCUS)
/1 7) Move to the predicted point and return (LUDL)

// DONE - '

1/ 1) Move to Start position + BackLashCompensationDistance (LUDL)
#ifdef FOCUS_TIMING_ECHO
QucryPerfonnanceComtel(&SmnF irstMove);

#endif -
LudlAccess->MoveFocusMotorPulses(FirstMotorMove - FocusBackLashCompmsauon, true);
/1 2) Initiate move to-real Focus Stant Position (LUDL)
© LudlAccess>MoveFocusMotorPulses(FocusBackLashComipensation, false);
- //28) Initialize Focus mode (CCD)
#ifdef FOCUS_TIMING_ECHO
QuelyPcrfonnameComlet(&StanSemp),
#endif ’
CCDAccessoSetFocusParametm(Bmmng. ExposureTlme, Steps);
if'CCDAcc#ss->StartFocus())

return FOCYS_| FAILED

#ifdef FOCUS_TIMING_ECHO
QucryPerfonnamcCounter(&DonefbcusSemp);
. #Hendif R .
// Initialize intemnal buffers —- if needed

US 8,271,251 B2
45 46

InitializeBuffers(Steps, RequestKemelWidth); - L
. {1 2b) Poll wait for move complete - * (LUDL)
int LudiBusy = 1;
while(LudiBusy) Ludl Access->BusyFocus(&LudIBusy);
// 3) Stant focus image exposure .. (CCD)
while{lmagesCaptured < Steps)
{ .

// Capture the image -
. #ifdef FOCUS_TIMING_ECHO_2
QueryPetfomianceCoumer(&SendT rigger);
#endif
CCDAcc&sséCapmnFocuslnmge(), ‘ P
1/ 3a) Wit for the FocusMoveSafe() signal (CCD)
iﬂ'CCDAccwsaFocusMoveSafe()) :

1 event failed for some reason — try again

/! ORCA - trigger emror:

// PENTAMAX - Shouldn' happen -- CCD PENTAMAX should be waiting for return sngnal
nf('CCDAcosstalld()) .

fpnan ErmorLog, "AUTO_FOCUS: Camera failed dunng focus sequence.\n");
rerurn FOCUS_FAILED;
]

continue;

}

/1 make sure camera is still okay!

"~ #ifdef FOCUS_TIMING_ECHO™2 "
QueryPerfommnceCoumeﬂ&Waldewelved),
#endif ’

11 3b) Full move to next focus Jocation (LUDL)

if{limagesCaptured < Steps - 1)
LudlAccess->MoveFocusMotorPulses(StepSize, false);

/! 3c) Analyze the image
/! i) wait for it to be in buffer (for sure)
/! this assumes the MoveFocusMotorPulsa \\nll take longer
than the CCD transfer + analysis
// Analysis ~20 ms (on 433mHZ pentium) and transfer the same or less
. /I Move ~60 ms so assumption seems to be safe since uansfer on a binned
/I image is Jess than 40|ns .
/! ii) enalyze it
1 i) wait
:ﬂlmngsCapuned >0)

{

// make sure it's in!
while{!CCDAccess->FocuslmageCaptured(ImagesCaptured - 1));
#ifdef FOCUS_TIMING_ECHO_2

QuetyPetfommmeCoumcl(&}‘mmeEndRecewed),
#endif

/! ii) analyze
LaplacianFocusAlgorithm(lmagesCaptured - 1),
#ifdef FOCUS_TIMING_ECHO_2

QueryPe:fonnanceCoumct(&AnalysnsDone),
#endif

}

// 3d) Make sure lud done moving
* LudiBusy = };
while(LudIBusy) LudlAwBusyFocus(&udlamy),
Hifdef FOCUS_TIMING_ECHO_2
mePerfonnanccComnet(&.l..udlMoveDom),
// concatenate the times
|ﬂlmnga;m|md >0)

{ .
VValidTime += (double)((VValidReceived. QuadPan SendTrigger.QuadPant) * 1000) / (double) Perfomlame}'requmcy QuadParl,
FrameEndTime += (double)(FremeEndReceived.QuadPart - VValidReceived. QuadPen) * mm)/ (dotble) -

. PerformanceFrequency.QuadPary;
AnalysisDoneTime +=(double)((Amly315Done QuadPan - FameEndReceived.QuadPart) . 1000) / (double)
PerformanceFrequency.QuadPant;

US 8,271,251 B2
47 48

LudlMoveDoneTlmc += (doublc)((LudlMoveDone QuadPan Am}ysnsDone QuadPan) *.1000) / (double)
PerfonmnceFrequmcy QuadPan, .
"}

_else.

{
VValidTime += (doub]e)((WahdRecelved QuadPnn SendTrigger.QuadPart) * 1000)] (double) Pelfonmmequuemy QuadPan
. LudiMoveDoneTime += (double)((l.udlMoveDone QuadPan VValidReceived.QuadPert) * 1000)/ (double)
Petfonnanccl-‘mqumcy QundPan.
) ;
tiendif -

//3¢) Joop to 3 until all i lmag&s acquued -
ImagesCaptured++;

)
/1 4) Wait and then analyze final image
while(!CCDAccess->FocusImageCaptured(ImagesCaptured - 1));
- #ifdef FOCUS_TIMING_ECHO_2
QueryPcd'onnanceCoumcr(&mecEndRmved),
FrameEndTime += (double)(FrameEndReceived.QuadPan - LudlMochone QuadPan) * lO(Xl) / (double)
Perfonnamc]-‘mqumcy QuadPart;
#endif
LaplecianFocusAlgorithm(ImagesCaptured - 1);
#ifdef FOCUS_TIMING_ECHO_2
QueryPu'l'ommnceCounleu(&AnalysusDom),
AnalysisDoneTime += (double)(AnalysisDone.QuadPart - mecEndRecaved Quade) . 1000) / (donblc)
. PerfonnanceFrequmcy QuadPart;
' Hendif

/1 5)'Stop the focus sequence
CCDAccess->StopFocusCapture();
#ifdef FOCUS_TIMING_ECHO
QuuyPafonnanceComtel(&DoneFocusSequawc),
#endif

6) Construct the Focus curve and pick the target point (AUTOFOCUS)
7) Move to the predicted point and calculate confidence (LUDL)
int _Focquntgel = RemmFocusTarga(Stepis, SlepSize, UseTiledSpline);

/ Finally done with all of that mess.... so now go nhead and move 1o new position
#ifdef FOCUS_TIMING_ECHO
Queryl’erfonnamcComuel(&DoneAmlysxs)
#endif .
LudlAccess->MoveFocusMotorPulses(FocusTarget - FocusBackl neh{‘ p ion, true);
LudlAccess->MoveFocusMotorPulses(FocusBackLashCompensation, true); - -

#ifdef FOCUS_TIMING_ECHO
QuenyPerfomnameComtcr(&DoneFina[Move);
1/ Now echo the times
double FirstMoveTime = (double)((SlanSemp QuadPart - StartFirsiMove.QuadPan) * 1000) / (double) Perfom:anchrequmcy .QuadPart;
- double SetupTime = (double)((DoneFocusSetup.QuadPant - StantSetup.QuadPart) * 1000) / (double) PerformanceFrequency. QuadPan
double FocusSequenceDone = (double)X(DoneFocusSequence.QuadParn - DoneFocusSetup.QuadPart) * 1000) I (double)
PerformanceFrequency.QuadPart;
double AnalDone = (double)(DoneAnalysis.QuadPan - DoneFocusSequence. ‘QuadPar) * IOOO) / (double) Perfonnanothequcncy QuadPan
double FinalMoveDone = (double)(DoneFinalMove.QuadPart - DoneAnalysis.QuadPart) * 1000) / (double)
PerformanceFrequency QuadPart; -
double TotwlTime ® {double)(DoneFinalMove.QuadPart - StartFirstMove. QuadPan) * 1000) / (double) PerfommnceFlequuwy QuadPart;
fprintflEsrorLog,"Mv] %4i Set %4i FS %4i Anal %4i Mv2 %4i. Total %4i\n", .
’ (im)FirstMoveTiine, (int)SctupTime, (im)FocusSequenceDone,
(mt)AmlDouz,[ml)leMovel’bne, (|m)’rolalT|me),
#ifgef FOCUS_TIMING_ECHO_2
fpl’;inl(sldom."Focu Break Down -—*VVahd %4i FrameEnd %4i AnalysisDone %4i LudlDone %4i\n",
(lm)Wath uue, (mt)meeEnl!Tlme, (ml)AnalyslsDoneTlme, (int)LudiIMoveDoneTime);
#endif g
flendif

/1 and return the amount we've changed
retun (FocusTarget +H{(Steps - 1) * StepSize) /.2);
) b ' :

P , . S /"

d

US 8,271,251 B2
49 50

/i RetumFocusTarget(Steps, StepSize) ~ Find the best locationto call ~ //
" "In Focus” based on the two curves ' //
II N Il

-int Auto}'ocus RemmFocusTarget(mt Steps, int StepSnzz, bool UseTlledSplme)

{

i Also calculate the confidence.

// Find the Max (point of best focus) in both curves

/I 1f the two curves are in agreement select the TILED result .

/1)f the two curves disagree, Move to the point with the smallest delta ftom center
bool FocusResult = AnalyzeSlopes(); :

// build curves regardless of success or failure (has both)
BulldCurvs(SlepSlze), : .

double EndX = (Steps-1)* Steprzc
double CurveMax = 0.0;
double BestFocus = 0.0;
double CurveMaxTiled = 0.0;
double BestFocusTiled = 0.0;
// Full Spline
for(double x = 0.0; x <= Endx x += 1.00)

K
. double value = LaplacnanSplmeoGetValue(x 0),
" ifvalue > CurveMax)

{

CurveMax = value; {/ keep our current max -
BestFocus = x; 1/ peak located at
}
// Tiled Spline - . :
for(double x = 0.0; x <= EndX x+=] 00)

{
double value = l.,aplacnanTlledSphneéGetValue(x, 0),

if{value > CurveMaxTiled)
CurveMaxTiled = value; 1/ keep our current max
BestFocusTiled = x; ‘// peak located at
} -

// calculate how much we shified from our last posmon assumes thc center

Il of our curve was the last focal plane
int ChangeFromCenter = BestFocus - ((Steps - 1) * StepSize) / 2
int ChangeFromCenterTiled = BthocusTlled ~((Steps-1)* SlepSnze)/2

// default target if we fail

. int FocusTarget = -((Sleps 1)* SlepSnze) I3 2

11 If the tiled spline is valid proceed by analyzing the mults based on both curves

if(FocusResult && UseTiledSpline)

{
// how close to agrecing are they?
int dFocus = BestFocusTiled - BestFocus;
dFocus = max(dFocus, -dFocus);
// Confidence
FocusConfidence = 1.0 - (ﬂoat)dFocus / (ﬂoat)(SlepSIze . Sleps/ 2);
// if within a step, pick the TILED solution
ifldFocus < StepSize)
FocusTarget= <{((Steps - 1) * StepSize) - BmFocnsTlled),
else -

// which is closest to center?
ifiChangeFromCenter < ChangeFromCenterTiled), .
FocusTarget = ~(((Steps-1)* SxepS:ze) - BestFocus);
else
Focus'l‘arget = ((Steps-1)* StepSlze) BestFocusTlled),
) .

} _ 4.
/1 if the Tiles§pline is invalid, use the fall back spline.
#/ or if we aréJorced to use this mode (iris/bright image focus)
else

{ .
// from the Full mask spline
FocusTarget= "'-(_f(Sleps - 1) * StepSize) - BestFocus);

US 8,271,251 B2

51 52

|
// so the Target is -
vetp_m Foc_usTalget;

II

/) .
" BmldCurveﬁStepSue) ~how large is each step to set the posmon amay //
/l comectly. R

. e

vo.d AutcFocus::BuikdCurves(int StepSize)
{ . _ :
// now Till the array ~ (used to build spline)

" TargeiOffsets{0} = 0; // obviously no offset here!

for(int Steplndex-= 1; Steplndex < ImagesCaptured; Stcplndex-H)
TargetOﬁ'setsISteplndex] = TargetOﬁ‘sels[Slcplnda 1] + StepSize;

//howmanycdls? C
imCells= TilesWide * Tlmﬂlgh,

// set our result arrays
for(int Image = 0; Image < lmagesCaptured ImageH)

{

/f clear to start '
l.aplacnanRaults[lmge] =0.0;
LaplacianTiledResults[image] = 0.0;

/1 add up each slice
double* List = TileLists[Image);
T for(int Cell =0; Cell < Celis; CelF¥) ™

{

/1 skip if masked
if{!TileMask{Cell]) continue; .

/1 just integrate the edge value for the entire image space
LaplecianResults[Image] += List[Cell};

// only integrate for valid cells
if{TilePeaklLocations[Cell] != -1)

uplacmnTlledesuhs[lmge] += Llst[Cell],

)//allcdlsmannmage :
} // ell images
// reset the Laplaciah spline — set up our DY terms first (i-‘ull image) .
// 1) First round RMS of the first derivative
<double RMSdy = 0.0; ’)
Joi(int Jmage = 1; Image < ImagesCaptured; lmage-H—)
{
doubledy = (l.aplacnanRsults[lrmge] l.aplacmnRﬁuhs[lmage l]),
RMSdy +=dy * dy;
}
RMSdy = sqrRMSdy / (ImgaCaptured l)),
//.2) Throw out the outliers

double ValidPoints = 0.0;

double SmoothSum = 0.0;
Tor(int Image = 1;Image < lmagesCaptured lmage-H-)

{
double dy ==.(LaplacnanRsuhs[lmage] LaplacnanRsults[lmage l]),
dy = max(dy, -dy);
ifldy < RMSdy)
SmoothSum +=dy;
. ValidPoints++; -
}

)
if{ ValidPoints)

{

SmoothSum /= ValidPoints;

ifSmoothSum < 1.0)
SmoothSum *= SnnothSum;

SmoothSum = sgrt(SmoothSum);
-}

~else
Smoothum =1 0 { thin'will handle thns in the set step

US 8,271,251 B2
53 54

P 3)‘Set the DY terms — don't allow to be more than 50% of the actual dy
for(int Image = 1;lmage < ImagesCaptured - l Image++)
DY{Image} = SmoothSum / 100.0;
// anchor the ends
"DY[0)= = SmoothSum / 1000, 0;
DY{ImagesCaptured - 1) = SmoothSum / 1000. 0, .
Vi 4) finally allocate them if they don't exist, o just reset them lf “they do..
if{!LaplacianSpline) -
LaplacianSpline=new Smoothplme(T argetOffsets, Laplacnaanuhs DY lmangapmmd lmagesCaptuted),
cise .

lAplacnanSplmeaRﬁetSplme(nge(OfTsets LaplacnanRsults DY, lmagesCaprured lmangaptumd),

// reset the Tiled Laplac:an spline - set up our DY terms ﬁrst
/1 1) First round RMS of the first derivative
RMSdy = 0.0;
for(int Image = 1; Image < lmag&apnued lmageH)

{
double dy = (Lap]acnanTlledRcsults[lmage] LaplacmnTlledR&sults[lmagc l]),
RMSdy += dy * dy;

} .
‘RMSdy = sqri(RMSdy / (ImagesCaptured - 1)), .
1/2) Throw out the outliers ~ take the MEAN of the remainder, not the RMS
ValidPoints = 0.0;
“SmoothSum = 0.0;
-for(int Image = 1; Image < ImagesCaptured; lmageH-)

{ h L
doubledy = (laplacnanTnledRsuhs[lmge] LaplacxanTﬂedRcults[lnmge l]), o s s e
dy = max(dy, -dy); ' :
lﬂ{dy<RMde)

SmoothSum += dy * dy;
ValidPoints++;
3

3]
if{ VelidPoints)

{
SmoothSum /= ValidPoints;
iiSmoothSum < 1.0)
SmoothSum *= SmoothSum;
else
SmoothSum = sqn(SmoothSum),
}
else
© ‘SmoothSum~=] 0 // min will handletlusmmesaaep
/1 3) Set the DY tenms - don't allow 1o be more than 50% of the actua) dy
for(int Image = };lmage < ImagesCaptured - 1; Image++)
DY[Image] = SmoothSum / 100.0;
{// anchor the ends
DY[0] = SmoothSum / 1000.0;
DY[ImagesCaptured - 1] = SmoothSum /1000.0; .
/1 4) finally allocate them if they don't exist, or just reset them if thcy do..
|ﬂ'lxplaclan1‘iled5plme) .
LaplacianTiledSpline = new SmoothSplme(TargetOﬂ“sets LaplacianTiledResults, DY, ImagesCaptured ImagesCaptured); - -

else
) LaplacmnTlledSp]me->RoselSplme(T argetOffsets, LaplacianTiledResults, DY, lmagsCaptured, lmagesCapmred);
) .

