
c12) United States Patent
Christodorescu et al.

(54) METHOD AND APPARATUS TO DETECT
MALICIOUS SOFTWARE

(75) Inventors: Mihai Christodorescu, Madison, WI
(US); Somesh Jha, Madison, WI (US)

(73) Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 1341 days.

(21) Appl. No.: 10/629,292

(22) Filed:

(65)

Jul. 29, 2003

Prior Publication Data

(51)

(52)

(58)

(56)

US 2005/0028002 Al Feb.3,2005

Int. Cl.
G06F 11100 (2006.01)
G06F 12114 (2006.01)
G06F 12116 (2006.01)
G0SB 23100 (2006.01)
U.S. Cl. 726/24; 713/165; 713/187;

713/188; 726/26
Field of Classification Search 726/24
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,357,008 Bl* 3/2002 Nachenberg 726/24

22

SYNONYMS

I 1111111111111111 11111 111111111111111 1111111111 11111 111111111111111 IIII IIII
US007739737B2

(IO) Patent No.: US 7,739,737 B2
Jun.15,2010 (45) Date of Patent:

6,594,783 Bl* 7/2003 Dollin et al 714/38
6,851,057 Bl* 2/2005 Nachenberg 726/24
7,036,111 B2 * 4/2006 Dollin et al 717/126
7,069,589 B2 * 6/2006 Schmal! et al 726/24
7,188,369 B2 * 3/2007 Ho et al. 726/24

OTHER PUBLICATIONS

Christodorescu, Mihai, "Detecting Malicous Patterns in Executables
via Model Cehcking", University of Wisconsin, Madison, Jul. 12,
2002, pp. 1-15.*

Christodorescu et al., "Static Analysis of Executables to Detect
Malicous Patterns", University of Wisconsin, Feb. 2003, pp. 1-21.*

* cited by examiner

Primary Examiner-Michael Pyzocha
Assistant Examiner-Shewaye Gelagay
(74) Attorney, Agent, or Firm-Boyle Fredrickson, S.C.

(57) ABSTRACT

A technique for finding malicious code such as viruses in an
executable binary file converts the executable binary to a
function unique form to which function unique forms of virus
code may be compared. By avoiding direct comparison of the
expression of the viral code but looking instead at its function,
obfuscation techniques intended to hide the virus code are
substantially reduced in effectiveness.

14 Claims, 2 Drawing Sheets

26 ------------,
STANDARDIZER

,v

ANNOTATOR

28

30

32
-77-------------

36

--11--

MALICIOUS
CODE

PATTERN

DETECTOR

__ _J

54 NO MATCH

U.S. Patent Jun.15,2010 Sheet 1 of 2 US 7,739,737 B2

12 y-10 12' ,-14

1 mov eax 42h jmp Sl 1'
pop edx add [spl, lCh 2'
add edx, lCh mov eax, [sp] 3'
pop ebx inc sp 4'

{) nop 5'

40---... jmp S2 6'
mov A 42h Sl: mov ebx, 42h 7'

jmp S3 8' pop B
S2: pop edx 9'

add B, lCh 0 FIG. 1
pop C ,16

17
17

22 26
1s-.......--,,,.,.,.,..,..,,,,.,.,......., ... ----- --------- ----------....

BINARY I .-------.....

14
EXECUTABLE I DISASSEMBLER STAND~RDIZER

20 ----, I \ ----....1 I rl. ________ J

STANDARD
28 DEFINITIONS

ANNOTATOR

SYNONYMS -77--+--------~
--lT-- 40

MALICIOUS
CODE

PATTERN

--------~ DETECTOR

FIG. 2 54

38

__ ..J

NO MATCH

U.S. Patent

28~

30

34

Jun.15,2010

pop A
add A,X

IRRELEVANT_JUM
(I J)

Sheet 2 of 2

add [sp], X

mov A, [sp]
inc s

jmp SI
Sl:

nop
IRRELEVANT_ INST.

