
I 1111111111111111 11111 111111111111111 IIIII IIIII 1111111111 111111111111111111

(12) United States Patent
Martin et al.

(54) TOKEN BASED CACHE-COHERENCE
PROTOCOL

(75) Inventors: Milo M. K. Martin, Madison, WI
(US); Mark Donald Hill, Madison, WI
(US); David Allen Wood, Madison, WI
(US)

(73) Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 293 days.

(21) Appl. No.: 10/389,861

(22) Filed:

(65)

Mar. 14, 2003

Prior Publication Data

US 2004/0181636 Al Sep. 16, 2004

(51) Int. CI.7 ... G06F 12/00
(52) U.S. Cl. 711/130; 711/141; 711/142;

711/143; 711/144; 711/145; 707/8; 707/201

,
/

14 /
,

,
/

/

/,/' 26

/

p
.. ------

,

US006981097B2

(10) Patent No.:
(45) Date of Patent:

US 6,981,097 B2
Dec. 27, 2005

(58) Field of Search 707/8, 201; 709/216;
711/141-145, 130

(56) References Cited

U.S. PATENT DOCUMENTS

6,119,151 A * 9/2000 Cantrell et al. 709/216
6,385,701 Bl* 5/2002 Krein et al. 711/141
6,449,614 Bl* 9/2002 Marcotte 707/8

* cited by examiner

Primary Examiner-T Nguyen
(74) Attorney, Agent, or Firm-Quarles & Brady LLP

(57) ABSTRACT

A cache coherence mechanism for a shared memory com
puter architecture employs tokens to designate a particular
node's rights with respect to writing or reading a block of
shared memory. The token system provides a correctness
substrate to which a number of performance protocols may
be freely added.

36 Claims, 4 Drawing Sheets

30

NUMBER VALID OWNER OF TOKENS

1 0 2

1 0 1

28 ijf ----------- 34

NODE BLOCK
'

'
1

28 ' ' 2 33
' ' ' 0

12 '

U.S. Patent Dec. 27, 2005 Sheet 1 of 4 US 6,981,097 B2

/10
, 18

r·---------------------------------------r. ____ _

16

14

12

p

___ 28 w

28

12

SHARED
MEMORY

FIG. 1

12

NUMBER
VALID OWNER OF TOKENS

1 0 2

1 0 1

--------------- 34

NODE BLOCK

1

2

0

FIG. 2

30

33

U.S. Patent Dec. 27, 2005 Sheet 2 of 4 US 6,981,097 B2

14
12

[40'

,---------, 4 2
I DATA~ FIG. 3

*
\}' 0

40 46

48

• -----. 42 VI DATA r-'
40

•
0 0

FIG. 4

U.S. Patent

50

52

56

54

58

Dec. 27, 2005

REQUEST
TOKEN

BACK OFF

REQUEST
TOKEN

PERSISTENT
REQUEST

Sheet 3 of 4 US 6,981,097 B2

NO

NO

FIG. 5

NO SOME TOKENS SOME TOKENS ALL
TOKENS NO OWNERS OWNER TOKENS

TOKENS TOKENS

REQUEST SEND 1 TOKEN IF WRITE COMPLETE,

FOR READ IGNORE IGNORE (NOT OWNER) SEND ALL TOKENS AND

ACCESS PLUS DATA DATA, ELSE SEND DATA
& TOKEN (NOT OWNER)

REQUEST SEND ALL SEND ALL
FOR WRITE IGNORE

SEND ALL TOKENS TOKENS AND
ACCESS TOKENS AND DATA DATA

FIG. 6

U.S. Patent Dec. 27, 2005 Sheet 4 of 4 US 6,981,097 B2

FIG. 7

68

70

NODE BLOCK

1 A

3 A FIG. 8
2 A

.........
~

--

US 6,981,097 B2
1

TOKEN BASED CACHE-COHERENCE
PROTOCOL

2
The "correctness" of memory access in snooping is tightly

linked to this requirement of a message ordering in the
communications between processors. This and other
requirements of the snooping protocol complicate any modi-CROSS-REFERENCE TO RELATED

APPLICATIONS 5 fications of snooping to increase its performance.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

BRIEF SUMMARY OF THE INVENTION

In the invention, memory access is controlled by "tokens"
FIELD OF THE INVENTION

The present invention relates generally to a system for
coordinating cache memories in a computing system.

BACKGROUND OF THE INVENTION

10 whose number is globally "known" and whose possession
by a node simply and intuitively designates the state of a
node's cache blocks. Generally speaking, a node having all
the tokens for a block may write to or read from the block,
a node having at least one token but less than all tokens may

15 only read from the block, and a node having no tokens can
neither write to nor read from the block.

By and large, this system provides certainty in the "cor
rectness" of memory access independent of most other
aspects of the cache coherence protocol. The invention
thereby provides a robust foundation (a "correctness sub
strate") on which a variety of other performance enhancing
protocol steps may be readily added.