Yfomee : i /.

/1 it RcmmFocuslmagaPosmon() rclums the offset of the image slice //
/' thatis the most m 'focus — used for bnght field conslrucuon "

Il

int AutoFocus: RetumFocuslmagePosmoﬂvmd)

int FocusPosmon =0;

Toi{int i= 1; i < ImagesCaptured; i++)
uﬂl.aplacmnRaults[n] > LaplaclanRsults{FocusPosmon])
FocusPosition =i,

return FocusPosition;)

US 8,271,251 B2
55 56

Example 2. Image flat fielding code.
Hinlude "FlanesMaster."

// Image tolemme levels
#define SATURATION_| POM l2BIT 4095
#define BIN_SIZE_12BIT 4096.0f // sllows some paddmg at the low end of 8 ﬂanened 16 bit image
“#define SATURATION POINT_J6BIT 65535
#define SUB_SAMPLE_SIZE 8 //bindown to 8 * 8 when using the Kappa lmelpoltmon libm'y
#define SCALE_FACTOR - 10.0f // scale data up'by.10.0 (range is 0-4096 + Data * SCALE_FACTOR)

. ﬁdeﬁne DARK | IMAGE MODE_TOLERANCE 500 // if the mode of the dark image is above 500 — we have a problem
// print a message and resumeas if no dark image exists
#define VERBOSE_MODE 0 /1 full output : :
* //0 Warnings, Errors and vital stats only .
#define FULL_OUTPUT 0 /| outputs individual interpolated images :
- /1 0 Final images only (corrected,Sum)
// Imterpolation KNOTS_ o

#define KNOTSX 5/ how many knots to use for 2D interpolation (X)
" . #define KNOTSY ° 4 // how many knots to use for 2D interpolation (Y)
#define SUM_] KNOTSX 5 // dosum unage smoothmg with only 1 Knot
#idefine SUM_KNOTSY 4

Flatten Base Class = 1!
// Hanm(lmageWndth, lmageHenght, Darkimage, IrisMask) [/ :
/" Dark]mage — Background image that must bc subtracted from each Data //
B/ image before comrection - 1 -
* /I InsMask - Mask apphed to images where intensity informationis //
i unreliable in any statistical way (lnght was blocked /
/" ~ during imaging) /3 :

II . 1/
Flatten::Flatten(int hmgerdlh int lmageHenght, OMlmage' Darklmage, OMlmage' lnsMask)
{
/ save - .
this>IrisMask = lns.Mask,
1 set
- this>ImageWidth= lmageWndth;
this->ImageHeight = ImageHeight;
/l calculate -
CalculateDarkLevel{Darkimage);
// Interpolation Buffer
KappaBuffer = new Kappal-‘nll(lmageWndth, lmagenght, SUB_SAMPLE SlZE)
)

1 . —;

// ~Flanm() - destructor 1/

74

Flanai::-ﬂanen()
I o

Nclear - .
this->lrisMask = NULL,;

clean .
delete KappaBuffer;
KappaBuffer = NULL,;

u) - /!

Il CalculateDarkLevel(Darkimage) - determines the amount to subtract from //

/" each Data image based on the collected //

/" ~ dark current image. "

II /]

void Flatten: CalculateDadd.evel(OMlmage‘ Darkimage}

y
N is there on?

US 8,271,251 B2
57 58

'iﬁ!Darldnmge)

{
DarkimageLevel = 0;
retum;

}

// use a histogram to do analyze the bffers
Hnstogram DarklmageHistogram(12, (unsigned short*)Darkimage->Data(),
Darkimage->Width()* Darkimage->Height(), true);
i Get the Dark level (Mode of image) -
DarkimageLevel = DaﬂdmgeHnstogmm.GetMode();

I/ is it outof the expected range?
|ﬂDarklmageLevel > DARK_IMAGE_MODE ‘IOLERANCE)

{
// thisis an ermr' So always echo :
fpnmﬂstderr, "WARNING:: Dark Image tolerance emor. Mode of the dark i lmage (%) is abovc %i\n",
Darkimagelevel, DARK _ lMAGE MODE TOLERANCE),
// resume afier a reset
Darkimagelevel = 0;
]
// Subtmcharldnmge(Datalmage) - adjust the data i image by the Dark Level //
/i calculated from the dark current image, /
/1 NOTE:: Points that were collected at SATURATION (4095) will be preserved //
// as saturated pixels.

'

vo:d Flanen Subtmchal‘klmage(OMlmage' Datalmge)

{
/1 if Darklevel is 0 early exit
if{!Darkimagelevel) retum;

1/ cur input is 12 bits, o set our saturation point at 4095 (2*12)-1
unsigned shon* Dat = (unsigned shon‘)mmlnmgebData(),
long Points = ImageWidth * lmagc}le:ght
while(Points)
{
/] preserve saturated-pixels :
ift*Data < SATURATION_POINT_12BIT)
*Data = max(0, 'Data DarkimageLevel);

else ’
*Data = SATURATION_POINT _ l2BlT i occas:onal bhp OVER SatumlonPomt, so0 lock it in
// update the counters
Data+;
Points--;
} ifPoints
} , :
/I '/ .
1/l lntemolaleBackgmund(Datalmage) Fill the passed in Kappa /
! Object with the background interpolation of the Date Image /
1/ . and adjust for DC interpolation offset.

/- II

OMlmage' Flatten::InterpolateBackground(OMImage* Datalmage ﬂoal &lmerpolaledDCDlﬂ'mme)

{
" Imerpolatc the background now
OM lmage’ Backgroundlmage = KappaBuffer>Execute(Datalmage, // Data to mtcrpolatc
IrisMask, // mask to apply during mterpolatlon
SUB_SAMPLE_SIZE, // SubSampleSize :
_ "KNOTSX, // KnotsX
KNOTSY, // KnotsY
48, // TilesX
38, // TilesY
0.0,// SDiv1
0.0, // SDiv2
0.30); // KeepPercent

{1 Advanced siep #1) We have found that afier interpolation there is sometimes
[/ a remaining DC offset (aithough small). The following step
I/ is run to determine the size of that offset and to adjust .

US 8,271,251 B2
59 60

i the image and buffer for thatamount. .
Histogram Dnﬁ'erenceHlstogmm(w NULL, 0, false);
long* DifferenceTable = Dlﬁ'erenceHIstogmm GetTable();
lﬂlnsMask)

{

-/ Data .
“unsigned shont* 1Data = (unsngned shon*)irisMask->Data();
unsigned shon* Data = (unsigned short*)Datalmage->Data();
float* BData = (ﬂoat’)Backgmundlmge»DamO,

/1 §ill the Difference Table
int Points = ImageWidth * lmageHengln,
whlquomts) :

{
if{(*1Dats) &&('Data != SATURATION_POINT, lZBlT))

{:
-/ on the subtraction

//a) add an offset so that there is room to fluctuate around a gaussian mode

// b) use factor of 10 for aMode calculanon to within 0.1

/ic) round up
int value = (int)((BIN_SIZE_12BIT + (*Data - *BData) * 10. 0) +0.50);
ifi(value > 0) && (value < SATURATION_POINT léBIT))

DifferenceTable[veluep+;

// update our pointers
BDatat++;
- 1Datat+;
// and our counter
- Points—;
'} #/-cover entire space
} #/ Have an Iris
else
{ :
// Data :
- unsigned short* Data (unsigned short*)Dataimage->Data();
float* BData = (float*)Backgroundlmage->Data(); - .
/ fill the Difference Table
int Points = ImageWidth * lmageHexght
while(Points)

{
ift*Data = SATURATION_POINT_12BIT)

{
// on the subtraction :
// a) add an offset so that there is room to fluctuate around a ganssnan mode
//'b) use factor of 10 for a Mode calculation to within 0.1
// ¢) round up
int velue = (int)}(BIN_SIZE_12BIT + (*Data - *BData) * 10. 0) +0.50);
if(value > 0) && (value < SATURATION_POINT_}16BIT)) '
DifferenceTablefvalue++;

}
{/ update our pointers
Data++;
BData++; -
//-and our counter
Points—;
} #/ cover entire space :
} // No Iris: .
// Now the Histogram calculations -
// set our range from 0 to 65534
DifferenceHistogram.SetCutOff{-1, SATURATION_ POINI‘ _16BIT); // valid mnge is now 0-(SATURATION POINT_16BIT-1)
// calculate the Gaussian Mode :
double’SDev; // Swandard Deviation of the Stbtracted image
/1 how much did it vary?

InlerpolaledDCDlﬁerencc':(Dlﬁ'erenceHxslogmm Ge!CaIcuIatedGaussmnMode(&SDcv) BIN_SIZE 12BIT)/10.0;

// apply to the BackGround Image
float* BData = (ﬂoa!‘)Backgmund]mngata(),
for(int Point-= 0; Point < ImageWidth * ImageHeight; Point++)
BData{Point] = maif0.0f, BData{Poim] + InterpolatedDCDifference);

US 8,271,251 B2
61

{/ Tor the Kappa Buffer allow a ncgniwe offset since we may need this
" /10 adjust in the BuildSumimage step used in Interpolative ﬂanemng
// in the Brightlmage case the grid is no longer-used :
" fioat* FilledGrid = KappaBuffer->GetFilledGrid();

int Points = KappaBuffer->GetGridWidth() * KappaBuﬁ'er->GethdHe1ght(), :

for(int Point= 0; Point < Points; Point++)
FilledGrid{Point] += lnlerpolatedDCDnﬂ'emxce,

// Done
retumn Backgmundlmage,
}

I emef]

i/’

float Flatten CaiculatelmageMean(OMlmge‘ Image) -

{ :
// data type?
if(Image->DataType() = oMl |_UNSIGNED, snon'r)

//-calc mean..)
__int64 Totallntensity = 0;
int Pothoum =0;
int Points = Image->Width() * lmage->Henght(),
unsigned shornt* Data = (unsigned shon‘)lmageoData(),

if{lrisMask)

{
unsigned shorl‘ IrisData = (umngned shcn‘)lnsMask->Data(),
foi(int point = 0; point < Pomts, ponm#)

{
1ﬂlnsData[pomt])

{
Totallntensity += Data[pmnt],
PointCount++;
}
)
}

else
{ NP
for(int point = 0; point < Points; point++)
TotalIntensity += Datafpoint};
PointCount++;
}

} v .
retum (float){(double)Totallntensity / PointCount);
} . i v

else if{lmage~>DataType() = OMl__FLOAT)

//-calc mean
double Totallntensity = 0;
int-PointCount = 0;
int Points = Image->Width() . lmage->Henght(),
Tloat* Data = {float*)image->Data();

if{JrisMask)
{
unsigned shont* IrisData = (unsigned shon‘)lnsMaskOData(),
For{int pomt = 0; point < Points; point++)

{
|f(lnsDaté[pom|])

{

Totallmcnsny += Data[poml],
PothoumH-

}

y

}

clse

 foi(int point = 0; point < Points; point++)

" CalculatelmageMean(lnmgc) calculate the Mean of the i lmage passed m /-

62

US 8,271,251 B2
63 64

{
Totallnletmty += Dam[pomt],
" PothounrH
)

. retum (ﬂoat)('!‘omllmensity_l PointCount);

)

{l ch? _
return 1.0;
) .

A,, - i
// OMImage* Flanenlmage(Datalmage BackGroundlmage Bnghllmage TargetMean) //
/I Now apply ever)nhmg we have 1o construct the final Corrected image and // :
/I return that. o
ll y o ll
OMImage* Flatten: Flanenlmage(OMlmage‘ Datalmage, OMlmage‘ Backgmundlmage,
: OMIlmage* Bnghllmage, float CorrectionFactor)

{

// INPUT:

/I Datalmage our 12 bit image with data ranging from offset 0 to 4096

/! Background lmage - interpolation of the Datalmage with the DNA tunoved
1 8nghthmge - Normalized Nlumination profile =~ - .

1/

//OUTPUT: -

V] Conecllm 216 bit i image that is oﬂ‘sa so that the mode (0 level)
/) starts at 4096. Data values are scaled by SCALE_FACTOR

/ above this bin. Typically 10.50 that data ranges between

/- . 4096and 4096 + 40960. This will prevent data bordering

/" on saturation from reaching saturation due to cormection

I alone. (Unless imensity is boosted by more than 30%)

i BASIS

// Tt is assumed that our Raw Data Image is constructed as follows
// Data= (Targetlntensity + AdditiveEmor) * MultiplicativeEmor
/= Tamgetlntensity * MuluphcanveErmr+ AddmveEnor * MuluphcauveEnor

I The additive error (in the 1deal case) is assumed tobea umform

/] fluorescent layer that describes the illumination profile. Using this

// assumption a series of backgrounds'can be merged to form an approximation
/I ofthe |Ilummauon pmﬁ]e (used in Interpolative Flanemng)

/I In cither case, the AddmveTenns contribution is completely removed dunng
/I thesubtraction step. The only question the previouse assumption brings up,
/I is whether or not the (shape)MultiplicativeEsmor = (shape)AddnweEmr

-/l - and can therefore be used for the flat fielding step.

/" So now-to recover the Targetlmd;sity Term do the following.

/I 8) Subtract the InterpolatedBackground (Additive * Multiplicative)
// b)Divide by the Brightlmage

/I -c).Adjust theTinal term based on lmmsny correction etc...