(IJ) no
push X

36 pop X
inc X
dee X -

/31

IJ
mov A, 42h Sl:

IJ
pop B S3:

add B, lCh
II

IJ
pop C S2:

944

US 7,739,737 B2

FIG. 3

✓ /38
Sl l'

7'
8'
2'
3'
4'
5'
6'
9'

46

50
FIG. 4

US 7,739,737 B2
1

METHOD AND APPARATUS TO DETECT
MALICIOUS SOFTWARE

2
ing the essential function of the code. Such techniques may
include changing the static ordering of the instructions using
jump instructions (code transposition), substituting instruc­
tions of the signature with different synonym instructions STATEMENT REGARDING FEDERALLY

SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with United States government
support awarded by the following agency: NAVY/ONR
N00014-0l-1-0708. The United States has certain rights in
this invention.

5 providing the same function, changing the registers used by
the viral code, and the introduction of code ("dead code") that
does not modify the functionality of the virus.

Simple obfuscation may be countered by more complex
search instructions, "regular expressions" that ignore simple

10 dead code like no-op instructions at instruction boundaries.
Also new signatures can be developed for each different
obscured version of the viral code.

None.

CROSS-REFERENCE TO RELATED
APPLICATIONS

BACKGROUND OF THE INVENTION

More complex metamorphic viruses may evade these more
sophisticated signature detection systems by changing the

15 obfuscation specifics as the virus is propagated. Such viruses
may weave the viral code into the host program, also defeat­
ing the traditional heuristic approach to finding the virus.

The present invention relates to computer programs and, in
particular, to a computer program for detecting malicious 20
programs such as computer viruses and the like.

SUMMARY OF THE INVENTION

The present invention provides an ability to detect obfus­
cated malicious code signatures by effectively implementing
high level "function" signatures describing the function of the
malicious code rather than its "expression" as a string of
instructions. This functional analysis is made possible by a
preprocessor that converts the program instructions into a
standard form denoting their function. A search of the stan­
dard form of the suspect program for viral signatures in stan­
dard form is then used to detect the malicious code.

Specifically, the present invention provides a computer
program for identifying malicious portions in a suspect pro­
gram. The computer program comprises a preprocessor por­
tion for receiving a suspect program and creating a logically
equivalent standardized version of the program. A detector

In the interconnected world of computers, malicious pro­
grams have become an omnipresent and dangerous threat.
Such malicious programs include "viruses" that are programs
attached to other programs or documents that activate them- 25
selves within a host computer to self-replicate and attach to
other programs or documents for further dissemination.
"Worms" are programs that self-replicate to transmit them­
selves across a network. "Trojan horses" are programs that
masquerade as useful programs but contain portions to attack 30
the host computer or leak data. "Back doors" are programs
that open a system to external entities by subverting local
security measures intended to prevent remote access and con­
trol via a network. "Spyware" are programs that transmit
private-user data to an external entity. 35 portion of the computer program reviews the standardized

version of the suspect program against a library of standard­
ized malicious code portions to provide an output indicating
when a malicious code portion is present in the suspect pro-

Methods for detecting malicious programs may be classi­
fied as dynamic or static. In dynamic methods, the suspected
program is executed in a "sandbox". A sandbox is a safe
execution area created in a computer that uses hardware and/
or software to prevent the executing program from damaging 40

interaction with the computer and to monitor attempts at such
interaction, such as writing data outside of a predefined
memory area.

gram.
It is thus one object of the invention to provide a method of

detecting malicious code portions that is largely indifferent to
the expression of the malicious code but is instead sensitive to
the function of the malicious code. This functional analysis is
done by converting varying expressions into a standardized Static detection does not require execution of the suspected

program, but instead reads and analyzes the program instruc­
tions or "code" before it is executed. One "heuristic" detec­
tion technique looks for changes in certain program locations
(normally the beginning and end of the code) where the virus

45 form prior to application of signature analysis.

is likely to be attached. A second "signature" detection tech­
nique checks for known virus-specific sequences of instruc- 50

tions (virus signatures) inside the program. Such signature
detection is effective when the virus does not change signifi­
cantly over time and when multiple viruses have the same
signature.