Specifically, the present invention provides a shared

Large computer software applications, such as simulators
and database servers, require cost-effective computation
beyond that which can be provided by a single micropro
cessor. Shared-memory, multiprocessor computers have 20

emerged as a popular solution for running such applications.
Most shared memory multiprocessor computers provide
each constituent processor with a cache memory into which
portions of the shared memory ("blocks") may be loaded.
The cache memory allows faster memory access. 25

memory computer architecture having at least two processor
units (each having a processor and cache), a shared memory,
and an interconnect allowing communication between the
processor units and the shared memory. The invention also
provides cache management circuitry operating to: (i) estab-

A cache coherence protocol ensures that the contents of
the cache memories accurately reflect the contents of the
shared memory. Generally, such protocols invalidate all
other caches when one cache is written to, and update the
main memory before a changed cache is flushed.

Two important classes of protocols for maintaining cache
coherence are "directories" and "snooping". In the directory
protocols, a given "node" typically being a cache/processor
combination, "unicasts" its request for a block of memory to

30 lish a set of tokens of known number; (ii) allow a processor
to write to at least a portion of the shared memory through
its cache only if it has all the tokens for that portion; and (iii)
allow a processor to read from at least a portion of the shared
memory through its cache only if it has at least one of the

a directory which maintains information indicating those 35

other nodes using that particular memory block. The direc
tory then "multicasts" requests for that block directly to a
limited number of indicated nodes. Generally, the multicast
will be to a superset of the nodes greater than the number
that actually have ownership or sharing privileges because 40

of transactions which are not recorded in the directory, as is
understood in the art. The "indirection" of directory proto
cols, requiring messages exchanged with the directory prior

tokens for that portion.
Thus, it is one object of the invention to provide a simple

and intuitive protocol for coordinating memory access in a
shared memory computer system.

The cache management circuitry may be distributed
among the processor units and the memory.

Thus, it is another object of the invention to provide an
architecture that may work with a variety of different archi
tecture models including "glueless" architectures in which
most circuitry is contained in a replicated, elemental build-to communication between processors, limits the speed of

directory protocols. 45 ing block.
The problem of indirection is avoided in snooping pro

tocols where a given cache may "broadcast" a request for a
block of memory to all other "nodes" in the system. The
nodes include all other caches and the shared memory itself.
The node "owning" that block responds directly to the 50

requesting node, forwarding the desired block of memory.
Snooping, however, requires that "message ordering" be

preserved on the interconnection between communicating
nodes. Generally this means each node can unambiguously
determine the logical order in which all messages must be 55

processed. This has been traditionally guaranteed by a
shared wire bus. Without such ordering, for example, a first
node may ask for a writeable copy of a block held by
memory at the same time that it sends messages to other
nodes invalidating their copies of the block in cache for 60

reading. A second node receiving the invalidation message
may ignore it because the second node does not have the
block, but then the second node may request the block for
reading before the first node receives the block from
memory for writing. When the first node finally does receive 65

the block, the second node erroneously believes it has a
readable copy.

The cache management circuitry may respond to a request
by a processor unit to write to a portion of shared memory
by sending to other processor units a write request for that
portion. The cache management circuitry may further
respond to the write request at a receiving processor having
at least one token for a portion, to send all tokens for that
portion held by the receiving processor to the requesting
processor.

Thus, it is an object of the invention to provide a simple
method of transferring cache write permission.

The request may be broadcast to all other processor units.

Thus, it is another object of the invention to provide a
simple broadcast-based protocol. Notwithstanding this
object, the present invention may also work with multicast
transmissions to conserve bandwidth and thus improve
performance.

One token may be an "owner" token and the cache
management circuitry responding to the write request may
send the portion of the shared memory held by the receiving
processor and the tokens to the requesting processor only
when the receiving processor holds the owner token.

US 6,981,097 B2
3

Receiving processor units not having the owner token also
send their token but need not send the portion of shared
memory.

Thus, it is an object of the invention to reduce intercon
nect data traffic. Processor units which are not owners may 5

transmit their tokens without data, knowing that the owner
will transmit that data.

The cache management circuitry may alternatively
respond to a read request by sending to other processor units
a read request message, and the cache management circuitry 10

may respond to the read request message at receiving
processors having at least one token to send at least one
token for that portion held by the receiving processor to the
requesting processor. In a preferred embodiment, typically
only one token is sent. 15

4
The interconnect may be an unordered interconnect.
It is thus a further object of the invention to provide a

cache coherence protocol that does not require the hardware
overhead and complexity of a message ordered interconnect.

These particular objects and advantages may apply to
only some embodiments falling within the claims and thus
do not define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a blocked diagram of a multiprocessor, shared
memory computer system having sets of processor units,
including a processor and cache, communicating on a net
work with a common shared memory;

FIG. 2 is a detailed block diagram of a processor unit
showing the processor, cache, and a portion of the cache
controller circuitry in turn having a token table and a
persistent request table;

It is thus another object of the invention to minimize the
unnecessary movement of tokens. On the other hand, mul
tiple tokens may be sent if predictively it is expected that the
receiving processing unit may need write permission shortly.

When the receiving processor has the owner token, the
cache management circuit may send a token that is not the
owner token unless the receiving processor has only one
token.

FIG. 3 is a representation of token flow between processor
20 units and the shared memory required for a processor to read

shared memory;
FIG. 4 is a figure similar to that of FIG. 3 showing token

flow between processor units and the shared memory
required for a processor to write shared memory;

Thus, it is one object of the invention to avoid unneces- 25
sary transmission of the ownership token which normally
must be accompanied by the data of the requested portion of
shared memory.