/I Forcxample, when equahzmg images, Con'ecuonFactor should be set as -
/1 follows. {Assume we are normalizing to the first image)
n _ Mean ~ComectionFactor
// Imagel 13 1.0 (Meintain)
/I Image2 1.2 13712 (Brighten)
/l Image3 . 1.3/1.1 (Brighten)
// Imaged 14 - 13714 (Dim)
i NOTE: if the Brightlmage is NOT normalized, then the Comrection Term must.
" be'set to accomplish this (CorrectionTerm *= BrightimageMean)

/1 Set up'some buffer acvess points :)
OMImage* Flatimage = new OMlmage(lmageWulth ImageHeight, OMI_UNSIGNED_SHORT, OMI_INTENSITY);
unsigned short* Fiat ={unsigned shon*)Flatlmage--ata(); :
unsigned short* Raw ={unsigned short*)Datalmage->Data();
float* Additive ={float*)Backgroundlmage->Data();

- float* Multiplicative ={foat*)Brightimage->Data();

' Irscaling

US 8,271,251 B2
65 66

ComextionFactor *= SCALE FAC!‘OR,
" // traverse the image

int Points = ImageWidth . lmageHenght,

float FlatValue;

while(Points)

A
1) Xfit's saturated leave it there .
f('Raw < SATURATION POINT IZBIT)

A
12) subtracl the backgmund image from the raw lmage,
!/ sdjust it by the mode correction
FlatValue = (float)*Raw) - (* Additive);
/1 3) divide by the Sumlmege
FlatValue /= ‘Mulupheauve,
1 4) Equahze using Correction Term (also used to ad]ust for BnghthﬁleMean if
" it was not normalized)
FlalValue s= CorrectionFactor;
< /1 5) line it up around the 4096.0 point
" FlatValue += BIN_SIZE_ lZBlT
{/.6)clipit
if(FlatValue < 0.0) FlatValue = 0.0;
) el)sc if{FlatValue > SATURATION _POINT IGBIT) FlatValue= SATURATION] POINT 16BIT
] 7) save it
*Flat = (unsigned shon)(FlalValue +0. S).
}
else
*Flat = SATURATION | POINT 16BIT
// update pomtets
Flat++;
" Raw++;
Additive++;
~ Multiplicative+t;
. Points—;
}// points

/I retumn the corrected image
return Flatlmage;

'} /proc

4 : V - //
/l Bright Image Flanemng Processing Object - /N

Bnghﬂmagcl-‘lanen :BrightimageFlatien(char* DarkimagePathName, char* BnghtlmagePathNamc,
char* InputlmagePath, char* QutputimagePath,
char** imagelDs, long ImageCount,
bool Calculatelris, bool Equalize)

// For now let's do some timing too
timeb StanTime,StopTime;:

// time tracking
fiime{&StanTime);

/! Useing
Initialize(DarklmagePathName, Bnghllmage?athName, Calculalelns),

{/ Flatten each image

~char ImageName[1024);

“f16at CorrectionFactor= 1.0;

-float BaseComectionfactor = 1.0; i

“for(int ImageNumber = 0; ImageNumber < lmageCount; ImageNumber++)

{
// Load this image
spnmmmageName. /T DlR SEP "nw%s omi", InputimagePath, lmgele[lnmgeNumber]),

OMimage* Rawlmagé= new OMImagge(IimageName);

/i Subtract the Dark Image level
FlaltenOb,ecl->Subtrachark]mage(Rawlmage);

US 8,271,251 B2
67 68

/" lmerpolate the Background
float DCEmor; // could track this in verbose mode? : :
OM]mage' Backgmundlmage = FlanenObJectalmerpolatenackgmund(mw]mge’ DCEnor),

Il are we equahzmg?
if{Equalize) '

Vi NOTE: Thns form of equahzauon is a bit naive. 1t assumes that

// there are no large additive emors (out of focus blobs) moving

/I the image mean up or down.)

/I Approach 1) Normalize and compare to the bright image to find an offset

I/ and throw out bad points (probably iterative, will not work

i when a better filter is used, thus eliminating the profile)

/I Apporoach 2) Clip top until SDev is some %of the image mean deﬁmtely iterative
/A but can be speed up by using a Histogram.

/I calculate the Background Mean .
float ThisimageMean = FlanenObJecl->CalculmelmgeMean(Bnckgmundlmge),
iflmageNumber == 0) '
BaseCorrectionFactor = ThisimageMean;
CorrecuonFactor = BaseConecuonFactor/ThlslmageMean, // 1, 0 for first, adjust to first for the rest

}

#/ now flatten it : '
OMImage* Correcllmage = FIanenObjeclbﬂalten]mage(Rawlmage Backgmundlmage, Bnghtlmage ConecuonFacmr),

I/ Write it
// build name
“sprintf{lmageName,"%s" DIR_SEP correct%s .omi”, OmpullmagePath lnmgele[lnmgeNmnber]),
/] set the name
ConectlmgpSaImaganlawne(lmgeNam),
// and write it out -
Conectlmge->WmeToFﬂe(tme), 1/ yes — we do. want them compressed

/1 clean up for this pass
delete Rawlmage; :
delete Backgroundimage; -
delel_e Correctlmage;

}

// Now save the BnghlSmooth Image - COMPATABILITY ISSUE — CAN REMOVE AT SOME POINT
sprintf{lmageName,"%s" DIR_SEP "brightsmooth.omi” OutpmlmagePath),
Bngmsmooth]magc->Set]maganlename(lmageName),

BnghtSmoolhlmage->WnleTOFlle(tme),

// timing output
fiime(&StopTime);
fprintf{siders,"Total run time REAL:\n"); ‘
long Total = (S(opTlmc time * 1000 + StopTime.millitm)
«(StartTime.time * 1000 + StantTime.millitm); Co
fprintfisiderr,” Time: %1d.%}d Seconds\n”, Total / IO(X) Total % 1000),

}

M //
// -Bngh!lmagel"lanm() dmructor o /I

1 /l -
Bnghllnmgelj'lgnea.anghllmageFlanen() ,

{ :
delete Darkimage;
Darklmage = NULL;

delete lﬁsMaSHmaée;
IrisMaskimage= NULL;

delete Brightlmage; -
Brightlmage = NULL,

delete BnghlSmoothlrnage
BrightSmoothlmage = NULL;

delete EIanenOl)ject;

US 8,271,251 B2
69 70

ﬂanenObjm =NULL;
)
g . . . o _1_1.

// Initislize(BrightlmagePathName, Calculatelns) -]

lI

vond BnghtlmageFlanen :Initialize(char* DarklmagePathName, char* BnghtlmagePathName, bool Calculatelns)

{
1/ Step one — - Load the Dark Image
if{ DarkimagePathName)
Darklmage = new OMlmage(DaddrnagePathName);

I/ Load Bright lmagc
Bnghtlmage = new OMlmage(BnghtlmagePathName),

" // Calculate the jris mask
ifl Calculatelris)
]nsMasklmage = FmdlmageFranw(Bnghtlnmge),

{/ Initialize & Flatten ob;ect .
HﬂﬂenObje(:l = new Flatlen(Bnghﬂmage->dem() Bnghtlmage->He:ght()
Darklmage, lnsMasklmage),

/I Calculate the Background Mezn
float BrightlmageMean = FlattenObJectéCalculatelmageMan(Bnghtlmage),

// the new image
: OMlmagc" NomahzedBnghllmage new OMlmage(Bnghﬂrnage->Wldth(), Bnght]magc—>He|ght(),
OMI_FLOAT, OMI_INTENSITY);
fioat* NormBuffer= (ﬂoat‘)NonnahzedBnghtlmage->Data(),
unsigned shornt* BrightData = (unsigned short*)Brightimage=>Data();
int Points = Brightlmage->Width() * Bnghtlmage->He1ght(),
for(int point = 0; point < Points; point++)

{
float NormValue = BrightData[poim] / BrightlmageMean;
if('NormValue)
NormBuffer{point] = 1000.0; " // let it dnm to almost nothmg if it's at zero (very rare, undcr the iris in any case)
clse
NormBuffer[pomt] = BrightData[poim] / BnghtlmageMcan,

}

1/ save the Brightlmage (iris.omi most tim&s) as bn'glsmooth omj with the mask applied
// This is for compatability with the current processing. When/if this becomes a large
: Il processing object, drop this wme stage,

if{lrisMasklmage)

{ .
unsigned shon® 1Data = (unsigned short*)IrisMaskimage->Data(),
unsigned shont* SDate = (unsigned short*)Brightimage->Data();
int Points=1risMasklmage->Width()*)risMasklmage->Height();
for(int =0;i<Points;i++)

SDam[ll&—lDam[I],

BnghtSmoothlmage = Bnghtlmage,
Brightimage = NommnalizedBrightlmage;

1 " * b i - il /4
/1 Interpolative Bright Image Flatiening Processing Object o

/== - 1

/- Sk o /

" FlatMastet(Dark_lmag@athName lnslmagé’athame BnghtlmagePathName. /
M InputlmagePatiiDutputimagePath, ImagelDs[),imageCount, 1/

/" Ta;gelMean,Auumcss,Equalize,SubtlaclUsingSumlmage) 1/

/! Initializer for the flantening object /I ,

/' DarkimagePathName.-- name and path of the darkimage to use I

#/ IrisimagePathName -~ name and path of the in'simage to use I

/f InpullmagePath - Path to the list of input ll'l'nges i

/I OutputlmagePath. - Path to the hsl of output images i

US 8,271,251 B2

71 72
! .
// - ImagelDs[] - — list of image Ds - ol
/I ImageCount . - count of the images in the. lmagele list M
/! PassCount ~ ~how many passes was this collection unin? //
/l - TargeiMean - Target Mean of ell flattened images - only set //_
[/ when this object is initialized in a paralie]l //
I setting. If in sequential mode let this object //
- initialize this value. If in parallel mode, send //
Vi _ one group of images, use the TargetMeanit - //
"o - generates, and pass it on to all subsequent "
1/ - FlatMaster objects. : f
/! AutoProcess - if this flag is'set, the object is constructed and //
o : then immediately begins to processthe data, . //
" " otherwise processing must be coordinated c'xlernally// .
) - This feature is useful for the VisualFlattening /#/
" . application. I
/I Equalize — Set to true if want to use the Target Mean and also//
I cqualize all of the images by aligning tothe //
n " - background average intensities "

1. — N 1
FlatMaslcr FlatMaster(char* DarkimagePathName, '
char* IrislmagePathName, :
char* InputlmagePath, char* OutpmlmagePath
char** ImagelDs, long ImageCount,long PassCount, .
double TargetMean,
bool AutoProcess,
. bool Equalxze)

o

i copy all of our path/data since this is just a prep phase
" strepy(this=>DarkimagePathName, DarklmagePathName);
sucpy(this=>InputimagePath, InputlmagePath); :
strcpy(ﬂus->0utputlmage?ath OutpmlmagePath)

// optional ﬁdd
if(IrisimagePathName) stmpy(thlsblnslmagePathNamc,]nslmagePathName),
else this->lIrislmagePathName{0] = 0

/1 list of ImagelDs .
this->PassCount = PassCount; // how many passes
RewlmageCount = ImageCount; . // how many images
this->ImagelDs = new char*[ImageCount}); // generate a list of ID's
for(int i = 0; i < ImageCount; ++) :

{ -
this->ImagelDs{i] = new char{32];

strepy(this=>ImagelDs|i], ImagelDs[i]);

} . .
1/ our TargetMean - should be 0 in sequential mode
this->TargetMean = TargetMean;
this->AutoProcess = AutoProcess;
this->Equalize = Equalize;
{/ Initialize our Pass's List
SetPassSizes();
// some initial pointer settings -
Darklmage = NULL,;
Irislmage = NULL,
for(inti = 0; i < IMAGES_PER_PASS; i++)

{

Raw]magehstb] = NULL, // Raw images

FlattenList[i] = NULL; // Flanening object for cormspondlng Raw Image
i Backgmundhst{l] =NULL; // Interpolated backgrounds

ComectList[i] = NULL; // Corrected images :

} .
IrisKappaMask = NULL;
// Sumlmage buffers
Sumlmage = NULL;
SumFill = NULL;
// Now if we're auto processing — go for it
if{AutoProcess) -
. ProcessEntirelmageéSex();
}

/— N : v

US 8,271,251 B2
73 74

1/ ~FlatMaster() - object damu:tor - i

i/ . - .
. /

FlatMaster: ~FlatMastelO o »

.
Jl Clean up our]mage]Ds list
for(int i=0;i<RawlmageCount;i++)
delete ImagelDsfi};
_delete ImagelDs;
// clean up our pass list -
delete PassList;
// remove our Dark Image object
-delete Darklmage; :
{/ remove our Iris lmage object
delete Irislmage;
I remove any raw images that were loaded and buffers used
for(int i = 0; i < IMAGES_PER_PASS; i++)

{

delete RawlmageList[i]; -
delete BackgroundList[i); -
delete CorrectList{i];
delete FlanenListfi];

} .

delete IisKappaMask;
//'Sumimage buffers

delete Sumimage;

delete SamFill;
} : . .
lI . II .
Vi PmcessEnnrelmageSet() -- when AmoProcess is set, no extemal methods axe//
" being aecossed so process it all automatically /
II II

void FlatMaster:: ProcessEntirelmageSet(void)

// For now let's do some timing too
timeb StantTime,StopTime;
#if VERBOSE_MODE

timeb Time1,Time2;

#endif

// time tracking :
. fiime(&StanTime); -

// Step one — Load the Dark lmage -
LoadDarklmage();

1/ Step two - Load the Iris Image
Loadlrislmage();

// Step four - calculate the Iris Mask
Calculatelrisimage();

// set up our loop of passes
for(int i=0;i<NumberOfPasses;i++)

{ :
#if VERBOSE_MODE
Fime(&Timel);
fprintf{stderr,“Loading Images for Pass %i\n",i); ;
LoadRawlmages(); // Loads the Raw Images based on the pass
flime(&Time2); i
RepontTime(& Timel ,&Time2);
fprintf{stderr,” Subtracting Dark Image\n®);
SubtractDarkimage(); // Subtract Dark Image data and apply the inis as well
fiime(&Timel);

" RepontTime(&Time2,&Timel);”) o
fprintRstderr,” Interpolating Batkgrounds\n®);
Interpolatelmages();

Fiime(&Time2);

ReportTime(&Time1,&Time2); :

fprintf{stderr,” -Building Sum Image\n"),

BuildSumimage(); // build the sum image out: of the Filtered i images
fime(&Timel);

Report Time(& Time2; &Tlmel),

fprimf{stder,” Flatiening lmagx\n"),

Flettenlmages(); // Fiatien the Images

fiime(& Time2); : .

US 8,271,251 B2
75 76

ReponTnme(&Tnmel ,&Time2);
- fprimfisidem,” Save Images\n”); *
SaveFlatienedimages(); / Wnle the data out
. SaveSumlmage();
fiime(&Timel); -
RepoﬂTlme(&Tlme2 &Timel);
- I/ set s0 top of loop is back in sync -

. memmove(&Tlme2 &Tlml,szeoﬁumeb)),

LoadRawlmages(); // LoMs the Raw Images based on the pass
SubtractDarklmage(); // Subtract Dark Image data and apply the iris as well .
Interpolatelmages(); // uses the Kappa-lib routines to mterpolatc our backgrounds
BuildSumlmage(); // build the sum image out of lhc Fnltcfed images
Flattenlmages(); // Flatten the Images
SaveFIanenedlmags() // Write the data out :

SaveSumlmage(); #/ write out the iris'd sum image for this set

Hendif .

NextlmageSex(); // Handle intemal pointers
) .)

