
c12) United States Patent 
Mangasarian et al. 

(54) INPUT FEATURE AND KERNEL SELECTION 
FOR SUPPORT VECTOR MACHINE 
CLASSIFICATION 

(75) Inventors: Olvi L. Mangasarian, Madison, WI 
(US); Glenn M. Fung, Bryn Mawr, PA 
(US) 

(73) Assignee: Wisconsin Alumni Research 
Foundation, Madison, WI (US) 

( *) Notice: Subject to any disclaimer, the term ofthis 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 318 days. 

(21) Appl. No.: 10/650,121 

(22) Filed: 

(65) 

Aug. 28, 2003 

Prior Publication Data 

US 2005/0049985 Al Mar. 3, 2005 

(51) Int. Cl. 
G06E 1100 (2006.01) 

(52) U.S. Cl. ........................... 706/20; 706/46; 382/155; 
382/181; 382/224 

(58) Field of Classification Search ....................... None 
See application file for complete search history. 

(56) References Cited 

U.S. PATENT DOCUMENTS 

6,112,195 A * 
6,134,344 A * 
6,327,581 Bl 
6,571,225 Bl* 
6,728,690 Bl * 

2002/0165854 Al 
2003/0093393 Al 
2003/0115030 Al * 

8/2000 Burges . ... .. ... ... ... ... ... .. . 706/20 
10/2000 Burges ....................... 382/155 
12/2001 Platt 

5/2003 Oles et al ...................... 706/12 
4/2004 Meek et al. ................... 706/25 

11/2002 Blayvas et al. 
5/2003 Mangasarian et al. 
6/2003 Ewing ......................... 703/11 

I 1111111111111111 11111 lllll 111111111111111 111111111111111 IIIIII IIII IIII IIII 
US007421417B2 

(IO) Patent No.: US 7,421,417 B2 
Sep.2,2008 (45) Date of Patent: 

2003/0167135 Al * 9/2003 Ewing .. ... ... ... ... .. ... ... ... 702/22 
2005/0105794 Al* 5/2005 Fung .......................... 382/159 
2005/0119837 Al* 6/2005 Prakash et al. ................ 702/27 
2005/0171923 Al* 8/2005 Kiiverietal. .................. 707/1 

OTHER PUBLICATIONS 

"Empirical error based optimizationof SVM kernels: application to 
digit image recognition", Ayat, N. E., Cheriet, M., Suen, C. Y., Fron­
tiers in Handwriting Recognition, 2002. Proceedings 8th Intl, Aug. 
6-8, 2002, pp. 292-297.* 
"Multiple centrality corrections in a primal-dual method for linear 
programming", Jacek Gondzio, Computational Optimization and 
Applications, vol. 6, No. 2, Sep. 1996, pp. 137-156.* 

(Continued) 

Primary Examiner-David R. Vincent 
Assistant Examiner-Mai T. Tran 
(74) Attorney, Agent, or Firm-Shumaker & Sieffert, P.A. 

(57) ABSTRACT 

A feature selection technique for support vector machine 
(SVM) classification makes use of fast Newton method that 
suppresses input space features for a linear programming 
formulation of a linear SVM classifier, or suppresses kernel 
functions for a linear programming formulation of a nonlin­
ear SVM classifier. The techniques may be implemented with 
a linear equation solver, without the need for specialized 
linear programming packages. The feature selection tech­
nique may be applicable to linear or nonlinear SVM classifi­
ers. The technique may involve defining a linear program­
ming formulation of a SVM classifier, solving an exterior 
penalty function of a dual of the linear programming formu­
lation to produce a solution to the SVM classifier using a 
Newton method, and selecting an input set for the SVM 
classifier based on the solution. 

57 Claims, 3 Drawing Sheets 
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INPUT FEATURE AND KERNEL SELECTION 
FOR SUPPORT VECTOR MACHINE 

CLASSIFICATION 

2 
In one embodiment, the invention provides a method com­

prising defining a linear programming formulation of a SVM 
classifier, solving an exterior penalty function of a dual of the 
linear programming formulation to produce a solution to the 

This invention was made with Government support 
awarded by USAF/AFOSR, and Contract No. F49620-00-l-
0085 awarded by the U.S. Government. The United States 
may have certain rights in this invention. 

5 SVM classifier, and selecting an input set for the SVM clas­
sifier based on the solution. The input set includes a reduced 
set of input features in the case of a linear SVM classifier, or 
a reduced set of kernel functions in the case of a nonlinear 
SVM classifier. 