FIG. 5 is a flow chart of the steps executed by the cache
controller circuitry when a processor unit cannot obtain
desired tokens within a predetermined period of time;

FIG. 6 is a table showing the response of a processor unit
to different requests by other processor units for tokens as

30 implemented by the cache control circuitry;
The cache management circuitry may respond to a pre

determined failure of a requesting processor to obtain
tokens, by retransmitting to other processors a request to the
portion after a back-off time. The back-off time may be
randomized and/or increased for each retransmission.

Thus it is another object of the invention to reduce
situations where a processor unit does not promptly get the 35

tokens, permission and/or data it is seeking. By repeating the
request after a back-off time, collisions may be efficiently
avoided in most cases.

The cache management circuitry may respond to a pre
determined failure of a requesting processor to obtain tokens 40

by transmitting to other processors a persistent request
requiring the other processor to forward tokens for that
portion of shared memory until a deactivation message is
received and wherein the requesting processor allows a
deactivation signal only after receiving the necessary tokens. 45

The cache management circuitry responds to the persistent
request to send any necessary tokens for the portion held or
received by the receiving processor between the occurrence

FIG. 7 is a figure similar to that of FIGS. 3 and 4 showing
the flow of persistent request and deactivation messages
when token transfer is delayed more than a predetermined
amount; and

FIG. 8 is a persistent request arbitration table that may be
implemented in the processor units to allow for a more
sophisticated arbitration without a central directory.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

System Elements

Referring now to FIG. 1, a multiprocessor, shared
memory computer system 10 may include a number of
processor units 12 communicating via an interconnect 14
with a shared memory 16. The processor units 12 and shared
memory 16 will be referred to collectively as "nodes".
Cache management circuitry 18 communicates with the of the persistent request and the deactivation signal.

Thus, it is another object of the invention to provide for
a mechanism that assures no starvation of a given processor.

50 processor units 12 and the shared memory 16 to control
access by the processor units 12 of the shared memory 16.
The cache management circuitry 18 may be distributed
among the nodes and/or may have centralized components When multiple requesting processors fail to obtain tokens,

the cache management circuitry may select one processor
unit to benefit from a persistent request and then a second

55
after the first has completed its token acquisition.

Thus, it is another object of the invention to allow the
imposition of an arbitration mechanism in the case of
conflicts between processor units.

to be compatible with a wide variety of computer architec
tures.

The cache management circuitry may select the order of 60
service of the multiple requesting processors to minimize the
communication burden between successive multiple proces-

Referring still to FIG. 1, the shared memory 16 may be,
for example, high speed solid state memory and provides a
common storage area for data used by all the processor units
12. Although the shared memory 16 is depicted as a unitary
structure, in practice, the shared memory 16 may be distrib
uted over the interconnect 14 or even among the different
processor units 12.

sors.

Thus, it is another object of the invention to provide a
mechanism for more sophisticated resolution of conflicting
memory requests based on minimizing data transmission
time or costs.

The interconnect 14 may be, for example, a parallel bus
structure or a serial network and may have a tiered structure,

65 as shown, generally reflecting differences in communication
speed between processor units 12. For example, the proces
sor units 12 may be organized into clusters, here labeled

US 6,981,097 B2
5 6

33 identifies a particular block 24, if any, for which the node
is making a persistent request. The use of a persistent request
will be described below.

A Request to Read Shared Memory

Referring now generally to FIGS. 2 and 3, the cache
management circuitry 18 initially establishes a set of tokens
that will be transmitted between nodes requesting read or

P 0-P 3 for a first cluster and P 4-P 7 for a second cluster.
Communications within a cluster may be faster than com
munications between clusters and, for this reason, each of
the processor units 12 may be assigned an identification
number generally reflecting its relative proximity to other 5

processor units 12. Closer numbers can indicate closer
proximities and this information may be used to optimize
data transfer as will be described below. The interconnect 14
may use a virtual network to avoid deadlocks, as is under
stood in the art. 10 write permissions for the shared memory 16. The tokens

may be fixed in number or another mechanism may be
adopted so that all components know the total number of
tokens. No exclusively local action may change the number
of tokens without eventual global communication of that

Referring to FIG. 2, each processor unit 12 includes a
processor 20 communicating with one or more cache levels
(shown for clarity as a single cache 22). The cache 22 is
typically divided into a number of blocks 24 representing
convenient units of data transfer between the shared memory
16 and the processor units 12. The cache 22 and processor
20 communicate via an internal bus 28 with cache controller
26, being part of the cache management circuitry 18, which

15 change. The tokens are transmitted as specific data patterns
and have no physical embodiment. The tokens are transmit
ted and control the processor units according the following
invariants enforced by the cache management circuitry 18.

in turn connects to the interconnect 14. Invariant I: At all times each cache block 24 has an
20 established number of tokens. Optionally, and as will be

described here, one token may be the owner token. Each
cache block 24 may have a different number of tokens so
long as this number is known globally.