' ﬁnme(&StopTlme), ‘

fprintf{stderr,"Total run time REAL \n");

ReponTlme(&SlanTlme,&SmpTlme),

}

/I ; .]/

" ReponTnme(SlanTnme,Sloanmc) zap this later, but for now dumps time /

/I ‘stats as we process. Real Time not process time. o
lI ll

void FlaiMaster:: ReponTlme(umeb' Slan’l‘nme,nmcb‘ Stoanmc)

{

long Toml-(StopTxmeDume‘ 1000+StopTime->millitm)
{StanTime->time* 1000+ StartTime->millitm);

fprintfistderr,” Time: %ld %Id Seconds\n” TolalllOOO Total%lO(X)).

}
lI ’l'l
/" SetPas‘Sms() Vi
// This procedure determines the optimum number of passes and the size for //
/| each pass. Itsaves t}ns dataina list 1o be used for moving lhmugh "
I/ the images. 1/

/-
/A

vond FlatMaster.: SelPassszm(vond)

{
/1 allocate our PassList

int PassLength = RawimageCount / PassCoum /{ working on sub increments
// spot collection will use short passes with high depth

ifi(PassLength < IMAGES_PER_PASS /2) && (PassCoum >1))

{
PassLength = RawlmageCount;
PassCount = 1;

)
// waming if this set is too small
ifPassLength < IMAGES_PER_PASS /2)

{

fprintRstdem, "nWARNING: Flatten\n");

_“fprintf{stder, “Fatten is operating on a reduced image sct.\n");

fprintfstder, "Onty %i 1mags supplied per pass where a range of\n", PassLength);
fprintRstder, "%i to %i is dwmd \n", IMAGES_PER_PASS/2, lMAGES PER_PASS);

)
int CollectionPasses = (PBSSLength +IMAGES_PER PASS -1)/ IMAGES_PER_PASS; // each wnh this. many pam
NumbeiQfPasses =CollectionPasses * PassCount; - // and so our total is..
PassList = iew long{NumberOfPasses]; 1/ allocste it :
1/ traverse the list and fill -- only interested wnh the number of images
. /i per pass, ot their actual 1D's
for(int FlatPass = 0; FlatPass < NumbeIOfPasses, FlatPass++)

{

// Which FlatPass-are we in, in theollection pass -- confusing no? 8
int CollectionOffset ={FlatPass %CollectionPasses);
PassLis{FlatPass]) ={PassLength / CollectionPasses),
int Remainder = PassLength % CollectionPasses;
iflRemainder && CollectionOffser < Remainder)

US 8,271,251 B2
77

PassList[FlatPass}++;
Yy

i initialize our pass settings
CurrentPass = 0; / first pass offset
CumrentStantimage = 0; // First Image offset

}//pmc
il

I/ LoadDark]mage() « Loads the Dark i image from disk. If not pmcnt, the //
i Darkimage object pointer is set to NULL n
ll 1

void FlatMaster:: loadDarldmage(vond)

{ .
I/ see if the string is NULL or not
if{!DarklmagePathName[0])
Darkimage = NULL;
else -
{
Darklmage=new OMImage({DarklmagePathName);
if{!Darklmage)
{

#/ report @n error and exit - processing will resume as if no image exists
fprintfistderr,"Unable 1o load the Dark Image\n”);)
return;

} .

} _ : .

ll Il

// Loadlrislmage() — Loads the Iris image from disk. 1fnot present, the //

Vi Irisimage object pointeris set to NULL !

lI I/

votd FlatMaster :Loadlrisimage(void)

{
// see if the string is NULL or not
if(MsisimagePathName{0])
Inisimage = NULL,;
else

{) .
Trisimage = new OMImage(IrisilmagePathName);

. if{!lrislmage | 'lnslmagcoDaw())
{

// report an emor and exit — processing will resume as if no image exists
fprintf{stdess,"Unable to load the Iris lmage\n") .
Irisimage=NULL;
return;

)
) Il

Y/}

{1 Calculatelrislmage{) — processes the Iris image to find the intensity i
/i cutoff and therefore the Iris border. I

'/l
4

void FlatMaster::Calculatelrisimage(void)

{ . .
// early exit if there is no image to calculate
if{!Inslmage) retum;
#if VERBOSE_MODE
fpnmf(sldcrr,‘Calculatms the iris image.\n®);

#endif)
{/ hold the old version so can delete when done with this roullne

. OMlmage' Timage = Iristmage;
1/ find the iris.. Iris image will contain 0's. where the iris is and
// Oxfi¥f whest it isn't — an-AND mask

Irislmage =FindimageFrameIrisimage);

delete Timage;

1/ Now we want to sub sample the.grid so that it has the same “shape” init's
// smaller fonm as it's comresponding source image

. I To Optimize the SubSample algorithm, convert alt Oxfiff's to 0x00ff's
!/ 5o that the Histogram range is still within 12 bits -

US 8,271,251 B2
79 80

unsigned shon® IData = (unsigned short*) Irislmage->Data(),

int Points = Iriskmage>Width() * Irislmage->Height(); -

for(int p = 0; p < Points; p++) 1Data[p) &= 0x00ff; .

- I/l create an interpolation object to handle the sub-sampling -
KappaFill* KappaMask = new KappaFill(lrisimage->Width(), lnslmage->He1ght(), SUB _SAMPLE_SIZE); -
KappaMask->SubSample(Irisimage, lnslmagc, SUB_SAMPLE_SIZE);

1/ convert back to Oxfiff

i shift lower 8-bits over and or with original — faster than ifthen
for(int p= 0 p< Pomts, pH) lData[p] |= (lDala[p] <<8);

-/ now the cllpped gnid comams.the Masked mask... dump from there to a
// Yocal unsigned short buffer and delete the original buffer
// BAD_INTERPOLATION_VALUE set to 0

/" Anylhmg else set to Oxfiff
IrisKappaMask = new unsigned short[KappaMask->GelGnddeth() hd KappaMaskoGﬂGndHelght()],
Points = KappaMask->GetGridWidth() * KappaMask->GetGridHeight();
float* KData = KappaMask»GelSubSampledGnd(),
for(inti=0;i< Pomts, rH>) . .

{
1t’(KData[|]= BAD_INTERPOLATION VALUE) lnsKappaMask[l] 0;
else lnsKappaMask[I] Oxﬂff :

) .
./ don't need this object any longer
delete KappaMask;
)

I . =f]

’ // LoadRawimages() -- Joads the list of raw images based onour cumm pass //

vond FlalMaster LoadRawlmags(vmd)

/la buﬂ'er for building our string name
static char ImageName{1024];

_// How many images should we load -
int PassSize = PassList{CurrentPass];
// load'm
for(int i = 0; i < PassSize; i++)
{
// clean up — maintain KappaFill Buffers
delete RawimagelList[i];
delete BackgroundList(i);
Backgmundl_ist[i] = NULL;

// build the image name path
sprimtfilmageName,"%s" DIR_SEP "raw%s.omi", InputimagePath, lmagele[CunemStanlmageH]),
RawlimageList[i] = new OMlmage(lmageName),

}
// Initialize Width and Height and Flanen Buffers on first pass
ifiCurrentPass = 0) .

{
// set up our global widths and heights
" Width = RawlmageList[0]>Width();
Height= RawlmageLnsl[O]oHenght(),
/i set up for the largest pass (first pass is always the lalgcst)
for(int-i = 0; i < PassSize; iH++)
FlattenListfi} = new Flatten(Width, Height, Darkimage, lnslmage),
// a buffer used to construct the Sum Image (Background)
SumFill = new KappaFill(Width, Height, SUB_SAMPLE_SIZE);

3
}

Il - II

/" SubttactDark]mge() - subtracts the dark image from the listof raw ~ //

// and applies thedns Image if it exists as well. /)

/1 Adjusted to use'the DarkimageLevel variable instead of doing a true image //

i subtmcuon Commented lines remain. /A

ll 1/
—=ii

void FlatMaster:: Sub(mdDarldmge(vmd)

// now base on the pass'size;subtract away...
it lmagslnThisPa_s‘s ="PassList[CurrentPass]; :

US 8,271,251 B2
81 82

l(m!n=0 |<lmﬂg&sln1'h|sPass)
Flaneanst[:]~>Subtrachaﬂdmage(Rawlmagel.lst[i]),

}
J— -7
Ui lmerpolatelmags() uses the Kappa Library Interpolation routineto // .
i .build an interpolated image of our background. //
7 Find the amount that we'll need to adjustthe //
/" mterpolated xmage so that they line up conectly //

ll

4vond FlatMaster:: lmerpolatelmags(vmd)

A
// how many images to process? :
int lmgesln’l'h:sPas = PassLlsl[Cun'emPas],

/1 1: intespolate the Rawlmage and place the mtcxpolated image
/I into the BufferList
float lmerpolaledDCDlﬂ'erence ! good €rmor reporting, but not used for now
for(int i=0;i<ImagesInThisPass;i++)
BackgroundList{i} = FlanenLlsl[1]->lmcrpolaleBackgmund(Rawlmachm[n] lmcrpolaledDCDnﬁ'etcnce),

) // proc .
’ . II
: // BmldSumImage() bmld the sum image out of the Filtered i nmgs "

vond FIalMaster Bu:ldSumlmge(vmd)

{
. {/ Possible modes
" I 1) Bright Image supphed
il a) lmcrpolate the image to get in ﬂoatmg point format and smoothed
/i b) Place in the SumFill Buffer s would normally be ‘
// 2) Bright Image not supplied
/I 8) Create a best guess Bnghl image from what we have (Median of all works well)
/I do not clip for the iris as it has already been eompensated for in the initial Lo
!/ background interpolation step
/! b) Find how much each interpolated image differs from this best guess at a shape
/i c)Create a Bright image applymg these calculsted differences so that they
/1 ali line up properly - this is our Sumlmage
/1 3) Get the Mean value of the Sumlmage
14) Equahzanon ison
/i 8)Get the Mean value of each mterpolated image by.once again finding how much
// each differs from the Sumimage and applying that difference to the Sumlmage Mean
// How do we calculate the differences? .
" /! - Subtract the interpolated image from the target image, saving the difference in a buffer
* /f - find the mode in this buffer ~ lhxs is the point where the majority of the differences
// are in common.
/I Use this memod to prevent bright "dome blobs fmm al\enng our lmageMean by oo much

// Step one — bmld a bulfer that contains lhc median of all the buffers
// set up the Sum Image Interpolation object
long GridWidth = SumFill->GetGridWidth{);
long GridHeight = SumFill->GetGridHeight(); .
// Pre-Step — verify that the IrisKeppaMask exists
if{!IrisKappaMask)
{ : A - '
/1 if not create it with all Oxfff values so the AND mask passes.
IrisKappaMask = new unsigned short{GridWidth * GridHeight);
memset(lnsKappaMask, Oxff, sxzeoﬂunslgned short) * GridWidth * GndHelght),

// now loop through our images and save the median of the set as our Sumimage point i

float SortList{IMAGES_PER_PASS}; {/ Sont the list in this space
float* Buﬁ'erDala(IMAGES_PER PASS]; /1 our'list of Buffers
float temp /1 temp varigbles for swapping etc..

istof leference Terms - addmve offsets betweenzach image and the sumimage
float Dxﬁerences[NAGES PER_PASS];
// how many images in this pass :
int ImagesInThisRass = PassList[CurrentPass);
// only need to run this many passes to have the Median value
. long Middle = (ImagesInThisPass + 1)/ 2;
//'set up our Buffer-pointers
Tor(inti=0; | < lmagsln’l'hlsl’ass; rH»)

US 8,271,251 B2
83 84

BufferDa(ah] = FIanenLlsl[l]JKappaBuﬁ'eroGetFlIledGndO,
// and our SumFill pointer-
float *Fill = SumFllI->GetChppedGnd(),
// loop through for each point
long Points = GridWidth * GridHeight;
for(int p = 0; p < Points; p++)

A
1/ set our points into the Sort List .
- for(int i'= 0; i < ImagesInThisPass; +)

/1 adjust for the difference at each point
SonList[i] = *BufferDatali;

// move 10 next point for next pass
Buﬂ'erDamll}H,

} .
// Sont our list — only need to go half way to get our Medlan
bool Swap = true;
. long Count = 0;
long Itterations; i
while(Swap && (Coum <= Mlddle))
{

// set our swap count to none -
Swap = false; i
/1 now move through the list bubble sorting it
Itterations = ImagesinThisPass - 1 - Count; :
// try some pointer tricks instead of using armay- derefermcmg hopefully faster ???
float* S = SonList; ’
float* Spl = SonList + 1;
whlle(lnerauons)

|f(~s > *Spl)
{

// do a swap
temp = *Spl;
*Spl = *S;

*S = temp;

// we did a swap

Swap = true;

) .
// update the two pointers
S++;
Spl++;
// nextone -
Jtterations—;
} // Single Pass of the Bubble Sort
// update our number of passes coumnt
Count++; .
} // Bubble Sort
// and set the Median of the list into the SumFill Buffer
Fill[p) = SonLisyMiddle];
} # Points ~ Image itteration

{/ - smooth this buffer (do a fill on it)
SumFill->FillGrid(SUM_KNOTSX, // KnotsX
- SUM_| KNOTSY, // KnotsY

48 /) TilesX
38, / TilesY
0.0, /-SDiv1
0.0, //-SDiv2

0.30); //Kee‘pPercem

// Now deterinine how much:each image varies vs. the nwdmn image and adjust them again to line up -
. Histogram DifferenceHisi1 6, NULL, 0, false); .
long* Table= DifferenceHist.GetTable(); .

/ loop lhrough the images :
for(int i = 0; i < ImagesInThisPass; i++)

/I clear the Histogram
. memset(Table,O ssizeof(long) *-DifferenceHist. GetTableLengtl()),

US 8,271,251 B2
85 86

/i.get the source pointer
float* Source = SumFilléGelFllledGnd(), .
1/ get the Difference lmage Pointer
float* DIlmage = Flananlst[l]->KappaBuﬂ'er->GetFnl]edGnd(),
{the mask buffer
. unsigned short* IKMask = IrisKappaMask;
/Il now itterate through all of the points
long Points = Grid Width * GridHeight;
for(int Point = 0; Point < Points; Point4-+)-

// first see if we want to use this point at ail!