TECHNICAL FIELD 10 In another embodiment, the invention provides a classifi-

This invention relates to classification techniques and, 
more particularly, to support vector machine (SVM) classifi­
cation. 

cation system comprising a processor that applies a linear 
programming formulation of a SVM classifier to classify data 
based on a small subset of input features, and an input module 
that generates the input features based on a solution of an 

BACKGROUND 
15 exterior penalty function of a dual of the linear programming 

formulation. 
In a further embodiment, the invention provides a com­

puter-readable medium comprising instructions to cause a 
processor to define a linear programming formulation of a 

20 SVM classifier, solve an exterior penalty function of a dual of 
the linear programming formulation to produce a solution to 
the SVM classifier, and select input features for the SVM 
classifier based on the solution. 

A support vector machine (SVM) is a powerful tool for 
data classification and is often used for data mining opera­
tions. Classification is achieved by identifying a linear or 
nonlinear separating surface in the input space of a data set. 
The separating surface distinguishes between two classes of 
elements forming an extremely large data set. Advanta­
geously, the separating surface depends only on a subset of 
the original data. This subset of data, which is used to define 25 

the separating surface, constitutes a set of support vectors. 
To enhance performance of an SVM classifier, it is desir­

able to make the set of support vectors that defines the sepa­
rating surface as small as possible, e.g., by reducing the set of 
input features in the case of a linear SVM classifier, or reduc- 30 

ing a set of kernel functions in the case ofa nonlinear SVM 
classifier. Applications such as fraud detection, credit evalu­
ation, gene expression, and medical diagnosis or prognosis, 
for example, may present an input space with thousands, or 
even millions, of data points. The ability to suppress less 35 

useful data and select a reduced set of meaningful support 
vectors can greatly enhance the performance of the SVM 
classifier, in terms of computational resources, speed, and 
accuracy. 

The invention may provide a number of advantages. For 
example, the feature-kernel selection techniques described 
herein are capable of substantially reducing the number of 
input features necessary to define an SVM classifier. By sup­
pressing input space features, the techniques can enhance the 
performance of the SVM classifier in terms of computational 
resources, speed, and accuracy. In addition, feature selection 
can be achieved with the aid of a simple linear equation 
solver, rather than specialized linear programming packages 
that present additional complexity and cost. 

When a linear classifier is used, a sparse solution implies 
that the separating hyperplane depends on very few input 
features, making the feature suppression method very effec­
tive for feature selection for classification problems. When a 
nonlinear classifier is used, a sparse solution implies that very 
few kernel functions determine the classifier, making the 

40 nonlinear classifier easier to store and fast to evaluate. 
SUMMARY 

The invention is directed to a feature or kernel selection 
technique for SVM classification. In accordance with the 
invention, the selection technique makes use of a fast Newton 45 

method that suppresses input space features for a linear pro­
gramming formulation of a linear SVM classifier, which can 
be referred to as a Newton Linear Programming Support 
Vector Machine (NLPSVM). The technique also may be 
applied to suppress kernel functions in the case of a nonlinear 50 

SVM classifier. The Newton method described herein can 
implemented with a linear equation solver, without the need 
for specialized and costly linear programming packages. The 
selection technique may be applicable to linear SVM classi­
fiers or nonlinear SVM classifiers, producing a reduced set of 55 

input features of kernel functions, respectively. 
The fast Newton method is used to solve an exterior penalty 

function of a dual of the linear programming formulation of 
the SVM for a finite value of the penalty parameter. The linear 
programming formulation is based on a I-norm SVM formu- 60 

lation that is selected, in accordance with the invention, to 
generate very sparse solutions. By solving the exterior pen­
alty function of the dual of the linear programming formula­
tion, the method produces an exact least 2-norm solution to 
the SVM classifier. The resultant separating hyperplane relies 65 

on very few input features. When the resultant surface is 
nonlinear, it uses a reduced number of kernel functions. 

Accordingly, a feature-kernel selection technique as 
described herein may be advantageous in either case. 

The details of one or more embodiments are set forth in the 
accompanying drawings and the description below. Other 
features, objects, and advantages will be apparent from the 
description and drawings, and from the claims. 

BRIEF DESCRIPTION OF DRAWINGS 

FIG. 1 is a block diagram illustrating a system for feature 
selection for an SVM classifier in accordance with the inven­
tion. 

FIG. 2 is a block diagram illustrating a feature-kernel 
selection module of the system of FIG. 1 in greater detail. 

FIG. 3 is a flow diagram illustrating a feature selection 
method for a SVM classifier in accordance with the invention. 

FIG. 4 is a graph of bounding planes and a separating plane 
generated by an SVM classifier. 

FIG. 5 is a graph illustrating an absolute call feature set. 