Generally, the cache controller 26 will operate to move
blocks of the shared memory 16 into the cache 22 for rapid
access (reading and writing) by the processor 20. The cache
controller 26 will then hold the block or transfer it to another
processor unit 12 or if the block must be evicted, return the
block to shared memory 16. As will be described in greater
detail below, the cache controller performs these operations
using a set of tokens that may be passed among the nodes by
messages on the interconnect 14. Generally, token posses
sion maps to traditional cache coherence states where a node
having all T tokens for a given cache block 24 holds the 30

block in a modified (M) state. A node having one to T minus
one tokens holds the block in a shared (S) state, and a node
having no tokens holds the block in an invalid state (I). Each

Invariant II: A node can write a block 24 only if it holds
25 all T tokens for that block 24.

of these states will be recognized by one of ordinary skill in
the art. Through the use of tokens, correctness in data access 35

is ensured without the need for detailed knowledge about
stable and transient protocol states, data acknowledgement
messages, and interconnect and/or system hierarchy.

In accomplishing its task, the cache controller 26 employs
a token table 30 providing, effectively, one row 32 for each 40

block 24 of the cache 22. A third column of each row 32
indicates the number of tokens held by the processor units 12

Invariant III: A node can read a block 24 only if it holds
at least one token for that block 24. Optionally, and as will
be described here, the node may also need to check to see
that it has valid data by checking the valid data bit.

Invariant IV: If a cache coherence message contains data
of a block 24, it must contain at least one token.

Invariant V: If a cache coherence message contains one or
more tokens it must contain data of the block. Optionally,
and as will be described here, the data need only be sent if
the message contains the owner token.

These invariants are sufficient to ensure correctness of
memory access and requires at a minimum, T undifferenti
ated tokens for each block. The number of tokens may
desirably be greater than the number of nodes without
upsetting the correctness provided by the token system. A
greater number of tokens addresses the fact that some tokens
will be in transit between nodes and allows a greater
freedom in reading the shared memory 16 such as may be
desired in certain architectures exhibiting some types of

for a particular block 24. It is through this token table 30 that
tokens are "held" by a processor unit 12 after being trans
mitted between the processor units 12 and/or the shared
memory 16 over the interconnect 14. This information about
the number of tokens is linked to a valid bit in a first column

45 timing constraints. With some loss in performance, a number
of tokens less that the number of nodes may also be used.

An optional improvement in efficiency of transfer of
blocks 24 between processor units 12 may be obtained by
the addition of one differentiated token called the "owner"

50 token. The owner token may be transmitted over the inter
connect 14 and recorded in the token table 30 by the setting
of the owner bit as has been described above. In the
following examples, it will be assumed that an owner token

of the row 32 and an owner bit in a second column of the row
32. The owner bit is set when one of the tokens held is a
system-unique owner token as will be described below. The
valid bit indicates that the data of the block 24 associated
with the tokens of the row 32 is valid and is not required in
the simplest version of the protocol. In this more complex
version using a valid bit, it is possible to hold tokens without
valid data of the block 24. This can be useful if a data-less 55

message arrives with a token prior to arrival of other
messages with tokens and the necessary data.

Shared memory 16 also has a token table 30 (not shown)

is used, however, it will be understood that the owner token
is not required for correctness. Thus, the owner token is
simply a performance-enhancing feature of a type that may
be grafted onto the correctness substrate by the tokens.
Generally, the owner token carries with it a responsibility
not to discard the data and to be the node to transmit the data so it can acquire and share tokens. Initially all tokens are

held by the shared memory 16. 60 when it is requested.
Each node also includes or shares a persistent request

table 34 providing, for example, a number of logical rows 33
equal to a number of nodes in the multiprocessor, shared
memory computer system 10. The cache controller 26 and
shared memory 16 can thus have access to the persistent 65

request table 34. Each row 33 is identified to a node by a
node number in a first column. A second column of each row

Referring now to FIG. 3, in a simple memory access
example, a given processor unit P0 may need to read a
particular block 24 of shared memory 16. As an initial
matter, it will be assumed that the block 24 is held in the
shared memory 16 and the four tokens 40 associated with
each of the nodes of the processor units 12 and shared
memory 16 are initially held at shared memory 16.

US 6,981,097 B2
7

Per invariant III, the processor unit PO cannot read the
block 24 from its cache 22 until it has at least one token 40.
Accordingly, the cache processor unit P0 (via its cache
controller 26) transmits a read message 36 requesting tokens
over the interconnect 14 in broadcast fashion to each of the 5

remaining nodes of processor units P 1 and P 2 and shared
memory 16. This broadcast does not require the processor
unit PO to know the node at which valid data of the block 24
is held.

8
tokens 40, the processor unit P 1 sends all tokens 40 to the
requesting node processor unit PO if a write was recently
completed by the processor unit P 1 . This rule accommodates
migratory data sharing patterns well known to those of
ordinary skill in the art. In the case where the reading of the
block has not been completed at processor unit P 1 , only one
token 40 is sent and preferably not the owner token 40 under
the assumption that a read or a write at processor unit P 1 will
be forthcoming and less data will ultimately need to be

In an alternative embodiment, the broadcasting described
herein may be a single or multi-cast based on predictions of
the location of the tokens. Such predictions may be based on

10 transmitted back to processor unit P 1 .

an observation of historical movement of the tokens or
imperfect monitoring of token location through the trans
mitted messages. As will be understood from this descrip- 15

tion, the token system ensures data correctness even in the
event of incorrect predictions.