/! here we-can omit for the iris'd locations as strange antifacts may

/51ill appear here (only a difference image so is for thc best)
iflIKMask[Poimt])) -

// problem with the interpolate grids sometimes coming back beyond saturation
/1 ~ so need to bounds check here ' :
-/ add an offset 10 keep our term always positive (Histogram limitation)
int IDiff=(int}((Source{Point] - Dimage[Point]) + 0.5 + 32000 0);
IDiff = min(64001, max(0, IDiff));
Table{IDiffH++;
} :

/I now return the Mode — this is our offset term
DifferenceHist.SetCutOff(-1,64001); / the 64001 points are excluded
long Mode = DifferenceHist. GﬂMode(),

// do.a second check to make sure we're getting something msonable

/I find the points that are 20% of the Mode both above and below

- /+-and take the median in this range. With a mode value high enough

// this should't effect the final value...much

long Low,High,Mode20;
Low = High= Mode;
Mode20 = Table[Mode] * 20 / 100;

/i Low Tirst
‘while(Low && (TablefLow} > Mode20)) Low—-

// High next
w}nle(ngh<64001 && (T able[High} > Mode20)) ngh-H

// make it easy, just st our cut-offs
DifferenceRist.SetCutOff{ Low,High);
long Median = DifferenceHist. GetMedian();

// set our Difference Term
Differences{i] = (float)YMedian --32000.0);

} 7/ Images

// Now using our pathered llst of differences, re-mterpolate our final image
{/ set up our Buffer pointers
fos(int i = 0; i < ImagesIinThisPass; iH++)
BufferDatafi] = FlatlmL:st[l]éKappaBuﬂ'eroGetFllIedGnd(),
// and our SumFill pointer
Fill= SumFlIl~>GetChppedGnd(),
// loop through foreach point - -
Points = GridWidth * GndHeight;
for(int p = 0; p < Points; p++)
{

{1 set our points into the Sort List
for{int | = 0; i < ImagesinThisPass; i++)

{ : , .
/ adjust for the difference at each point
SonLisqi}= *BufferDatafi] + Differences]i];
{/ move to next point for next pass
. BufferDataefiH+;

)
//"'Sort our list — only needito go half way 10 gét our Median
bool Swap = true;
long Count = 0,
long luerations;
while(Swap && [(Count <= Middle))
{ ;

{/ set our swap count to none
Swap = false;

US 8,271,251 B2
87 88

// now move through the list bubble sorting it
Interations = JmagesInThisPass - 1 - Count;

_ I ry some pointer tricks instead of using array dereferencmg “hopefully faster 7??
float* S = SornList;) .
float* Spl = SortList + 1;
while(ltterations)

{
ifi*S > *Spl)
{-

// do a swap
temp = *Spl;
*Spl = *§;

. *S=temp;

// we did a swap

Swap = true;

// update the two pointers
S++; .
Spl++;
// next one
Itterations—;
'} // Single Pass of the Bubble Son
" update our number of passes count
Count++; -)
¥4/ Bubble Sort.
// and set the Median of the list into the SumFill Buﬁ'er
Fili[p] = SonList{Middle};
} // Points — Image itteration
- smooth this median image as well
SumFxll->F|llGnd(SUM_KNOTSX, //Knotsx
SUM_KNOTSY, // KnotsY
48, // TilesX
38, // TilesY
0.0, // SDivl
0.0, // SDiv2
0.30); // KeepPercent
// now build the Sumlmage
iflSumimage) delete Sumlmage;
Sumlmage = SumFlll~>Galnmpolatedlmage();

// Find our Sumlimage Average
SumlmageAvevage Hanenhst[OPCalculatelnngeMean(Sumlmage),

. il Are we equzhz:ng the set? By equalizing we mean that we'll normalize each image one to
/1 the other assuming that any charge in background levels indicates a difference in exposure times
(more light received) so that cach image must be normalize for this difference in light
1/ If we don't equalize (now the default) this means we pass each image as is to the next ﬁage
I/ We're repeating the first pass algorithm again because the interpolated image is likely slightly
// different and may cause a small shift
iflEqualize)

{ .
// loop through the images .
for(inti=0;i< lmgmln'lhisl’ass; i++)

{
// clear-the Hnstogmm

.memset(Table, 0, sizeof{long) * DifferenceHist. Gel’l‘ablel.ength()),
//.get the source pointer

float* Source = SanllléGetFllledGnd(),
/! ge& the Difference Image Pointer

flosi* DImage = ﬂatlenl.lst[llél(appaBufTer->GetFllledGnd(),
// the mask buffer

unsigned shon* 1KMask = IrisKappaMask;
{/ now-itterate through all of the poitits -

long#Points= GridWidth * GridHeight;

for(int Point = 0; PGint < Points; Poini++)

{

// first see if we want to use this point at all!

// here we-can omit'for the iris'd locations as strange antifacts may

// still appear here (only a difference i nmageso is for the best)
iflIKMask{Point])

US 8,271,251 B2
89 90

: // problem with the mlerpolate gnds sometimes coming back beyond saturauon
~ 50 need to bounds check here ;
// add an offset to keep our term always positive (Hls(ogmm limitation)
int IDiff = (int){(Source[Point] - Dlmage[Point]) +0.5 + 32000.0);’
IDiff = min(64001, max(0, leﬂ)),
Tablc-.[lDlﬂ}-'-+
)

/! now veturn the Mode — this is our offsel term
DifferenceHist.SetCutOfi{-1,64001); // the 64001 points are excluded
long Mode = DifferenceHist.GetMode();

1/ do a second check 10 make sure we're getting somethmg reasonable

/! find the points that are 20% of the Mode both abové and below

// and take the median in this range. With 8 mode value high enongh

/! this should! effect the final value...much
long Low, High,Mode20;

Low = High = Mode; .

Mode20 = Table[Mode] * 20/ 100;

Low first
while(Low && (Table[Low] > Mode20)) Low=;"

// High niext : .
while(High<64001 && (T able(ngh] > Mode20)) ngIrH»

{/ make it easy, just set our cut-offs
DifferenceHist. SetCutOff Low,High);
long Median = DifferenceRist. GelMedum()

-/f set our Difference Term
ﬂoax Difference = (float)(Median - 32000.0);

geMeans|i] = SumlmageAverage - Difference;

} // Images
Y EQUALIZING
// now range check the Sumimage so we don't a: divide by 0
" b: divide by number<0
" ¢: anything over saturation - clip it here

float* SumData = (float*)Sumimage->Data(); -
Points = Sumlmage->Width() * Sumlmageo}le:ght()
for(imt p = 0; p < Points; p++)
SumData[p) = min(max(SumData[p], 16.0f), 4095, 00,
) /I proc

ll

// Flattenlmages() ~ finally get to do some work and flatten our muigs o

vmd FlaiMaster::Flaenlmages(void)

4
// line them all up on the first Sumlrnagc set
if{TargetMean = 0.0) !
TargetMean = SumlmageAverage;

int ImagesInThisPass = PassList{CurrentPass]; .
for(int ImageNumber = 0; ImageNumber < lmagm]n’l‘hnsPass lmageNumberH)

// remove any previouse image
delete ComrectList[ImageNumber];
1/ The correction factor
float CorrectionFactor; -
if{Equalize)
{ .
flost Con'ectnonl-'actor = TargetMean / ImageMeans|ImageNumber];
ConrectionFactor = (SumlmageAverage * Corrccuon.Factor),

else CmecuonFactor= SumimageAverage;
/ flatten'm
ComeciList{lmageNumber] = Flanenhst[lmageNumber]->FIancnlmage(RawlmageLnsi[lmageNumber], Bad(gmundLlslllmageNumber],
Sumlmage, ComectionFactor);

)
)//pm

. // SaVenanmedxmg@() ~— Saves the list of flattened images’ e

US 8,271,251 B2
91 92

void. FlaLMaster SaveFlanenedlmags(vmd)

//'a buffer for building our strmg name
. static char ImageName[1024];
// How many images should we save
int PassSize = Passl.rst[Curreanass]
/ write'm :
for(inti = 0, i < PassSize; i+t)

{.
'/ build the imege namepath: . - :

sprintf{imageName,"%s" DIR _ SH "correct%s.omi" Outpullmage?ath, lmagele[CurrentStanlmage +i));
// set thename . -

Correcthst[x]->Setlnmganlename(lmageName),

// and write it out
Conecu_,st[ljownteToﬁle(tme), // yes -~ we do wam lhcm compmsed
) - .
I /. M 7/
i SaveSumlmgs() Snv&s the Sum Image : i

Il 1/

~ void FlatMaster::SaveSumlmage(void)

// a buffer for buikding our string name
static char ImageName[1024];
// Save our Sumlmage to0) B
sprintfllmageName,"%s" DIR_SEP "Sumlmagc%s omi", OutputlmagePath, lmagele[CunemStanlmge]), o
// now convert to unsigned shorts and save
OMImage* uSumimage = Sumlnmge->CopyAsUShon(),
uSumlnmgeOSetlmageFllename(lmageName); .
// apply the mask if it exists .

if{Irisimage)

{
unsigned short*]Data = (unsigned short*)Irislmage->Data();
unsigned short* SData = (unsigned shont*)JuSumlmage->Data();
int Points = lrislmage->Width() * lnslnmge->Henght(),
for(int i-= 0; i < Points; i++)

SData[i} &= 1Dats{i};

// only save it with the given name
uSumlmage->WmeToFlle(tme),

// now if this is the midle image, save it as brightsmooth.omi as well
if(CurrentPass == NumberOfPasses/2) _

{

spnmﬂlmachame, “%s" DIR SEP 'bnghtsmooth omi OutpmlmagePath),
uSumlmangulmachnlename(lmageNamc),
uSumlimage->WriteToFile(true);

}
delete uSumimage;

/) : !
/ NexllmageSet() - Updates our pass settings i /!
" e

' void FlatMaster:: NexllmageSet(vmd) '

{

// update our Pass settings
int PassSize = PassList[CurrentPass);
CumrentStaniimage += PassSize;
CurrentPass++;

}:

US 8,271,251 B2

93 94
EXAMPLE 3 where (-13, 810) is the initial overlap estimate, meaning
(0,0) in S1 is at (=13, 810) in S2. The output is:

rawl-2212017.omi raw1-2212016.omi =35 774 0
Code for the Overlap Program of the System and -35.22 774.42 0.700 0.361

Method Disclosed 5 which indicates that the true offset is (=35, 774) and overlap

is good (with zero status). The sub-pixel alignment from

The command line used to run the program for sub-images fitting the two-dimensional parabolais (-35.22, 774.42) with
S1 and S2, and CCF region shown in FIGS. 3A-C and dis- a correlation peak of 0.700 and a total variance of 0.361. Note
cussed below is: that (13, 810) minus (=35, 774) equals (22, 36) which is the

(sub-)offset of the correlation peak from the center of the
overlap raw1-2212017.omi raw1-2212016.omi-13 810 cross-hairs.

US 8,271,251 B2
95 96

#include <assert.h>
. #include <math.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#linclude <memlintok.h>
#include <limits.h>
#include <float.h>
-#if USE_FLOAT
#include <srfiiw.h>
Helse /* USE_FLOAT ¢/
#include <drfftw.bh>
Hendif /* USE_FLOAT */
finclude <netinet/in.h>
-#include “fit_2d_parabola.h”

#include <string.h> -
Hinclude <X11/Xlib.h>
-#include <X11/Xutid.h>
-ffinclude <X 1 /cursorfont.h>

#define CHARNULL{(char *) NULL
#define DISPLAYNULL (Display *) NULL -
" -#define VISUALNULL._(XVisuallnfo.‘) NULL

-#deﬁne BUTTONEVENT ((XButtonEvent *) &event)
-#define CONFIGEVENT ((XConfigureEvent *) &event)
-#define MOTIONEVENT ((XMotionEvent *) &event)

" #idefine BUTTFONEVENTS (ButtpnPressMask |ButtonReleaseMask)
tidefine MOTIONEVENTS (ButtonMotionMask) -
~#define OTHEREVENTS (ExposureMask | StructureNotifyMask | \
: PointerMotionHintMask | LeaveWindowMask)
#/define EVENTS ~ (BUTTONEVENTS | MOTIONEVENTS | OTHEREVENTS)

‘#define FALSE -COLOR0
#define DISPLAY_BUFFERS

US 8,271,251 B2
97 98

#define PRIME_TRIM 1
#define ZERO_| FILLO .
#define PHASE_CORRELATION 1
+#define LAPLACIAN I
#define USE_WISDOM 0
#define FILL_PAD 100

_ #define FILL_SMOOTH 1
#define FILL_WEIGHTED |
#define FILL_HALVES 1
#define FILL_BOTH 0

#define EXITI(X, Y) { (void) fprintfitders, X, YY; exit1);}.
.#deﬁne EXIT2(X, Y, Z) { (void) fprimfistderr, X, Y, Z); exit(1); }

 #define min(a, b) (8> ®)?7():(a)) -
#define - max(d, b) ((a) < (b) 2(b): (a))

#define NC256
* idefine MC (NC - 3)

-#if FILL_PAD
#if FILL _SMOOTH ’
static void smooth(arr, len, stnde, wndth)
ffiw_real © *am,
unsigned int ‘len;
unsigned m! stride;
" int width;
fitw_real . *work;
mt i;

#if FILL WEIGHTED
it k = width;
#endif /* FILL_WEIGHTED ¢/
fitw_real sum= 0.0;
int cnt=0; :

MALLOC_OR_ELSE . LINTOK(work, len, fftw_real);
'for(|=_|=0 i < (int) Jen; +-H, _Hcsmde)
work[i} = an{j}; .
for (i = 0; i < width; ++i) {
#if FILL_WEIGHTED :
for (= i; j < width; +4) {
#endif /* FILL_WEIGHTED %/
sum += work[i];
cnt+;
#if FILL_WEIGHTED

)
#endif /* FILL_WEIGHTED */

for(i=j=0;i <(int) len; ++i, j += stride) {

#if FILL,_WEIGHTED
for (width = 0; width <= k && i+ width < (int) len; Hwndth) {

#else /* FILL_ WE]GHTED */

Sif @i+ width < (int) len) {
#endif /* FILL_WEIGHTED */

" sum += work[i + wndth],
cnt++;

anfj] = sum/ cnx
#f FILL_WEIGHTED
for (wndth = (; width <= k && i - width><=0; -H-wu:lth) {
-Helse /* FILL . WEIGHTED */
if (i - - width >= 0) {
-ttendif /* FILL_WEIGHTED */
sum == work]{i - width];
cnt—;

)
1 ‘
'FREE_LINTOK(work); -

US 8,271,251 B2
99

) . |
#endif /* FILL_SMOOTH ¢/
' #iendif /* FILL_PAD %/

staﬁcchar - *ominum(name)
<har -*name; o -
{

char - *ptr;

int. n -

. if ((ptr = strchr(name, /) != NULL)
* name = +ptr;
ifl((n= strlen(name) -4)< 0) il (strcmp(name + n, om:") = 0))
retum (name);
name[n)] = "0
for (ptr = NULL; —n >= 0; ptr = name +n) {
Cif (((name[n] <0}l (mme[nl > '9’)) && (name[n) 1= -'))
. break;

}
retumn (ptr ? ptr : name);

) .
int main(arge, argv)
int argc;
char *targv;
{ . :

- char - *file;
struct stat buf;
char pipe{80];

" long o id;
long - . ype
long - sizey;
long " sizex;
long nbyte;
Jong " sizey0;
long - sizex0;
long sizeyl;.
long . sizex];

unsigned short *amap;
unsigned shart *bmap;

FILE ~ input;
int ' ofix;
int - offy;
int xmin0;
int - xmax(;
int ymin0;
int ymax0;
int xmini;
int xmax];
int yminl;
int ymax];
fiiw_real *a;
fRw_real *b;
fitw_real suma;
fRw_ sumb;
int . cnta;
int " entb;
fiw_real norm;

rifiwnd_plan P;
fftw_complex A
fitw_complex - *B;

. Tiiw_complex *C,
rffiwnd_plan q;
fiiw_real - X
fiw_real lo;
fitw_real” hi;

#define NPTS 29 -

-fftw_ml x{Nm],
ffiw_real Y{NPTS];

fiw_real ZINPTS];