Viruses may disguise their signature by encrypting them- 55

selves using a changing encryption key so that the encrypted
viral code is always different. In this case, the signature detec­
tion may be directed to signatures in unvarying decryption
programs. Another method of detecting encrypted viruses
executes the programs in a sandbox until they are decrypted 60

and then detects the decrypted virus using conventional static
techniques of signature analysis. This technique requires fre­
quent scanning of the in-memory image of the program while
the program executes.

Many signature-detection systems may be defeated by 65

relatively simple code obfuscation techniques that change the
signature of the virus or the decrypting code without chang-

The standardized version of the suspect program may iden­
tify the execution order of instructions, and the detector por­
tion may review the instructions of the standardized version
according to the execution order.

Thus, it is another object of the invention to provide a
detection system that is largely indifferent to code transposi­
tion.

The preprocessor may identify the execution order of the
instructions by generation of a controlled flow listing of the
instructions.

Thus, it is another object of the invention to provide a
detection system that can exploit conventional tools and tech­
niques used for program analysis.

The standardized version may map instructions of the sus­
pect program to corresponding standard synonym instruc­
tions.

Thus, it is another object of the invention to provide a
unique functional expression of code that may be used to
provide effective functional analysis.

The standard synonym instructions may be different in
number from the instructions of the suspect program to which
the synonym instructions map.

US 7,739,737 B2
3

Thus, it is another object of the invention to provide for a
translation of different implementations of the same function
when those different implementations may be expressed in
different numbers of instructions.

The standardized version may remove non-executing pro­
gram portions. This may be done by actually removing the
portions or tagging them so the detector ignores them.

Thus, it is another object of the invention to provide a
system for detecting malicious code that is largely indifferent
to dead code insertion.

The standardized version may use uninterrupted variables,
that is, variables not tied to a particular memory location or
register.

Thus, it is another object of the invention to decrease the
sensitivity of the invention to particular register or memory
locations such as are related to expression rather than function
of the code.

The suspect program may be a binary executable, and the
preprocessor portion may receive the binary executable to
generate a listing of instructions and data values.

Thus, it is another object of the invention to provide a
system that works with binary executables as is typically the
form in which infected programs are received.

The program may include a library of patterns matching to
one or more instructions of the suspect program, and the
preprocessor may create the standardized version by replac­
ing instructions of the suspect program with matching pat­
terns. The library of standardized malicious code portions
may also be collections of these patterns. Generally, a pattern
may be at least one instruction logically replacing one or more
corresponding instructions in the suspect program to perform
the same logical function, or may be a tag replacing one or
more instructions having no substantive effect in the execu­
tion of the program.

Thus, it is another object of the invention to provide a
simple mechanism for generating a standardized version that
may be readily supplemented as new functional equivalents
or methods of obfuscation are discovered or developed.

4
FIG. 3 is a graphical representation of a standard synonym

table used to convert the binary executable of FIG. 2 to a
standardized version; and

FIG. 4 is a diagram similar to that of FIG. 1 showing the
5 obfuscated program of FIG. 1 annotated per the present

invention to be received by the detector of FIG. 2.

10

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

Referring now to FIG. 1, raw code 10 from a malicious
program will be comprised of instruction lines 12 of instruc­
tions and/or data. The instruction lines 12 are typically part of
a binary executable but are shown in FIG. 1 in their source

15 code representation for clarity. Generally, the binary data of
the raw code 10 creates a pattern that may be recognized by a
standard virus detection program using signature detection.

In the example of FIG. 1, the first instruction line, labeled
(1), includes a mov instruction that moves the constant 42h

20 (hexadecimal) to the eax register of the computer. The second
instruction line (2) includes a pop instruction that takes data
off the computer stack and places it in the edx register. Third
instruction line (3) provides an add instruction that adds the
contents of the edx register (previously loaded by the second

25 instruction line) to the constant !Ch. Finally, the fourth
instruction line provides another pop instruction taking the
top value of the stack and placing it in the ebx register. The
example raw code 10 is not intended to represent a portion of
any particular malicious program but provides examples of

30 the sorts of instructions of which viruses and other malicious
code may be constructed.