Referring to FIG. 6, upon receipt of the read messages by
the nodes, a set of standard responses enforced by the cache
controller 26 will occur. The table of FIG. 6 describes 20

Briefly, if no owner token 40 were used, the second
column of the table of FIG. 6 would be omitted and all nodes
would send a token 40 and data 42.

Referring still to the example of FIG. 3, at the conclusion
of this read request, processor unit PO has a single token 40
and the data of the block 24 from the shared memory 16 and
thus may read the block that it desires.

A Request to Write to Shared Memory

Referring now to FIG. 4, two processor units P0 and P 1

may each initially have one token 40 and the shared memory
16 may initially have two tokens 40. In the event that the
third processor unit P 2 requests write access to a block 24

generally four possible states of the receiving node (for a
read request) as determined by the tokens 40 it holds. The
receiving node may have no tokens 40 as indicated by the
first column; some tokens 40 but no owner token 40 as
indicated by the second column; some tokens 40 but not all
the tokens 40 and the owner token 40 as indicated by the
third column; and all the tokens 40 as indicated by the fourth
column.

In the example of FIG. 3, processor units P1 and P2 each
have no tokens 40 for the block 24, so a request for read of
the block 24 will cause the processor units P 1 and P 2 to
ignore the message as indicated by the response of the first
column of the table of FIG. 6. This response may, under
certain circumstances provide for an acknowledgement mes
sage, but no data is transmitted because processor units P 1

and P2 do not have valid block data or tokens 40.

25 represented by those tokens 40, processor unit P 2 will
broadcast write requests 46 to each of the other nodes of
processor units PO and P 1 and shared memory 16. Referring
to the first column of the table of FIG. 6, any node having
no token 40 may simply ignore this request. However,

30 processor units PO and P 1 each have one token 40, and thus,
per the second column of the table of FIG. 6, will reply by
sending all their tokens 40 in a reply message 48. In this
case, the shared memory 16 has the owner token 40 and so
under the third column of the table of FIG. 6, the shared

35 memory 16 sends all its tokens 40 and the necessary data of
the block 24. The same result would be obtained if the

If processor units P 1 or P 2 had tokens 40 but not the owner
token 40, per the second column of the table of FIG. 6, they
would also not respond, knowing the node with the owner
token 40 will respond per the third column of the table of 40

FIG. 6. If processor units P 1 or P2 had less than all the tokens
40 and owner token 40, per the third column of the table of
FIG. 6, they would respond with the data of the block 24 and
a token 40, but optionally not the owner token 40 unless that
was all they had. A programmed reluctance to give up the 45

owner token 40 is one way to enhance performance by
minimizing transfer of ownership unless there is a compel
ling reason to do so. If the node has only the owner token,
then it must send the owner token.

shared memory 16 had all tokens 40 and thus implicitly the
ownership token 40.

At any time, because of the non-ordered nature of the
interconnect 14, a node may receive tokens 40 that are not
expected. In order to accommodate possible limits in data
storage at the nodes, unwanted tokens 40 and data may be
resent by the node, typically to the shared memory 16 to
avoid the need for local storage. Additionally, when storage
space is required in any node, that node may on its own
initiative, send its tokens 40 to the shared memory 16 to
free-up space. Only the node having the owner token 40
carries with it a duty to send the actual data. In implemen
tations where an owner token 40 is not used, data associated

Referring again to the example of FIG. 3, in contrast to
processor units P 1 and P 2 , shared memory 16 has valid data

50 with each token 40 must be transmitted by the node when it
evicts the tokens 40.

of the block 24 indicated by the existence of at least one
token 40 in the token table 30 of the shared memory 16.
Accordingly, the shared memory 16 responds with one token
40' in a reply message 44 to processor unit PO per the fourth 55

column of the table of FIG. 6. Because shared memory 16
has the owner token 40 (indicated by a star next to the token
symbol of FIG. 3) the shared memory will also send the data
42 of the block 24 requested per invariant V. The use of the
owner token 40 in this case is intended to eliminate the need 60

for several nodes which have tokens 40 to all send dupli
cative data 42. Interconnect traffic is significantly reduced
through the use of the owner token 40 as described. Note that
the shared memory 16 does not send the owner token 40.

In a performance enhanced version of the response of 65

column four of the table of FIG. 6, when a read request is
received by processor unit P 1 for example, holding all of the

More sophisticated protocols than those shown in FIG. 6
may be used to enhance performance over the correctness
substrate provided. For example, write or read requests may
be predictively limited to subsets of the nodes where the data
is expected to be found to reduce bandwidth on the inter
connect 14. Correctness is ultimately ensured by the tokens
40, independent of the accuracy of the predictions as to
where the tokens may be found.

Token Access Guarantees

It will be understood, from the above, that the passing of
the tokens 40 provides a definitive indication of the rights of
each node to access a block of the shared memory 16.
However, the particular protocols, as defined by the num
bered invariants above and shown in the table of FIG. 6, do

US 6,981,097 B2
9

not ensure that a given node will ever get the necessary
tokens 40. "Starvation" may occur, for example, when two
competing nodes both requiring write access are repeatedly
interrupted in their token gathering by each other or a third
node requesting read access. Thus, as a practical matter, the 5

issue of memory access "starvation" must also be addressed
ensuring that a given node requesting access ultimately does
get the access in a reasonably timely manner.