100

Window " window,;
XGCValues values;
GC gc;
Cursor cursor;
Atom wm_protocols;
‘Atom - wm_delete_windoi; -
XSizeHints . -sizehints;)
XClassHint .classhints;
XEvent - event,
Ximage *image;
unsigned Jong *map32;
Pixmap pixmap;
int min;
int max;-
int done=0;
“int update=0;
int X5
int Y
int ©dx=0;
int dy=0;
int . cmap=1;
int mx =0;
int my=0;
it - offx=0
- it off y=0;
-#if DISPLAY_BUFFERS
fRw real = *d;
int . e=0; :
#else /* DISPLAY_BUFFERS */
int bx;)
int . by;
~dendif # DISPLAY_BUFFERS */
Window ro0t;
Window - child;
Cint root_x;
int . 1001_Y;
int) win_x;
int - win_y; .
unsigned int keys_buttons;
- float scale;
-#f 'FFALSE_COLOR

101
fhw_real V[NPTS),
fitw_real A0
fRw_real Al;
fftw_real X0; .
fRw_real Y0;
fiw_real 20;
ftw_real zv;

int dummy; .

int i;

int is

in‘ . k; :

int N B

int m;

unsigned char *map;
Display. - *dpy; T
XVisuallnfo template;
int nitems; .
XVisuatlnfo *visinfo;
Visual *visual; -
unsigned int depth;
Screen “#screen;
Colornmap colommap;

XSetWindowAtributes xswa; *
unsigned long -mask;

unsigned shon value;

US 8,271,251 B2

102

US 8,271,251 B2
103 104

* #endif /* 'FALSE_COLOR ¥
XColor - ~cells[NC];

. '
‘Check argument Ils(

lf {(orge != 5) && ((arge = 6) | (“argy($] t= =)
EXITI("usage: %s <file]> <file2> <offx> <offy>\n", argv{0]);-

fod
* Read in map file
&)
file= argv{l1};, -
‘if (swat(Tile, &buf) < 0)) -
EXIT2("%s: unable to stat %s\n", argv{0), file);
(void) sprintfipipe, "zcat -f %s", file); = -)
if (input = popen(pipe, "r")) = (FILE *) NULL)
EX1T2(*%s: error opening %s\n", argv{0], pipe);
if (fread{ &id, sizeof(id), 1, input) ! 1=1)
EXITH™%s: error readmg id\n", argv[0]);
* if (fread(&type, sizeof(type), 1, input) != 1)
EXIT1("%s:-emor reading type\n", argv{0]);
type= ntohi(type);
if{fread(&sizey, sizeof(sizey), 1, input) !=1)
EXIT1("%s: error reading sxzey\n' argv{0]);
sizey0 = ntohl(sizey);
. if (fread{ &sizex, sizeofisizex), 1, input) = 1)
EXITI("%s: eror reading sizex\n", argv[O]),
sizex0= ntohl(sizex);
if (fread(&nbyte, sizeofinbyte), 1, mput) 1= 1)
EXIT1("%s: enor reading nbyte\n" argv{0]);
nbyte = ntohi{nbyte);
(void) fprintfisuderr, "id=%.4s, type=%|d .
: “sizey=%ld, sizex=%ld, nbyte=%Id\n*,
(char *) &id, type, snzcyo sizex0, nbyte),
assen(nby!e= sizeof(*amap));
bufst_size= sizey0 * sizex0; -
MALLOC_OR_ELSE_LINTOK(amap, buf.st_size, unsigned short);
|f(fmd(amap, nbyte, bufst_size, input) != (size_t) bufst sm)
- EXIT2("%s: emror reading %s\n", argv(0}, pipc);
if (pclose(input)) -
EXIT2("%s: error closing %s\n", argv[O], pipe);

file = argw2];
if(stai(file, &buf) <0)
EXIT2("%s: unableto stat %s\n", argv(O], ﬁle)
(void) sprintfpipe, “zcat -f %s", file),
if input= popen(pipe, "r"))== (FILE *) NULL)
EX1T2("%s: ervor opening %s\n", argv|0], pipe);
if (fread(&dummy, sizeof{dummy), 1, input) != 1)
EXITI{"%s: error reading id\n", argv{0]); .
assery{dummy == id);
if (fread(&dummy, sizeofldummy), 1, input) !=1)
EXITK"%s: emor mdmg type\n”, argv{0]);
dummy = nioh{{dummy);
gssert(dummy-==type); .-
if (fread(&dummy, sizeof{dummy), 1, input) != 1)
EXITH"%s: error reading sizey\n”, argv[0]);
sizeyl = ntohidummy);
if (fread{ &dummy, sizeofldummy}, 1, input) != l)
EXIT1("%s: ervor reading sizex\n", argv{0]);
sizex] = ntohl{durmy);
if (fread(&dummy, sizeofldummy), 4, mput) =1)
EXITI("%s: emor reading nbyte\s™, argv{0));
dummy = ntoh{dummy);
asseri(dummy== nbyte);
asseﬂ(nbytc == sizeof{*bmap));
bufist_size ='sizeyl * sizex];
B MALLOC OR_ELSE LlNTOK(bmap, buf.st_size, unsigned shon);
if- (frmd(bmap, nbyle, buFst_size, inpui) \= (size >_t) bufst_size)

US 8,271,251 B2
105 106

EX!'I‘Z("%s error neadmg %s\n", argv[O] pipe);’

. if (pclose(input))
EXITZ("%s error closmg %s\n", argv[O], plpe),

snzey = max(sizey0, snzeyl),
. sizex = max(sizex0, sizex1);
offx = atoi(argv[3]);
-offy = atoi(argv(4]);
xmin0 = max(0, -offx); .
xmax0 = min(sizex0, sizex] ooﬁ'x) 1;
ymin0 = max(0, -offy);
ymaxO = min(sizey0, sizeyl - offy) 1;
xmin] = max(0, offx);
" xmax] = min(sizex], sizex0 + ofix) - 1;
ymin] = max(0, offy);
ymax 1= miin(sizey1, sizey0 +offy)- 1;
(vmd) fprintf{stderr, "(%d,%d) to (%d, %d)\n" .
xmin0, ymin0, xmax0, ymax0);
(void) fprintf{stderr, "(%d,%d) to (%d,%d)\n",
xminl, ymml xmaxl ,ymax1);

assert(xmax0 - - xmin0==xmax1 - xmml),
assert(ymax0 - yminQ-== ymax| - yminl);
if ((xmax0 <= xmin0) || (ymax0 <= ymmO)) {
FREE_LINTOK(amap);
FREE LlNTOK(bmap)
if (xmaxO <= xmin{)
(void) fprintf(stderr, "width=%d\n", xmaxO xmmO),
if (ymax0 <= ymin0)
(void) fprintf{stderr, "height=%d!\n", ymaxO ymmO),
(void) printf{"%s %s %35d %5d 3\n", argv(1], argv{2}, ofx, offy);
retum (3);

)

width = xmax0 - xmin0;
#if PRIME_TRIM .

m=0;
for (i = 1; i <= (int) width; i *= 2)

for (j =1i; j <= (int) width; j *= 3)

for (k = j; k<= (int) width; k *= 5)
for (1= k; 1 <=(int) width; 1 *=7)
if(1> m))
m=l

“if ((int) width ! = m) {

xmax0 = (xmin0 += (width - m)/2) + m;
- xmax] = (xminl 4= (width - m)/2) + m;

(void) fprintfistderr, "width trimmed from %d to %d\n", width, m);

width= m; ’

} .
#endif 7 PRIME_TRIM */
height = ymax0 - ymin0;
#if PRIME_TRIM
m=0;
for (i = 1; i <= (int) height; i *=2)
for(j=ij<= (im) height; j *=3)
for (k = j; k <= (int) height; k *=5)
for (1= k; 1 <= (im) henght, 1%=17)
if (1>m)
mel;
m([ml) hcxght = m) {
ymsx0 = (ymin0 += (height - m)/2) + m;
ymax] = (ymin] += (height - m)/2) + m; :
(woid) fprintf{stderr, "height trimmed from %d to %d\n";
height, m);
height =_m,

) B
#endif 7* PRIME_TRIM ¥/

#if ZERO_FILL
* fill_height = height * 2;

US 8,271,251 B2
107 108

fill_width= width * 2;
tlelse /* ZERO_FILL ¥/
Il helght ‘(((mt) height * 5> snzey) 2 (int) height
((int) height * 10> sizey) ? s:zey /5:
(mt) hexght *2);
#f FILL_PAD.
if (A1l height < height +. FILL, , PAD) && (heighl >FILL PAD))
fill_height = height + FILL_PAD; -
#endif * FILL_PADY -~ .
#if PRIME_TRIM
-m= INT_MAX; -
for(i=1; |<m,|‘=2)
for=i;j<m;j*=3)
Tor(k=j; k <m; k*=S5)
for(l=k;1<m;1%=7)
if (1 >= (int) fill_height)
m=l;
xf int) ﬁll henght t=m) {
(void) fprintf{sidem, "fill helght padded from %d to %d\n
fill_height, m);
fill_height= m;

}
wendif /* PRIME_TRIM "/
fill_width= (((mt) width * § > sizex) ? (int) width :
((int) width * 10 > sizex) ? sizex /5 :
~(int) width * 2),)
#if FILL_PAD :
if (fill_ - width < width + FlLL . PAD) && (wndth > FILL_PAD))
fill_width= width+ FILL_PAD;
Hendif /* FILL_PAD */
#if PRIME TRIM
m= INT_| MAX;
for(i= l i<m;i*=2)
for(]=| jemj*=13)
for(k=j: k <m; k *=5)
for(l=k;1<m;1*=7)
if(l>= (mt) fill_width)
=l
if((int) fill_ wndth t= m) { -
. (void) fpnmﬁstdcrr, *fill_width padded from %d to %d\n" ’
fill_ wndth m),
Tlll_width = 'm;

}
#endif /* PRIME_TRIM */
#endif /* ZERO_ FILL %
CALLOC_OR ELSE LINTOK(a, fill helght . ﬁl] |_width, fitw_real);
CALLOC_OR_| ELSE " LINTOK(b, fill helgm * fill_width, ffiw_real);
suma = 0. 0
sumb = 0.0;
cnta = height * width;
cntb= height * width;
k = ymin0 * sizex0 + xmin0;
1= ymin} * sizex] '+ xminl;
m=0;
for(j=10; j <(int) height; +) {
for (i=0;.i <(int) width; ++i, ++m, +t], ++k){
suma += a{m]} = ntohs(amap{k]);
sumb += b{im] = niohs(bmapfl]);

k += sizex0 - width;
] 4= sizex] - width;
m +=1ill_width - width;

}

FREE LIN’FOK(amap),
FREE_LINTOK(bmap);
surna /= cnta;

sumb /= cntb;

m=0;
for.(j = 0; j < (int) height;++j) {

US 8,271,251 B2
109 110

for(|=0 i < (int) width; ++, ++m) {
a[m]=a[m] > sumﬂog(a[m]/sum) a[m]/sum 1.0;
b{m] = b[m] > sumb ? log(b[m] / sumb) : b{m] / sumb - 1.0;

} o
#if FILL_PAD
lo = afm - width];
hi=a[m-1}; = o
. - for (i = width; i < (int) fill_width; ++|, +m)
- #if FILL_HALVES ;
if (i < (int) (width + ﬁll _width)/2)
a[m) = (hi * (width + fill_width-1-i-i)/
o (fill_width - i- width)); :
else
a[m] (lo*(@+i+1-fill wndth wndth)/
- (fill_width - l wxdth)),
Helse /* FlLL HALVES */
a[m] = (hi * (fill_width - l -i)+ i
1o * (i - width)) / (fill_ wzdth l wndth),
#cndlf /* FILL_BALVES %/
-#if FILL_BOTH
m = fill_width - width;
lo="b{m - width};
hi=b[m-1];
for (i = width; i < (int) ﬁll width; ++, ++m) -
#if FILL_HALVES
if (i < (int) (width + fill w:dth) / 2)
b{m) = (hi * (width +fill_width-1-i- |)/
(fill_width - V- width)); -
else
bim]=(lo * (i +i+ 1 -fill_width - w:dth)/
(fill_width - 1 - wndlh)),
#else /* FILL_HALVES */
b[m] (hi * (fill_width- 1 - i) +
o * (i - width)) / (fill_width - 1 - width);
#endlf * FILL_HALVES */
‘#endif /* FILL_| “BOTH*/
‘Helse /* FlLL_PAD */
m +<= fill_width - width;
#endif /* FILL_PAD */

)
" #if FILL_PAD
for (i-= 0 i < (int) width; +H, ++m) {
1o = b[m - height * fill_width];
hi = bm - fill_width];
for (j = height; t; j < (int) fill _height; ++j, m += fill_width)’
#if FILL_HALVES
if (j < (int) (height + fill_height)/2)
bjm] = (hi * (height + fill_height-1-j-j)/
(ﬁll |_height - 1 - helghl)),
else
bim]=(lo*(+j+1-fill henght helght)/
= (fill_height - 1 - height));
#else /* FILL_HALVES */
b[m] (hi * (fill_height - 1 - j) +
lo * (j - height)) / (fill_height- 1 - henght),
#endxf ” FILL HALVES */
~#if FILL_| BOTH
m=(fill _height - height) * fill_width;
lo = a[m - height * fill_width],
hi = a[m - fill_width];
for (j = height; j < (int) fill_height; ++j, m +=fill_width)
#if FILL_HALVES .
if (j < (int) (height + fill_height)/ 2)
* a[m}= (hi * (height + fill_height-1-j-j)/
_) (fill helght 1 - height));
else
a[m)=(o * (j + j+1-fill_height - height) /
(fill_height - I - height));
~Hefse/* FILL_HALVES */ ~
a[m)=(hi * (fill- height - l j) +

US 8,271,251 B2

111

1o * - - height)) / (fill_ hcnght 1 - height);

#endif /* FILL_HALVES */
#iendif /# FILL_BOTH®/ .
. m = (fill_height - height) * fill_width;

}
#if FILL_SMOOTH
fori = width; i < (int) fill_ Wldlh +H) {
if (|>(mt)(ﬁll width - l+wndth)/ 2)
j=fill_width - l. E
else
j=i+1 - width; !
// j= hexght *j i /(fill_width - w:dth + l),
smooth(e + i, height, fill_ wndth 5}
#if FILL_BOTH:
smooth(b + i, height, £ill_width, j}
dendif /* FILL_BOTH */

} ' . ; : ,
for{j = height; j < (int) fill_height; ++j) {
if(j > (int) (fill_height - 1 + height) / 2)
i= fill_height - j;
ejse
i=j + 1 - height;
i i=width*i /{fill_height - height + l),
smooth(b + j * fill_ width, width, 1, i);
#if FILL_BOTH
smooth(a +j*fill ‘width, width, 1, 1),
Hendif /* FH.L_BOTH */ ’

)
tiendif /* FILL_SMOOTH */
#endif /* FILL_PAD %/
sizey = fill_height;
sizex = fill_width;

#if USE_WISDOM

. if((input = Topen("fM.wisdom", “r")) I= NULL) {
{void) fitw_import_wisdom_| ﬁom ﬁle(mput),

. (void) fclose(input); .

}
p= xfflw2d create _pIan(sxzcy snzex,FFl'W REAL_TO_COMPLEX,
. FFTW MEASUREl FFTW_USE _WISDOM);

#clsc /* USE_ WISDOM */

p= riftw2d_create_plan(sizey, sizex, FFI'W REAL_TO. COMPLEX,
~ FFTW ESTIMATE),

“Hendif /* USE_WISDOM */

MALLOC_¢ OR ELSE_LINTOK(A, sizey * (sizex /2 + l), fitw complex),

rfftwnd_onc_| ml 10, complex(p, a, A);
#nf'DlSPLAY BUFFERS
FREE_LINTOK(a);
‘#endif /* \DISPLAY_BUFFERS ¢/

MALLOC_OR | ELSE ._LINTOK(B, sizey * (snzcx /12+1), fiw complex),

rifiwnd_one_; real to complex(p,b B);
#if 'DISPLAY_| BUFFERS
FREE_LINTOK(b);
tiendif /* 'DISPLAY_BUFFERS */
riftwnd desuoy _plan(p).