DETAILED DESCRIPTION 

FIG. 1 is a block diagram illustrating a system 10 for 
feature selection for an SVM classifier. As shown in FIG. 1, 
system 10 includes a data storage medium containing a set of 
input data 12, and a processor 14 that implements a feature­
kernel selection module 16 and an SVM classifier 18. Pro-
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cessor 14 may reside within a general purpose computer or 
computer workstation. Feature-kernel selection module 16 
and SVM classifier 18 may take the form of software pro­
cesses or modules executing on processor 14, or on different 
processors. Hence, in some embodiments, the invention may 5 

be embodied as computer-readable medium including 
instructions for execution by processor 14. 

4 
costly linear programming packages. The SVM classifier 
generated with the resulting input features can be referred to 
as a Newton Linear Programming Support Vector Machine 
(NLPSVM). 

FIG. 2 is a block diagram illustrating an exemplary feature-
kernel selection module 16 of system 10 of FIG. 1 in greater 
detail. As shown in FIG. 2, feature-kernel selection module 16 
may include a linear programming support vector machine 
(LPSVM) dual generator 26 that produces the dual of a linear 

Feature-kernel selection module 16 may operate indepen­
dently of SVM classifier 18 to simultaneously select a 
reduced input set 22, comprising input features for linear 
classifiers or kernel Functions for nonlinear classifiers, and 
generate a linear or nonlinear SVM classifier 18 based on 
input data 12 while utilizing the reduced input set 22 of input 
features or reduced kernel functions. In general, feature-ker­
nel selection module 16 defines a linear programming formu­
lation of SVM classifier 18, solves an exterior penalty func­
tion of a dual of the linear programming formulation to 
produce a solution to the SVM classifier, and selects an input 

10 programming formulation of SVM classifier 18. Again, 
LPSVM dual generator 26 produces the dual of a I-norm 
linear programming formulation that is selected to produce 
sparse solutions. 

An exterior penalty function solver 28 solves an exterior 
15 penalty function of the dual of the linear programming for­

mulation to solve the SVM classifier function. Based on the 

set for the SVM classifier based on the solution. The input set 
includes selected features in the case of a linear classifier, or 20 

selected kernel functions in the case of a nonlinear classifier. 
SVM classifier 18 generates classification output 20, 

which classifies input data 12 into two classes based on the 
reduced input set 22 of input features or kernel functions 
generated by feature-kernel selection module 16. SVM clas- 25 

sifier 18 may be based on a linear or nonlinear SVM. In the 
case of a linear SVM, feature-kernel selection module 16 
generates a reduced set of input features. In the case of a 
nonlinear SVM, feature-kernel selection module 16 gener­
ates a reduced set of kernel functions. Classification output 20 30 

may be useful in a variety of applications including, for 
example, fraud detection, credit evaluation, gene expression, 
and medical diagnosis and prognosis. 

Feature-kernel selection module 16 selects a small subset 

solution of the exterior penalty function, a feature-kernel 
selection generator 30 processes input data 12 to suppress 
redundant features or kernels and thereby generate a reduced 
input set 22 of feature or kernel coefficients for use by SVM 
classifier 18. The structural representation of feature-kernel 
selection module 16 as a set of functional modules in FIG. 2 
is for purposes of illustration, and should not be considered 
limiting of the invention as broadly embodied and described 
herein. 

FIG. 3 is a flow diagram illustrating a feature or kernel 
selection method for an SVM classifier 18, as shown in FIG. 
1. The feature-kernel selection method is implemented by 
feature-kernel selection module 16, shown in FIGS. 1 and 2. 
As shown in FIG. 3, feature-kernel selection module 16 
defines a linear programming formulation of SVM classifier 
18 (32), and solves the exterior penalty function of the dual of 
the linear programming formulation of the SVM classifier 
(34). Based on the solution to the exterior penalty function, 

of input features or a small number of kernel functions from 35 feature-kernel selection module 16 selects input features or 
kernel functions using the input dataset (36). Feature-kernel 
selection module 16 then applies the input features or kernel 
functions to SVM classifier 18 (38), which generates classi-

a large set of input data 12 to define SVM classifier 18. 
Feature-kernel selection module 16 may be implemented 
with a linear equation solver, without the need for specialized 
and costly linear programming packages. In addition, as dis­
cussed above, feature-kernel selection module 16 may be 40 

effective in suppressing input features for linear SVM classi­
fiers and suppressing kernel functions for nonlinear SVM 
classifiers. In operation, feature-kernel selection module 16 
applies a fast Newton method to solve an exterior penalty 
function for a dual of a linear programming formulation of 
SVM classifier 18 to solve the SVM classifier function. 