The present invention provides two methods of dealing
with access starvation, however, it is contemplated that other 10

methods may also be used and several methods may be
combined.

Referring to FIG. 5, the cache management circuitry 18 of
each processor unit 12 may monitor token requests indicated

10
the requesting processor units P 0 • Other subsequent persis
tent requests for that block are queued by the shared memory
16.

Referring to FIG. 2, when each node receives the activa
tion message 62, it enrolls the identification of the processor
unit (P 0) making a request in the persistence table 34 along
with the identification of the block 24 for which the persis
tent request is being made. At this point onward, so long as
the entry is in table 34, the node will forward the token 40
to the requesting processor unit (P 0) indicated in the first
column of the table 34 whether the node currently has the
token 40 or receives the token 40 subsequently. As has been
discussed, data is forwarded only if the token 40 is the owner
token. Each processor unit PO through P 3 is responsible for

15 only invoking no more than a limited number of persistent
requests at a time, thus limiting the size of the persistence
tables 34 of each node shown in FIG. 2.

by process block 50 at that processor unit 12. After a
predetermined period of time has elapsed without receipt of
the requested tokens 40 for reading or writing to shared
memory 16, as indicated by the loop formed with decision
block 52, the cache controller 26 may delay for a back-off
time per block 56 and reissue the request for the token 40 20

indicated by process block 54. The back-off time may be a
randomly selected time period within a range which
increases for each invocation of the back-off time block 56,
for example, like the back-off time used in communication
protocols like Ethernet. The back-off time may, for example, 25

be twice the average miss latency and may adapt to average
miss latency on a dynamic basis.

This back-off time and repeated request per process
blocks 56 and 54 may be repeated for a given number of
times, for example, four times, per decision block 56 and the 30

loop formed thereby.
After completion of the timeout period implemented by

the decision block 56, if the tokens 40 have not been
received so that the necessary read or write request may be
completed, a persistent request may be initiated as indicated 35

by process block 58.
Generally, "persistent" requests persist at all nodes (i.e.,

processor units 12, and memory 16). All nodes remember
that tokens (currently held or that arrive in the future) for a
given block B (subject to the persistent request) should be 40

forwarded to processor P (making the persistent request). To
limit the number of states 70 that needs to be remembered,
each processor is limited to K persistent requests, bounding
the number of persistent requests in the system (and thus the
number of entries in the table 34) to N*K. K is likely to be 45

a small constant, and may be K=l.
There are two methods that may used to implement a

persistent request. The first method requires a central arbiter
such as the memory 16, although different blocks may have
different arbiters so long as each node 12 can identify the 50

arbiter for a particular node. This approach requires indi
rection of persistent request message transmission, first to
the arbiter and then to other nodes. The second method is
"distributed" and does not require this indirection.

When the requesting processor unit 12 (P 0) has completed
the memory access underlying the persistent request, that
requesting processor unit (P 0) forwards a deactivation mes
sage 66 to the shared memory 16 which broadcasts the
deactivation message 68 to all processor units 12. Upon
receipt of the deactivation message 68, each node deletes the
entry in the node's persistence table 34. The shared memory
16 may then activate another persistent request for that block
from its queued persistent requests according to a prese-
lected arbitration scheme, most simply, according to the next
persistent request in queue.

More specifically, point-to-point order on the interconnect
14 or explicit acknowledgement messages can be used to
handle races where activations/deactivations can cross each
other in the interconnect 14. The sender does not send the
next activation or deactivation message until it has received
all the acknowledgement messages for the prior such mes-
sage, thus preventing reorderings. As will be known to one
skilled in the art, there are many alternative solutions such
as using point-to-point ordering in the interconnection net
work to enforce in-order delivery or using message sequence
numbers to detect and recover from message reorderings.

In the second decentralized method of handling persistent
requests, each processor unit 12 directly broadcasts its
persistent requests to all other nodes in the system 10. These
nodes allocate an entry in their table 34 for this request. If
two processor units 12 both issue persistent requests for the
same block, all processor units 12 in the system must
arbitrate to determine who should receive the tokens. This
arbitration may be done by statically assigning a priority
based on a numerical identification number previously
assigned. Referring now to FIG. 8, for this purpose, each
individual node may replace persistence table 34 with per
sistence table 70 similar to persistence table 34 listing
persistent requests made by other nodes but not yet acti
vated. The processor units 12 monitoring this table 70 may
activate one such request on a global basis by following a

Referring to FIG. 7, in the first method, the persistent
request message 60 may be transmitted, for example, from
the first processor unit P0 to the shared memory 16, the latter
providing a central location to deal with possible multiple
persistent requests for the same block from different nodes.
The shared memory 16 thus may prioritize the requests so
that only one persistent request message for a given block
may be serviced at one time.

55 common rule. For example, the rule may be that the next
node in line for activation of its persistent request will be the
node with the lowest numerical identification (described
above)of the contesting nodes. This works in the presence of
races, since two nodes may temporarily disagree on which

60 node is the lowest, but eventually all nodes will agree and
forward the tokens to the lowest numbered node.