MALLOC ¢ OR ELSE LINTOK(C snzey . (swex /2 +1), fliw_complex);

norm= 1.0 I-(s:zey * sizex);
#if PHASE_CORRELATION
#if LAPLACIAN ©
#define Q sqn(20.0 * NPTS)
#define-Q2(20.0 * NPTS)
norm *=Q2/2.0/M_Pl;
#endif # LAPLACIAN */
-#endif * PHASE CORRELATION */
m=0;
for(j= 0; j <sizey; +4j) {
#if PHASE_CORRELATION
-#if LAPLACIAN

-sumb = (ffiw_ mai)((Ps:zey/Z)"stzcy -j:j)/ sizey;

112

US 8,271,251 B2
113 114

sumb *= sumb;
‘Hendif /* LAPLACIAN */ ..
#endif /* PHASE_CORRELATION '/
for(x=0 |<s|zcx/2+1 ++|.-H~m) {
fiiw_real - scale,

,#11‘ PHASE_CORRELATION - : :
: T ((scale = sgrt(A[m].re * A[m] re+ Alm).im * A[m).im) *
sqry(B[m].re * B[m] re + B{m].im * B[m).im)) = >0)
scale = norm / scale;
‘#if LAPLACIAN : :
suma = (fiiw_real}i/ slza,
suma *= suma;
‘ scale *= exp(-sqri(Q2 * (suma + sumb)));
#endif /* LAPLACIAN */)
#else /* PHASE_CORRELATION ¢/
scale = norm;
- #fendif /* PHASE_CORRELATION */
: . C[m).re = (A[m].re * B[m).re + A[m].im * B[m).im) * scale;.
C[m].im = (A[m}.im * B[m).re - A[m).re * B[m}.im) * scale;
)'} . . .
. FREE_LINTOK(A);
FREE_LINTOK(B);
#if USE_WISDOM
Q= lfﬁw2d create_plan(sizey, sizex, FFTW COMPLEX TO REAL,
FFTW_MEASURE | FFI'W _USE WISDOM)
#else /* USE_ WISDOM */
q= rﬂ‘thd create_plan(sizey, sizex, FFTW COMPLB(_TO_REAL,
FFTW_ ESTIMATE);
4endif /* USE_WISDOM */
MALLOC:OR_ELSE_LINTOK(c, sizey * sizex, fitw_real);
rfiwnd_one complex to real(q,C c)
FREE LINTOK(C),
rifiwnd_destroy_plan(q);
#if USE WISDOM :
if ((mpul fopen("fi.wisdom", "w")) != NULL) {
(void) fitw_export_wisdom_to_fi le(mpm)
(void) fclosc(mput),

)
#endif /* USE_WISDOM */

bufst_size = sizey * sizex;
#if USE_FLOAT
lo= FLT_MAX;
=-FLT_MAX;
for (i= 0; i < NPTS; ++i)
V{i] = -FLT_MAX;
#clsc /* USE_FLOAT ¢/
lo=DBL _| MAX;
hi-= -DBL MAX;
for(i=0, |<NPTS ++i)
- Vji}=-DBL_MAX;
#endif /* USE_FLOAT ¢/
m-= height *. width/2;
for(i = 0; i < buf.s1_size; ++i) {
ifg=i/ sizcx) >.sizey / 2)
.l = sizey;
if (k=i % sizex) >sizex / 2)
* = sizex;
UG <02 : j) *width +
Tk <0 ? -k:'k) * height) > (unsigned) m)
continue;

if (lo > {i))

US 8,271,251 B2
115 116

suma = X0/ (sizex /.2);
sumb = Y0 / (sizey / 2);
normm = Z0 * (1.0 - suma suma) 1.0- sumb‘ sumb); .
for (1= NPTS - 1;1>=0; -]
if (nomm < V[l])
break;

" while(++ < NPTS) {
: . ffiw_real © temp;

!emp = Xlll; '
X[= X0;
-X0 = temp;
temp = Y[1];
Y[} = YO,
Y0 = temp;
temp = Z[1];
S Z)=20; . -
- Z0=temp;
temp = V{IJ;
V[1} = norm;
. norm = temp,;
} :
suma= 0.0;
sumb = 0.0;
nom = 0.0;
- 20=*Z;
if (20> 0.03) {
for (m= 0; m < NPTS; ++m) {
if (Z[m) < 0.5 * Z0)
suma += X{m} * Z[m};
sumb += Y[m] * Z{m};
norm += Z[m];
y o '
suma /= norm;
sumb /= norm;

}
for(i=0; 1<NPTS H-:){
. if (Zfi) < 0.5 * Z0) {
V{i] = 0.0;
‘continue;

norm = ((X[i] - suma) * (X[i] - suma) +
: (Y[i] - sumb) * (Y[i] - sumb));
if (norm <NPTS*M_2_PI* Z{:]/ZD)
V[i} = 1.0;
else
Vii} = 0.0;

}
m=fn 2d_parabola(NPTS, Z, V, X, Y, &AO0, &Al, &XO &YO0, &71) ‘&ZV);
lf((m<0)ll(20<0 0 { :

A0="Z;

Al =-A0*M_| Pl | 2/Q; .
~ X0 =suma;

‘Y0 = sumb;

20="Z;,

) .
Zv=00;
i=0; '
for(i=0; |<NPTS ++1)(
if (Z[i] < 0.5 *.20) {
Vi) =-V[i);
. continue; -

) _) .

norm = (X[i} - X0) * (X[i] - X0) + (Y[i] - Y0) * (Y[i] - YO);

if (norm > NPTS *M_2_P]) && (Z[l] <0.85* 20))
continue;

norm= A0+ Al * nomm -Z{i};

ZV += norm * norm;

US 8,271,251 B2
117 118

st

}:
ZV=sq(ZV /(G- 1))
' :f((m>=0)&&(2.0>=0l)&&(ZD<ZV‘(Q/30))){

AD="*Z,
Al=-A0*M_P1 2/Q;
X0=suma;
YO0 = sumb; -
ZD=‘Z, ’

)
(void) fpnntf(stdetr "x0=%g, y0=%g z0=%g, 2v=%g, zv/zO=%g\n" .
- X0,Y0,20,ZV, ZV / Z0); .
for (i = NPTS - 1; i >=0; i) {
if (Z[i] <0.95 . Z0)
continue;
if (X[i} = rint(X0)) && I\ [l] = rmt(YO)))
break;

} -
if (20<0.2)
(void) fprintf{stderr, "**** Z0 = %g\n Z0); -
if(ZV>02*(1.5/Q)) :
(void) fprintf{stderr, "**** ZV = %g\n" FAY RS
if(i<0)
(VOld) fputs("‘“" WHATI? nn.l\nu stden')
else if (i 1= 0))
(void) fprinmf{stderr, "**** peak at (%g,%g) not (%g,%g)\n")
X[, YL, *X, *Y); .
lf((l <0)II (zo<o. D@ <zv *(Q/3.0))

' else lf((ZD <02)[[(Z0<ZV * (Q/.1.5))
me=2;
else
m=0;
(void) printf{"%s %s %5.0f %5.0f %d %8.2f %8.2f %. 3f%.31\n"
argv{1], argv{2], offx - rin(X0), offy - rint(Y0),
m, offx - X0, offy - Y0, Z0, ZV * (Q/ s)/m),
(void) fputs("**** PHOOEY ****\5", siderr);
for (i = 0; i < NPTS; ++) {
norm= A0+ Al * ((X[x] XO0) * (X[i] - X0) + :
(Yli] - YO0) * (Y[i] - YO));
(void) fpnmf(stdm *v=%3g, x=%3g, y=%3g, =%. 6f ",
: V[l] x[l], Y[']v Z[’])r
(void) fpnmf(stdcn' "p=%.6f d=%6.3f\n",
norm, |00 0 * (Z{i) - norm));

)
norm = (10.0 - 0.1)/ (hi - lo);
(void) fprintf{stderr, "lo=%g, hi=%g, norm—%g\n" lo, hl, nonn),
MALLOC_OR_ELSE LlNTOK(map. buf.st_size, unsigned char);
for(i=0;i< buf.st _size; +H) {
J=(|/s|zex+S|zey/2)%szey,
k = (i % sizex + sizex / 2) % sizex;
1= ((j > sizey / 2 ? sizey - j : j) * width+
(k > sizex /2 7 sizex - k : k) * height);
1= (1 - height * width/2 + height + width) / (height + wndth),
i {((= 0) && (k >20) && (k <sizex - 20)) |
((k==0) && (J >20) && (j < sizey - 20)))
mapli] = NC-2
elseif 1==1) i
: - map[i]=NC- 1,
else {
© O l=jtsizex+k;
1=(MC/M_| LNIOI20)"
‘(Jog((c[1] - o) * norm + 0.1) + M_LNI10)); .
mapli] = (1<0) 20 : (1> MC) ? MC: (unsigned char) ;

)

"
* Open connection to X-Server’
‘/ N N

US 8,271,251 B2
119

120

if ((dpy = XOpenDisplay(CHARNULL)) = DISPLAYNULL) -
EXIT4("%s: unable to connect to X-Windows server\n", argv{0]);)
")
* Get a pseudo-color visual
¢/
templatc class = PsendoColot;
vxsmfo = XGetVnsuallnfo(dpy, (long) VlsualCIassMask,
: &templete, &mlcms),
if (vrsmfo = VISUALNULL)
~ -EXIT)I("%s: unable to get pseudocolor wsnal\n", argv[O]),
visual = visinfo->visual;
_depth = visinfo->depth;

/‘
* Get our own colormap
8/
_screen = DefaullScreenOiDlsplay(dpy),
colomap = XCreateColormap(dpy, RoothdowOfScrem(screcn),
visual, AllocAll);
'* Cakulate the sizehints
*/
width-= sizex > 640 ? 640 : sizex;
height = sizey >512°? 512 : sizey; -
. sizehints.flags = PSize | PPosition; -
w(argc == 6) {
i = XParseGeometry(argv[5), &dx, &dy, &wtdth &helgln),
if (i & (WidthValue | HeighVelue)) {
sizehints.flags &= ~PSize;
‘sizehints.flags = USS;zc;

if (width > (un51gned) sucx)
: width = sizex;
else if (width < (unsngned) sizex /4)
width = sizex / 4;
width = (width + 0xf) & ~Oxf;
if (height> (unsngned) sizey)
height = sizey;
else if (helght <(unsigned) sizey / 4)
- height = sizey / 4;
height = (height + Oxf) & ~0xf;
if (i &{XValue | YValue)) {
- 'sizehints.flags &= ~PPosition;
uehmts flags = USPosmon,

)
if(i & XNegauve)

dx += WidthOfScreen(screen) - width - 12;
if (i & YNegative)

dy += HeightOfScreen(screen) - height - 35
}
else {
width = (width + 0xf) & ~Oxf;
 height = (height +0x{) & ~0xf;
} o I
* Create a wmdow on- the screen
*/
xswa.border, _p:xel MC
“xswa.background_pixel = 0;)
xswa:colormap = colormap;
mask = CW-Colormap | CWBackPixel | CWBorderPlxel
window = XCreateWindow(dpy, RootWindowOfScreen(screen), dx, dy,
width, height, 3, (im) depth,]nputOutput,
visual, mask, &xswa);
. ./"

* Create our own graphics‘context

US 8,271,251 B2
121 122

¢/
values.foreground = MC,; ..
vafues background = 0;
mask = GCForeground | GCBackground,;
gc = XCreateGC(dpy, window, mask, &values);

ro .
-+ * Define our own cursor
s .
~ cursor = XCreateFontCursor(dpy, XC_crosshair);
XDeﬁneCursor(dpy, window, cursor);

A
" * Setup for lCCCM delete wmdow
¥
wm_piotocols = XInternAtom(dpy, "WM PROTOCOLS" False); '
wm_delete_window = XInternAtom({dpy, "WM _DELETE_WINDOW" , False);
(void) XSelWMPmtocols(dpy. window, &wm_delete wmdow, 1);

[.
* Set hints and properties
‘/ :
sizehints.x = dx;
sizehints.y = dy;
sizehints.width = width;
sizehints.| henghl = height;
sizehints.min_width = (sizex / 4 + 0xf) & ~0xf;
if (sizehints.min_ width > 640) '
sizehints.min_width = 640;
sizehints.min he:ght (sizey /4 + Oxf) & ~0xf,
if (sizehints.min_height > 512)
sizehints.min_height= 512;

_ sizehints.max_width = {(unsigned) sizex + Oxf) & ~Oxf;
width = DisplayWidth{dpy, DefauliScreen(dpy)) - 16;
if (sizehints.max_width > (int) width)

sizehints.max_' ‘width = width;
sizehints.max helght = ((unsigned) sizey + Oxf) & ~Oxf;
height = DisplayHeight(dpy, DefaultScreen(dpy)) - 32
if (sizehints.max_height > (int) height)

sizehints.max helght he:ght,
sizehints.width_inc = 16;
snzehmtsjmght inc=16;
sizehints.flags = (PSize | PPosition | :

PMinSize | PMaxS:ze | PResizelnc);
(void) spnmﬂpxpe, "%s * %s" ormnum(argv[l]), onunum(argv[Z])),
XSe1StandardProperties(dpy, window, pipe, pipe,
) None, argv, argc, &sizehints);

classhints.res_class = "view"; i
classhints.res_name = "view";
XSetClassHmt(dpy, window, &clmhmts)

T . .
* Wait for window to be lmpped
*/
XSelectlnput(dpy, window, EVENTS),
XMapWindow(dpy, window);
XWindowEvent(dpy, window, ExposureMask, &event);
(voxd) XGetGeomcuy(dpy, window, &root, &dummy, &dummy,
&wndth &height, (unsigned *) &dummy, &depth),

I. .
* Create an image
*/
image= XCrealelmage(dpy, visual, depth, ZPixmap, 0,
(char *) map, sizex, sizey, 8, 0);
if{image->bytes_per_line == 4 * sizex) {
MALLOC_OR_ELSE_LINTOK(map32, buf.st_size, unsngned long),
for (i=0; i < bufst |_size; ++i)
map32(i] = mapli}; -
image->data = (char *) map32;

US 8,271,251 B2
123 124

. else if (image->bytes_per_line != snzex)
EXIT2("%s: | can' deal with %d bytes per hne'\n"
’ ;rgv[O], image->bytes_per_line); --