The raw code 10 may be converted to obfuscated code 14
by a number of techniques. First, instruction lines may be
replaced with different instruction lines providing the same

35 function (synonym instructions), and registers may be reas­
signed, meaning that the same values are computed but stored
in different registers. For example, instruction lines (2) and
(3) of the raw code 10 may be replaced with synonym instruc-

A library of patterns may be implemented as a simple 40

look-up table.

tion lines (2'), (3'), and (4') of the obfuscated code 14. New
instruction line (2') provide an add instruction adding the hex
value of 1 Ch to the top of the stack. Instruction line (3')

Thus, it is another object of the invention to provide a
mechanism that may be easily augmented and simply imple­
mented.

provides a mov instruction moving the value in the top of the
stack to register eax and instruction line (4') provides an inc
instruction incrementing the stack pointer.

The detector portion may output a representation of the 45

malicious code portion when the malicious portion is present

The end computational result ofinstruction lines (2') to (4')
of obfuscated code 14 is the same as that of instruction lines
(2) and (3) of the raw code 10: a sum of the top value of the
stack and 1 Ch. For the obfuscated code 14, the register
holding this value is eax while for the raw code 10, the register

in the suspect program.
Thus, it is another object of the invention to provide a

detection system that may be easily added to other detection
systems for further analysis of the identified malicious code
portion.

These particular objects and advantages may apply to only
some embodiments falling within the claims and thus do not
define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram showing instructions of a portion of
malicious code as extracted to a standardized malicious code
pattern and as obfuscated using a variety of techniques of
code transposition, instruction synonyms, register reassign­
ment, and insertion of dead code;

FIG. 2 is a block diagram of the principle functional blocks
of the present invention showing receipt of a binary execut­
able and its analysis against a library of standard malicious
code patterns;

50 holding this value is edx, a change that has no functional
significance so long as the subsequent portions of the pro­
gram using this value also have had their registers reassigned
to look for it in register eax. Other register reassignments
replace registers eax and ebx in the raw code 10 with ebx and

55 edx, respectively, in the obfuscated code 14.
The raw code 10 may be further obfuscated by the addition

of a number of jmp instructions at instruction lines (1 '), (6')
and (8') which, by causing jumps in the execution order of the
instruction lines 12' of the obfuscated code 14, allow the

60 function of instruction line (1) of the raw code 10 (instruction
line (7') in the obfuscated code 14) to be placed after the
functions of instruction lines (2) and (3) (instruction lines
(2')-(4') in the obfuscated code 14) in the static ordering of the
instruction lines 12. Specifically, instruction line (1') of the

65 obfuscated code provides a jmp instruction causing the
executing program to jump to label Sl (instruction line (7').
Succeeding instruction line (8') provides a jmp instruction

US 7,739,737 B2
5

ausing a jump to label S3 (instruction line (2'). Instruction line
(6') provides a jmp instruction causing a jump to label S2
(instruction line (9'), the final instruction in the obfuscated
code 14. A static-ordered listing 16 of obfuscated code 14
shows the twisted execution thread 17 caused by these jumps. 5

This code transposition does not affect the function of the
obfuscated code 14, but changes the static ordering of the
instruction lines 12' defeating simple signature detection
techniques which read the instruction lines in static order.

Finally, the raw code 10 may be obfuscated by the addition 10

of nonfunctional instruction lines, in this example a nop (no
operation) instruction at instruction line (5'). More generally,
a non-functional instruction line may include instructions that
execute, but that could be removed with no effect on the core
function of the obfuscated code 14, for example, increment- 15

ing of a variable followed immediately by decrementing the
same variable or multiple successive reads or writes of the
same variable, or computations, the results of which are never
used.