Assuming that the particular processor units PO initiating
a persistent request is seeking access to a block 24 that is not
subject to any other persistent requests, then the shared 65

memory 16 (for example, as the home node for that block)
submits an activation message 62 to all other nodes and to

Once a processor unit 12 is no longer starving, it deacti
vates persistent requests by broadcasting a deactivation to all
nodes which clear the entry in their tables 70. To prevent the
highest priority processor from starving other processors,
the system must be careful as to when processors are
allowed to issue subsequent persistent requests. For

US 6,981,097 B2
11

example, if a processor is allowed to issue a persistent
request immediately, it may starve other processors, and if a
processor is required to wait until its table is empty, other
processors can starve it. In a preferred embodiment, when a
processor unit 12 completes a persistent request, it marks 5

each entry for the block currently in its table 70. This
processor unit 12 must wait until all of the marked entries
have been 'deactivated' and removed from the table 70
before issuing another persistent request for that block.

In other words, when a node completes a persistent 10

request for an address A, it marks all persistent requests in

12
d) cache management means operating to:

i) establish a set of tokens;
ii) allow a processor to write to at least a portion of the

shared collection of data through its cache only if the
processor has all the tokens for that portion; and

iii) allow a processor to read from at least a portion of
the shared collection of data through its cache only
if the processor has at least one of the tokens for that
portion.

2. The computer system of claim 1 wherein the number of
tokens is no less than the number of processor units.

its table 70 that match address A (add a "pending bit" (not
shown) to table 70). Before issuing a persistent request for
address A, a processor unit must consult its local table 70. If
an address A matches AND the pending bit is set for that
entry, then this is a second persistent request which must
stall. Otherwise, it may proceed.

3. The computer system of claim 1 further including the
step of responding to a request by a requesting processor to
write to a portion of memory by sending to other processors

15 a request message for write privileges for the portion of
memory; and

Referring again to FIG. 1, the use of an arbitration system
that looks at numerical identifications ensures the data is first
passed preferably within clusters of nodes thus reducing data 20

transit time. This implementation of persistent requests can
be performed in a distributed fashion within the nodes and
thus does not require a central directory-type structure, the
resulting indirection of message transfer, and can be imple
mented in so-called glueless systems where additional pro- 25

cessor units 12 may be combined with minimal glue logic.
Again, these features are not critical to the core correctness
substrate provided by the tokens 40 of the present invention.
As described, these approaches both use broadcast of the
persistent request messages, but one could use a multicast to 30

a predicted set of 'active' processors before resorting to
broadcast, enhancing the scalability of the invention.

Empirically, the present inventors have determined that
with most memory access requests, tokens 40 will be
obtained immediately or via the back-off and request of 35

process blocks 56 and 54 without the need for a persistent
request message. Nevertheless, the indirection of commu
nicating a persistent request message via the shared memory
(or other designated node) introduces considerable delay in
the transfer of data and may be desirably avoided by using 40

a second, more sophisticated approach.
The above described token-based system for cache con

trol clearly need not be implemented on a single integrated
circuit but is broadly applicable to any cache system where
multiple processing units compete for access to common 45

memory and thus the present invention can be used in
systems having network connected processing units includ
ing but not limited to Internet caching systems. Clearly, the
invention can be implemented in hardware, firmware, or
software or a combination of all three. 50

wherein the cache management means responds to the
request message by a receiving processor having at
least one token by sending all tokens for that portion
held by the receiving processor to the requesting pro
cessor.

4. The computer system of claim 3 wherein the cache
management means broadcasts the request message to the
other processors.

5. The computer system of claim 3 wherein one token is
an owner token and wherein the cache management means
responds to the request message to send the portion held by
the receiving processor to the requesting processor only
when the receiving processor holds the owner token.

6. The computer system of claim 3 wherein the cache
management means responds to the request message without
sending the portion held by the receiving processor to the
requesting processor when the receiving processor does not
hold the owner token.

7. The computer system of claim 1 further including the
step of responding to a request by a requesting processor to
read a portion of memory by sending to the other processors
a request message for read privileges for the portion of
memory and wherein the cache management means
responds to the request message received by a receiving
processor having at least one token to send at least one token
for the portion held by the receiving processor to the
requesting processor.

8. The computer system of claim 7 wherein the cache
management means broadcasts the request message to the
other processors.

9. The computer system of claim 7 wherein the cache
management means sends only one token for that portion.

10. The computer system of claim 7 wherein one token is
an owner token and wherein the cache management means
responds to the request message to send a token other than
the owner token for the portion unless the receiving proces
sor has only one token and then sending the owner token for
the portion.

11. The computer system of claim 7 wherein one token is

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained
herein, but that modified forms of those embodiments
including portions of the embodiments and combinations of
elements of different embodiments also be included as come
within the scope of the following claims.

We claim:

55
an owner token and wherein the cache management means
responds to the request message received by a receiving
processor having all the tokens to send a token for the
portion that is not the owner token unless the receiving
processor has completed a writing to the portion and then
sending all tokens for the portion to the requesting processor.

1. A computer system comprising:
a) at least two processor units each having at least one

processor and at least one cache;
b) a shared collection of data;
c) a communication channel allowing communication

between the processor units and the shared collection of
data;

60 12. The computer system of claim 1 wherein the cache
management means coordinates the transfer of tokens
between processor units according to requests by the pro
cessor units to access of the shared collection of data by
transmitting token requests and wherein the cache manage-

65 ment means responds to a predefined failure of a requesting
processor to obtain tokens by retransmitting a token request
after a predetermined back-off time.