/‘ .
. Create a large pumap
*/
pixmap = XlecPlxmap(dpy, window, sizex, swey, dep1h),
XPutlmage(dpy, pixmap, gc, image, 0, 0, 0, 0, sizex, sizey);
r~ ’)
* Loop foxcvcr ’
‘/ s
x-={sizex - width) / 2;
y=«sizey - height)/ 2;
x += (int) riny(X0);
y += (int) rin(YO);
min = 0;
max-= height;
while ({done) {-
XNextEvent(dpy, &event);
switch (event.type) {
case ClientMessage:
if (event.xclient.message_type = wm_protocols &&
(Atom) eventxclient. dam.l[O] w="wm_delete; wmdow)
done=1;
else o
. XBell(dpy, 0);
break;
<case Expose:
update = 1;
v break;
case ConfigureNotify:
" .
- 'Save new wmdow slze
*/
“if (CONFIGEVENI‘->width > sizex)
CONFIGEVENT->width = sizex; ’
min = min * CONFIGEVENT->width / (int) width;
width = CONFIGEVENT->width;
if (CONFIGEVENT->height > sxzey)
CONFIGEVENT->height = sizey.
max = max * CONF| lGEVENT->he1ght l (int) height;
height = CONFIGEVENT->he|ght
update = 1;
cmap=1;
break;
case ButtonPress:
case ButtonRelease:
* switch (BU'!TONEVENI‘obutlon) (
case Button):
if (event.type = ButtonRelease) {

"* Make gy final movement

Y .
X = BWONEVENféx -dx;
if (x <0)

x=0;
else if (x > sizex - (int) width)
= sizex - width;
y -= BUTTONEVENT->y -@y;
if(y<0)
y=0;
clse if (y >-sizey - (int) height)
y = sizey - height;
update =1;

US 8,271,251 B2
125 126

* Save Jocation where button pressed
*/ .

dx = BUTTONEVENT.>x; |

dy = BUTTONEVENT.: ~>y,

break;
case Button2:

|f (event.type= BunonRelease) 1

" ' . :

* Make any final movement

s/
min += BUTTONEVENT->x - mx;
max += BUTTONEVENTOy - my;
‘cmap= 1; :

)

P .
* Save location where button pressed -
'/ . .
mx = BUTTONEVENT->x;
my = BUTTONEVENT->y,
break;
case Button3: ’
if (event.type = ButtonPnss) {
" #if DISPLAY_BUFFERS
e=(e+1)%3
T de(e?e=1 "a:b:c);.
lo=DBL_MAX; .
hi=-DBL_MAX; "~
for (i = 0; i < buf.st_size; ++i) {
if (Jo > d[i])
- lo=d[i};
if (hi <d[i))
hi = dfi};

}
nom = (100 0.1)/(hi - lo); -
(void) fpnntﬂstden "lo=%g, hi=%g, nomF%g\n'
. lo, hi, norm);
for(i= 0, i <buf.st_size; ++i) { .
if (e =0){ i
= (i / sizex + sizey /2) % sizey;
k (i % sizex + sizex / 2) % sizex;
if (== 0) && (k > 20) && (k < sizex - 20)) || .
((k=0)&&(1>20)&&0<m=y -20)) {
map(i] = NC -
continue;

1= * sizex +k;

else
1=i;
1= ((MC/M_LN10/2.0)*
(log((d[1] - lo) * norm + 0.1) + M LNlO)),
mapl[i}=((1<0)?0:
(1> MC)?MC: (unsigned char) I

}

XPutImage(dpy.plxunap gc, mage, .
. -0,0,0, 0, sizex, sizey);
update= 1;

_min=0;
. max = height;
cmap =1
~delse /* D]SPLAY BUFFERS */ :
_bx-=off_x + BUTTONEVENT=>x;
by = 6ff_y + BUTTONEVENT->y;
j="by+ sizey / 2) % sizey;
k ={bx + sizex /2) % sizex;
=] *sizex +k;

US 8,271,251 B2
127

(vmd) fprintfisderr, "x = %ld, y = %Id, p = %g (%d)\n"
‘bx - sizex + sizex / 2,
by - sizey + sizey / 2,
bx < sizex ? by < sizey ?
cfl) : 0.0:0.0,
bx < sizex ? by < sizey ?
mapfby * sizex + bx] 0: 0),
XDrawPomt(dpy, window; ge,
: BU'ITONEVENT~>x BUTTONEVENTD)'),
#endlf " DlSPLAY BUFFERS */
}
.} break: .
break;
case MotionNotify:
if (MOT IONEVENT~>sme & Button]Mask) {

,.
* Only do this for butlon]
*
while (XCheckMaskEvent(dpy, ButtonlMouonMask, &zvmt))
‘continue;.
(void) XQueryPomter(dpy, window, &root, &chlld
&root_x, &root_y,
’ &win_x, &wm .y, &keys buttons),
if (keys buttons & BunonlMask) (

T :
* Only if button is still pressed
e
X = win_x - dx;
dx = win_X;
y = win_y - dy;
dy-= win_yY,;
update=1; -
}

) L _
if (MOTIONEVENT->state & Button2Mask) {

/‘
* Only do this for button 2

while (XCheckMaskEvem(dpy, Bunon2MouonMask, &zvem))
continue;
(void) XQueryPointer(dpy, window, &root &chlld
. &root_x, &root_y,
&win_x, &win_y, &keys_| buttons),
if (keys buttons & Bunon2Mask) {

Lo .
* Only if button is still pressed
*/
min 4= win_x - mx;
mx = win_X; -
max += win_y - my;
, my=winy, -
cmap=1;
)
break; -
case LeaveNotify:
XUninstaliCdtormap(dpy, eo]onnap)
break;

} v
if (update) {
if ((off_x = x)<0)
. off x=0;
else if’ (oﬁ‘ x > sizex -(int) w:dth)
off_x = sizex - width;
if((ofl_y=y)<0)

128

US 8,271,251 B2
129

oﬂ' _y=0;
else if (off Ly> sizey - (int) hexght)
off_y = sizey - height;
XCopyArea(dpy, pixmap, wmdow, ge,
off_x, ofl_y, width, height, 0,0); -
update = 0; : . .

}
- if (el map) {
#define LN100(2 * M_LNI0).
(void) fprintf{siderr, "min = %.6f, max = %.6f *", .
0.1 * expm1(min * LNIOO/w1dth)lnonn+ lo,
. 0.1 *.expm](max * LN]OO/helght)lnonn-f Io),
scale = 65535 0 * height / (MC * (max * width - -min * helghl)),
for (i = 0; i <=MC; ++) {
if (i * (int) width <= MC * min) { .
= cells[i].red = cells[i].green = 0x0000;
#if FALSE_COLOR .
cells[i}.blue = 0x0000;
#else /* FALSE_COLOR */
. cellsfi].blue = Ox7ffT;
#endlf * FALSE_COLOR */ -

}
else if (i * (int) height >= MC - max) {
. cellsi).red = OxfHif;
#if FALSE_COLOR
celis[i). green = cellsfi).blue = Oxﬁ’ff
" #else /* FALSE_COLOR */
. cells[i}.green = cells[i}. blue 0x0000
#endif /* FALSE_COLOR */ :
-}
else {
#if FALSE_COLOR -
j—6'seale‘(| ‘width - MC * min);
- switch (j / 65536) {
case 0:
cells[i].red = 1 * Oxff¥T - j; -
cells[i].green = 0x0000;
cellsi].blue = OxfFT; '
. break;
casel: .
. cells|i).red = 0x0000; -
cellsfi).green=j- 1 * Oxﬁf;
+ cells[i).blue=Oxfiff; -~ -
- break;

case2: i
cellsi].red = 0x0000;
cells{i).green = Oxfiif;
celis[i).blue =3 * Oxfi¥ - j;
break;
case 3: "

- cellsfi].red = j - 3 * OxfH;
cells[i].green = OxfHT;
cells[i}.blue = 0x0000;
break; ’

. case4:)
~ cellsi].red = Oxfiff;
- cells[i).green = 5 * Oxffff - j;
cells[i].blue = 0x0000;
. break;
" case 5:

" cells[i).red = OxfiiT;
cells[i}.green = 0x0000;
cells[i).blue = , -4 * Ox AT,
break;

}
+Helse /* FA$SE COLOR */
value = scale * (i * width - MC * min);
celisi].red = cells[i}. green celis|i].blue = value;
#endlf 1* FALSE_GOLOR ‘/ : .
)

130

}

US 8,271,251 B2
131 132

cells[:] pixel=i;
cells[i}.flags = DoRed] DoGreen | DoBlue,

}
cells{NC - 1].red= 0x0000

-cellsfNC - 1].green = 0x7ﬂf

cells[NC 1}.blue = 0x0000;

cells[NC - 1].pixel=NC - 1; -

cells[NC - 1]).flags:= DoRcd | DoGreen | DoBlue;
cells[NC - 2).red = 0x0000; :
cells[NC - 2].green = 0x0000;

cells[NC - 2].blue = 0x0000;

-cells[NC - 2]).pixel = NC - 2;

cells[NC - 2] flags = DoRed | DoGreen | DoBlue;

' XStoreColors(dpy, colormap, cells, NC);

cmap = 0;

} : .
XCloseDisplay(dpy);

-#if DISPLAY_BUFFERS
FREE_LINTOK(a),
FREE_LINTOK(b);

#iendif /* DISPLAY_BUFFERS */
" FREE_LINTOK(c);
retum (m);

}

US 8,271,251 B2

133

It should be understood that the description, specific
examples and data, while indicating exemplary embodi-
ments, are given by way of illustration and are not intended to
limit the present invention(s) in this disclosure. All references
cited herein for any reason, are specifically and entirely incor-
porated by reference. Various changes and modifications
which will become apparent to a skilled artisan from this
disclosure are considered part of the invention(s) of this dis-
closure.

In the appended claims, the articles such as “a,” “an,” “the”
and the like can mean one or more than one, and are not
intended in any way to limit the terms that follow to their
singular form, unless expressly noted otherwise. Unless oth-
erwise indicated, any claim which contains the word “or” to
indicate alternatives shall be satisfied if one, more than one, or
all of the alternatives denoted by the word “or” are present in
an embodiment which otherwise meets the limitations of such
claim.

We claim:
1. A computer-implemented method for processing a series
of overlapping optical images, comprising:
flattening a first optical image and a second optical image;
aligning overlapping regions of said first optical image and
said second optical image, wherein said aligning com-
prises:
determining an initial offset estimate of alignment
between said first optical image and said second opti-
cal image based on initial scale and angle values;
calculating a pair of sub-offsets to determine an error of

said initial offset estimate comprising identifying a
location of the best correlation (peak) within data
patterns of a first sub-image and a second sub-image,
wherein said first sub-image and said second sub-
image are regions of said first optical image and said
second optical image, respectively, that overlap as
determined by said initial offset estimate, said identi-
fying comprising the ordered steps of:

1) copying said first sub-image into a first work area;

2) copying said second sub-image into a second work
area;

3) calculating an average intensity and normalizing
pixel intensity values within each of said first sub-
image and said second sub-image;

4) adding a pad-area along a first edge of each of said
first sub-image and said second sub-image;

5) adding a fill-area along a second edge of each of
said first sub-image and said second sub-image,
wherein said second edge is adjacent to said first
edge on each of said first sub-image and said sec-
ond sub-image;

6) filling each of said pad-areas and said fill-areas
with predetermined values in a predetermined
manner; and

7) calculating a Cross Correlation Function for each
image of said first sub-image and said second sub-
image, comprising the steps of:

a) transforming said image data from intensity to
frequency space to produce transform coeffi-
cients;

b) multiplying, in a point-wise fashion, said trans-
form coefficients to produce point-wise multipli-
cation results;

¢) frequency whitening said point-wise multiplica-
tion results to produce frequency whitening
results;

25

30

35

40

45

50

60

65

134

d) applying a Laplacian filter to said frequency
whitening results to produce Laplacian filter
results; and

e) transforming said Laplacian filter results from
frequency to intensity space to produce said
Cross-Correlation Function, wherein said Cross
Correlation Function provides said pair of sub-
offsets; and

producing adjusted element and line distances for more
precise alignment of said overlapping regions of said
first optical image and said second optical image by
adding said sub-offsets to said initial offset estimate;

overwriting and merging said first optical image and said
second optical image to create a merged image,
wherein said order of said steps of said flattening and
said overlapping are order-independent when both of
said steps occur prior to said-overwriting and merg-
ing; and

displaying said merged image on a user interface.

2. The computer-implemented method of claim 1, wherein
said first optical image and said second optical image are
collected in series within a column or row that overlap one
another, or are collected in series within a column or row that
overlap one another within the column or row and also over-
lap with other images in adjacent columns or rows, said other
images flanking either or both sides of said first optical image
and said second optical image.

3. The computer-implemented method according to claim
2, wherein said initial offset estimate of alignment is based on
the LUDL motor movement, the skew between the axes of a
microscope stage and a camera detector, and scaling wherein
said scaling is the difference in size between one step of said
LUDL motor movement and the number of pixels a detected
image moves across the camera detector.

4. The method according to claim 1, wherein said adding of
said pad-areas and said fill-areas and said filling of each of
said pad-areas and said fill-areas comprises the ordered steps
of:

1) appending a pad-area and a fill-area respectively along
two adjacent sides of each of said first sub-image and
said second sub-image such that said pad-area extends
as a border along the edge of one side of the first sub-
image and abuts and is adjacent to said fill-area border-
ing along the entire, adjacent, second side of said first-
sub-image, and the positions of said adjacent pad-area
and fill-area on said first sub image are switched with
respect to each other on the second sub image, wherein
said fill-area on said second sub-image borders along the
entire side adjacent to said pad-area for said first sub-
image;

2) filling said pad-area vertically with smoothly interpo-
lated values that range between the top and bottom edges
of said first sub-image;

3) filling said fill-area of said first sub-image with zeros;

for said second sub-image, filling said pad-area horizon-
tally with smoothly interpolated values that range
between those along the right and left edges of said
second sub-image; and

4) filling said fill-area of said second sub-image with zeros.

5. The method of claim 4, wherein each of said pad-area
and fill-area represents a border wherein the width of said
border is equal to no more than twice the mechanical error
associated with optical image collection in the system.

US 8,271,251 B2

135

6. The method according to claim 5, wherein said normal-
izing pixel intensity values comprises for each pixel:

if an intensity value of said pixel is greater than said aver-
age intensity, a natural log-transformation of the ratio of
said intensity value of said pixel to said average inten-
sity; and

if said intensity value of said pixel is less than said average
intensity, subtracting 1.0 from said ratio of said intensity
value of said pixel to said average intensity.

7. The method according to claim 6, wherein said overwrit-

ing and merging comprises:

for each of said first optical image and said second optical
image, overwriting bleached pixel intensity data within
a region of overlap exposed to a light source more than
once with the stronger pixel intensity data from the
identical region of overlap on either said flattened first
optical image or said flattened second optical image
exposed to said light source only once to produce a first
overwritten image and a second overwritten image to
replace said flattened first optical image and flattened
second optical image, respectively; and

20

136

merging of said first overwritten image and said second
overwritten image to produce a single merged image for
visualization in the system;

merging said single merged image with a series of over-

written optical images in the sequential order in which
said series of overwritten optical images were initially
collected to produce a single virtual superimage.

8. The method according to claim 7, wherein a linear blend-
ing of intensity values is achieved in a transition region
between said overwritten regions and non-overwritten
regions, wherein said intensity values at the edge of said
overwritten regions are identical to those in said non-over-
written regions and wherein said transition region is 20 pixels
in width.

9. The method according to claim 8, wherein each image
within said series of overwritten optical images is retained as
a separate file on a processing computer, despite said merging
for visualization of contents of said microchannel or other
area.

	Bibliography
	Abstract
	Drawings
	Description
	Claims