Referring now to FIG. 2, a binary executable 18, possibly 20
including the obfuscated code 14, may be received by the
malicious code detection program 20 of the present invention.
The binary executable 18 is loaded into a disassembler/con­
trol-flow graph builder 22, the disassembler portion of which,
having a priori knowledge of the particular instruction set of
the binary executable 18, produces a listing of instruction 25

lines distinguishing instructions and data per a static-ordered
listing 16. The execution order of the disassembled instruc­
tions may be determined by an emulation of the control flow
of the instructions by a control-flow listing (CFG) builder to
produce an execution-ordered listing 24. The execution-or- 30

dered listing 24 indicates the execution order of the instruc­
tion lines 12 by reordering the instruction lines 12 or by
tagging them with execution order information. Conditional
jumps become execution ordered branches (not shown).

Disassemblers for this purpose are well known in the art, 35

and in a prototype of the present invention, the IDA PRO™
interactive disassembler commercially available from Data
Rescue of Liege, Belgium (www.datarescue.com) is used.
The execution-ordered listing 24 may be produced using
CodeSurfer™ by GranmiaTech, Inc. of Ithaca, N.Y. (www. 40
grammatech.com). CodeSurfer™ provides an application
programmer interface (API) that may be used with a custom
programming written in C Language.

The data of the control flow listing 24 is passed to a stan­
dardizer/annotator 26 written in C using the Code Surfer API

45
which completes a standardized version 31 of the instruction
lines 12' of the execution-ordered listing 24 which have
already been arranged in standard execution order. For the
completion of the standardized version 31, the standardizer/
annotator 26 receives a set of standard definitions 28 includ­
ing a list ofinstruction synonyms 30, irrelevant jump patterns 50

36, and irrelevant code patterns 32.
Referring now to FIG. 3, instruction synonyms 30 of the

standard definitions 28 may be held in tabular form with a
right colurmi providing instruction lines 12' such as might be
found in the obfuscated code 14 with the data portions (ref- 55

erences to pointers and variables) being in the form of unin­
terpreted placeholder symbols and the left colunm providing

6
found in the right column. In general, multiple left colurmi
patterns will map to a single right colunm pattern.

The standardizer/annotator 26 reviews the execution-or­
dered listing 24 for the left colunm patterns of the standard
definitions 28 and tags them with the corresponding right
colurmi patterns to create annotated control flow listing 38
providing a standardized version 31 of the instruction lines
12' of the execution-ordered listing 24. The matching done by
the standardizer/annotator 26 ignores the particular data ref­
erences (e.g. whether the data is being put in register eax vs.
edx), but looks for local consistency within the pattern (e.g.,
a register A of the right colunm pattern maintains a consistent
mapping to the actual register of the corresponding instruc­
tion lines 12' of the execution-ordered listing 24). Note that
constants survive this process, in this example, constant 42h
and lChhex.

As shown in FIG. 4, the actual instructions of the execu-
tion-ordered listing 24 are preserved, and the replacement
operation to produce a standardized version 31 of the obfus­
cated code 14 is done by adding tags to the instruction lines
12' of the obfuscated code 14 so absolute data references are
not lost.

Returning to FIG. 3, irrelevant jump patterns 34 (code
transposition) are also identified as part of the standard defi­
nitions 28 and held in tabular form with a right colurmi pro­
viding instruction lines 12' that produce irrelevant jumps and
the left colurmi providing for a standard tag indicating that the
instruction lines 12' may be ignored. In the execution-ordered
listing 24, irrelevant jump patterns 34 are easily recognized as
jumps to the next instruction illustrated in FIG. 4 by instruc­
tion line (8') showing a jump to label S3 of instruction line (2')
the next instruction line in execution order. Here, the labels
(e.g. Sl-S-3), like the variables above, are uninterpreted and
the matching done by the standardizer/annotator 26 accepts
any label name that provides a jump to the next instruction.

The standard definitions 28 may also identify irrelevant
instruction patterns 36, being broadly instruction lines 12'
that could be eliminated without affecting the underlying
function of the obfuscated code 14. Patterns of irrelevant
instructions are held in the tabular form of the standard defi­
nitions 28 with a right colunm providing instruction lines 12'
that might be found in the obfuscated code 14 and the left
colurmi providing for a standard tag indicating that the
instruction lines 12' may be ignored. A large number of irrel­
evant instruction patterns 36 are possible and the table of the
standard definitions 28 may be easily updated. Some example
irrelevant instructions are one or more nop instructions, a
push instruction for a variable followed immediately by a pop
instruction for the same variable, an inc instruction for a
variable followed by a dee instruction for the same variable.