US 6,981,097 B2
13

13. The computer system of claim 12 wherein the back-off
time is randomized.

14
processor to the requesting processor only when the receiv
ing processor holds the owner token.

14. The computer system of claim 12 wherein the retrans
mission is repeated a predetermined number of times with
increasing length of back-off time.

15. The computer system of claim 1 wherein the cache
management means coordinates the transfer of tokens
between processor units according to requests by the pro
cessor units to access of the shared collection of data by
transmitting token requests and wherein the cache manage
ment means responds to a predefined failure of a requesting
processor to obtain tokens by prioritizing token requests.

25. The method of claim 22 further including the step of
responding to the request message without sending the

5 portion held by the receiving processor to the requesting
processor when the receiving processor does not hold the
owner token.

26. The method of claim 21 further including the steps of
responding to a request by a requesting processor to read a

10
portion of memory by sending to the other processors a
request message for read privileges for the portion of
memory and responding to the request message received by
a receiving processor having at least one token to send at
least one token for the portion held by the receiving pro-

16. The computer system of claim 3 wherein the cache
management means prioritizes token requests by sending to
other processors a persistent activation signal requiring the
other processor to forward tokens for that portion to the 15

requesting processor until a deactivation message is
received; and

wherein the cache management means responds to the
persistent activation signal received by a receiving
processor to send all tokens for the portion held or 20

received by the receiving processor between the occur
rence of the persistent activation message and the
deactivation signal.

17. The computer system of claim 16 wherein the cache
management means responds to a predetermined failure of 25

multiple requesting processors to obtain tokens by broad
casting the persistent activation signal of one of the request
ing processors at a time according to a predetermined
arbitration rule.

18. The computer system of claim 17 wherein the prede- 30
termined arbitration rule selects sending of persistent acti
vation signals to minimize the communication costs of
transmitting data between successive ones of the multiple
requesting processors.

19. The computer system of claim 1 wherein the cache
35

management means is distributed among the processor units
and a memory holding the shared data.

20. The computer system of claim 1 where the commu
nication channel provides an interconnect that is a non
ordered interconnect.

21. A method of operating a computer system having: a) 40

at least two processor units each having a processor and
cache; b) a shared collection of data; and c) an interconnect
allowing communication between the processor units and
the shared collection of data; comprising the steps of:

i) establishing a set of tokens no less in number than the 45

number of processor units accessing shared collection
of data;

cessor to the requesting processor.
27. The method of claim 26 wherein the request message

is broadcast to the other processors.
28. The method of claim 26 wherein only one token for

that portion is sent.
29. The method of claim 26 wherein one token is an

owner token and further including the step of responding to
the request message to send a token other than the owner
token for the portion unless the receiving processor has only
one token and then sending the owner token for the portion.

30. The method of claim 26 wherein one token is an
owner token and further including the step of responding to
the request message received by a receiving processor
having all the tokens to send a token for the portion that is
not the owner token unless the receiving processor has
completed a writing to the portion and then sending all
tokens for the portion to the requesting processor.

31. The method of claim 21 further including the step of
coordinating the transfer of tokens between processor units
according to requests by the processor units to access of the
shared collection of data by transmitting token requests and
responding to a predefined failure of a requesting processor
to obtain tokens by retransmitting a token request after a
predetermined back-off time.

32. The method of claim 31 wherein the back-off time is
randomized.

33. The method of claim 31 wherein the retransmission is
repeated a predetermined number of time with increasing
length of back-off time.

34. The method of claim 21 further including the step of
coordinating the transfer of tokens between processor units
according to requests by the processor units to access of the
shared collection of data by transmitting token requests and
responding to a predefined failure of a requesting processor

ii) allowing a processor to write to at least a portion of the
shared collection of data through its cache only if the
processor has all the tokens for that portion; and

iii) allowing a processor to read from at least a portion of
the shared collection of data through its cache only if
the processor has at least one of the tokens for that
portion.

to obtain tokens by broadcasting to other processors a
persistent activation signal requiring the other processor to
forward tokens for that portion to the requesting processor
until a deactivation message is received; and

50 further including the step of responding to the persistent

22. The method of claim 21 further including the steps of: 55

responding to a request by a requesting processor to write to
a portion of memory by sending to other processors a request
message for write privileges for the portion of memory; and

responding to the request message by a receiving proces
sor having at least one token by sending all tokens for 60

that portion held by the receiving processor to the
requesting processor.

23. The method of claim 22 wherein the request message
is broadcast to the other processors.

activation signal received by a receiving processor to
send all tokens for the portion held or received by the
receiving processor between the occurrence of the
persistent activation message and the deactivation sig
nal.

35. The method of claim 32 further including the step of
responding to a predetermined failure of multiple requesting
processors to obtain tokens by broadcasting the persistent
activation signal of one of the requesting processors at a time
according to a predetermined arbitration rule.

36. The method of claim 35 wherein the predetermined
arbitration rule selects sending of persistent activation sig
nals to minimize the communication costs of transmitting
data between successive ones of the multiple requesting

24. The method of claim 22 wherein one token is an
owner token and further including the step of responding to
the request message to send the portion held by the receiving

65 processors.

* * * * *

	Bibliography
	Abstract
	Drawings
	Description
	Claims