Referring to FIGS. 2 and 3, the standardizer/annotator 26
matches the instructions of the left hand colunm of FIG. 3 for
irrelevant instruction patterns 3 6 and irrelevant jump patterns
34, to the instructions of the execution-ordered listing 24 and
annotates the resulting code as indicated by annotated control
flow listing 38. The annotation process preserves the actual
interpreted variables as may be used in the next step.

Referring again to FIG. 1, particular raw code 10 of a
number of malicious programs are abstracted to malicious

a standard representation (in different instruction lines 12) of
the function provided by the instruction lines 12'. Thus, for
example, the left colunm instruction lines:

pop A
add A, X

serve as a standard representation for the instructions:
add [sp],X

60 code pattern 40 using the same techniques described above so
that the malicious code patterns are in a standard version
comparable to standardized version 31. This standardization
may be done by providing the raw code 10 to the disassem­
bler/ control-flow graph builder 22 and standardizer/ annotator

movA [sp]
inc sp

65 26 to order the instruction lines 12 according to their execu­
tion order, eliminate nonfunctional code, convert all instruc­
tion synonyms to a standard version and abstracting variables

US 7,739,737 B2
7

and registers. The malicious code patterns 40 are stored in
tables that may be updated like the tables for the standard
definitions 28 as new malicious programs and/or obfuscation
techniques are developed.

Referring now to FIG. 4, the annotated control flow listing 5

38, following the example of FIG. 1, has ordered the instruc­
tion lines 12' in their execution order of (1), (7), (8), (2), (3),
(4), (5), (6), and (9). Instructions (1') and (8') and (6') have
been identified as irrelevant jumps since they jump now to the
instruction immediately succeeding the jump instruction. 10

Instruction (5') is identified as an irrelevant instruction from
the list of FIG. 3. Instruction (7') has been tagged in a standard
form as mov A, 42h. Likewise, instructions (2')-(4') have been
tagged as pop B and add B, 1 Ch using the relationships of the
standard definitions 28 ofFIG. 3, and instruction (9') has been 15

abstracted as pop C.
Referring also to FIGS. 1 and 4, the standardized version

31 of the synonyms without the irrelevant instructions and the
irrelevant jumps are forwarded to the detector 50, as indicated

8
a detector portion reviewing the standardized version

against the library of malicious code portions to provide
an output indicating when a malicious code portion is
present in the suspect program

wherein the standardized version maps instructions of the
suspect program to corresponding standard synonym
instructions; and

wherein the standard synonym instructions are different in
number from the instructions of the suspect program to
which the synonym instructions map.

2. The computer program of claim 1 wherein the standard­
ized version identifies the execution order of instructions of
the suspect program and wherein the detector portion reviews
the instructions of the standardized version according to the
execution order.

3. The computer program of claim 2 wherein the prepro­
cessor identifies the execution order of the instructions by
generation of a control-flow listing of the instructions.

4. The computer program of claim 1 wherein the standard­
ized version removes irrelevant portions of the suspect pro­
gram.

by arrow 44, along with their associated instruction lines 12', 20

as indicated by arrow 46. The detector 50 also receives the
malicious code patterns 40 and performs a string comparison
operation searching for the malicious code patterns 40 in the
standardized version 31 with the data references as implicit
wildcards.

5. The computer program of claim 4 wherein the prepro­
cessor removes irrelevant portions by identifying irrelevant

25
portions to the detector so that the detector ignores identified
irrelevant portions when reviewing the standardized version.

6. The computer program of claim 1 wherein the irrelevant
portions are one or more nop instructions.

If a match occurs, the actual registers and variables asso­
ciated with the standardized version 31 per associated
instruction lines 12 of the armotated control flow listing 38 are
analyzed to see if they provide the same relative data flow
paths required of the matching malicious code pattern 40.

7. The computer program of claim 1 wherein the standard-
30 ized version uses uninterpreted variables.

If a match is confirmed at this stage, then the instruction
lines, in this case (7'), (2'), (3'), (4') and (9'), may be output as
indicated by state 52, indicating there has been a match, plus
providing the actual instruction lines 12 for possible addi­
tional analysis.

Alternatively, if no match is obtained, that is indicated by
state 54.

35

8. The computer program of claim 1 wherein the suspect
program is a binary executable and wherein the preprocessor
receives the binary executable to generate a listing of instruc­
tions and data values.

9. The computer program of claim 1 wherein the library of
standardized malicious code provides instructions of the
malicious code identified as to execution order.

The present invention may be used with dynamic tech­
niques, in which a malicious program is executed or emulated
to decrypt and the invention applied to the decrypted mali­
cious code. The present invention may also be applied to
malicious code that is woven into another program. In this
case, the malicious code will be rendered visible by the dis­
assembler/control-flow graph builder 22.

10. The computer program of claim 1 wherein the library of
standardized malicious code expresses instructions of the

40 malicious code as standard synonym instructions.

The present invention may be used also with systems that 45

initially inspect an executable binary for viruses and then
create a hash of that inspected executable for subsequent
high-speed comparison of its integrity without the need to
execute the malicious code detection program 20 again.

It is specifically intended that the present invention not be 50

limited to the embodiments and illustrations contained
herein, but include modified forms of those embodiments
including portions of the embodiments and combinations of
elements of different embodiments as come within the scope
of the following claims.

We claim:
1. A computer program stored on a computer readable

hardware storage medium for identifying malicious portions
in a suspect computer program comprising:

55

a preprocessor portion for receiving the suspect computer 60

program in executable form and creating a logically
equivalent standardized version also in executable form
of the suspect program without executing the suspect
program, the logical equivalent standardized version if
executed providing an equivalent result as execution of 65

the suspect computer program;
a library of standardized malicious code portions; and

11. The computer program of claim 1 wherein the library of
standardized malicious code wherein the standardized ver­
sion removes irrelevant program portions from the malicious
code.

12. The computer program of claim 1 wherein the detector
portion outputs a representation of the malicious portion
when a malicious portion is present in the suspect program.

13. A computer program stored on a computer readable
hardware storage medium for identifying malicious portions
in a suspect computer program comprising:

a preprocessor portion for receiving the suspect computer
program and creating a logically equivalent standard­
ized version of the suspect program without executing
the suspect program;

a library of standardized malicious code portions; and
a detector portion reviewing the standardized version

against the library of malicious code portions to provide
an output indicating when a malicious code portion is
present in the suspect program;

the computer program further including a library of pat­
terns matching to one or more instructions of the suspect
program and wherein the preprocessor creates the stan­
dardized version by replacing instructions of the suspect
program with matching patterns from the library of pat­
terns and wherein the library of standardized malicious
code portions are also patterns of the library of patterns

US 7,739,737 B2
9

wherein a pattern is at least one instruction logically
replacing at least one different instruction in the suspect
program.

14. A computer program stored on a computer readable
hardware storage medium for identifying malicious portions 5

in a suspect computer program comprising:
a preprocessor portion for receiving the suspect computer

program and creating a logically equivalent standard­
ized version of the suspect program without executing
the suspect program; 10

a library of standardized malicious code portions; and
a detector portion reviewing the standardized version

against the library of malicious code portions to provide
an output indicating when a malicious code portion is
present in the suspect program;

10
the computer program further including a library of pat­

terns matching to one or more instructions of the suspect
program and wherein the preprocessor creates the stan­
dardized version by replacing instructions of the suspect
program with matching patterns from the library of pat­
terns and wherein the library of standardized malicious
code portions are also collections of patterns from the
library of patterns wherein a pattern is a tag replacing at
least one instruction logically having no substantive
effect on the execution of the suspect program; and
wherein the library of patterns is implemented as a look­
up table matching instructions to the patterns.

* * * * *

	Bibliography
	Abstract
	Drawings
	Description
	Claims