Feature-kernel selection module 16 applies the Newton 
method to the dual of a I-norm linear programming formu­
lation that is known to produce very sparse solutions. By 
solving the exterior penalty function of the dual of the I-norm 
linear programming formulation, for a finite value of the 
penalty parameter, feature-kernel selection module 16 pro­
duces an exact least 2-norm solution to the SVM classifier 18. 
The resultant separating hyperplane defined by SVM classi­
fier 18 relies on a reduced set of input features. In the case of 
a nonlinear SVM classifier, few kernel functions are needed. 

fication output ( 40) for the input data. 
Various details of feature-kernel selection module 16, the 

linear programming formulation, the Newton method applied 
by the feature-kernel selection module, and exemplary algo­
rithms useful in implementation of the feature-kernel selec­
tion module will be described below. In general, the feature-

45 kernel selection techniques contemplated by the invention 
permit an SVM classifier to handle classification problems in 
very high dimensional spaces with very few input features. As 
an example, set forth in greater detail below, the feature 
selection technique has been observed to be effective in 

50 reducing an input space having 28,032 dimensions to just 7 
input features for definition of an operable linear SVM clas­
sifier. Hence, the techniques described herein are effective in 
selecting a subset of input features from a larger set of input 
features that is substantially larger than the subset of input 

55 features. Advantageously, the Newton method implemented 
by feature-kernel selection module 16 requires only a linear 
equation solver and can be represented in several lines of 
MATLAB code. 

SVM classifier 18 applies the input features ( or kernel 
functions) produced by feature-kernel selection module 16 to 
generate classification output 20 for the larger set of input 
data 12. Hence, feature-kernel selection module 16 applies a 60 

fast Newton method that suppresses input features to define a 
linear SVM classifier that depends on very few input features 

By minimizing an exterior penalty function of the dual of a 
I-norm linear programming formulation ofSVM classifier 18 
using the fast Newton method, for a finite value of the penalty 
parameter, an exact least 2-norm solution to the SVM classi­
fier is obtained. This approach is based on a I-norm SVM 
linear programming formulation that is selected to generate 

or a nonlinear classifier with few kernel functions. Notably, 
feature-kernel selection module 16 enables formulation of an 
SVM classifier 18 that is capable of handling classification 65 

problems in very high dimensional spaces using only a linear 
equation solver, thereby eliminating the need for complex and 

very sparse solutions. A suitable I-norm SVM formulation is 
described in "Feature Selection via Concave Minimization 
and Support Vector Machines," by P. S. Bradley and 0. L. 
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Mangasarian, in Machine Leaming Proceedings of the Fif­
teenth International Conference (ICML '98), pages 82-90, 
San Francisco, Calif., 1998, J. Shavlik, editor. As detailed in 
the Bradley and Mangasarian paper, this I-norm SVM for­
mulation has been observed to produce very sparse solutions. 5 

Another fast Newton method (NSVM) was also proposed 
recently, in G. Fung and 0. L. Mangasarian, "Finite Newton 
method for Lagrangian support vector machine classification, 
"Technical Report 02-01, Data Mining Institute, Computer 
Sciences Department, University of Wisconsin, Madison, 10 

Wis., 2002 (to appear in Neurocomputing), based on a qua­
dratic programming formulation of support vector machines. 
A quadratic progranmiing formulation, unlike a linear pro­
gramming formulation as described herein, does not generate 
sparse solutions and hence does not suppress input features. 15 

This characteristic contrasts sharply with the strong feature 
suppression property of the Newton method described herein. 

With the linear and nonlinear kernel classification prob­
lems formulated as a linear programming problem, rather 
than a quadratic progranmiing formulation, an exact solution 20 

to the linear programming SVM can be obtained by minimiz­
ing the exterior penalty function of its dual for a finite value of 
the penalty parameter. The fast Newton algorithm is used to 
solved the exterior penalty and establish its global conver­
gence. The linear progranmiing formulation and the Newton 25 

algorithm will be described in detail below, following a dis­
cussion of applicable notation used throughout this disclo­
sure. 

6 
than some positive constant for all xERm then f(x) is a 
strongly convex piecewise quadratic function on Rn. 
Throughout this disclosure, the notation:=will denote defini­
tion. 

The fundamental classification problems that lead to a 
linear progranmiing formulation for SVM classifier 18 will 
now be described. Consider the problem of classifying m 
points in then-dimensional real space Rn, represented by the 
mxn matrix A, according to membership of each point A, in 
the classes + 1 or -1 as specified by a given mxm diagonal 
matrix D with ones or minus ones along its diagonal. For this 
formulation, the standard SVM with a linear kernel AA' is 
given by the following quadratic program for some v>0: 

min ve' y + -
2

1 
w'w 

(w,y,y) 

s.t. D(Aw-ey)+y;a:e 

y ;a, 0. 

(2) 

FIG. 4 is a graph ofbounding planes 40, 42 and a separating 
plane 44 generated by a support vector machine classifier as 
described herein. As depicted in FIG. 4, w is the normal to the 
bounding planes: 

x'w-y~+l 

x'w-y~-1, (3) 

and y determines their location relative to the origin. Plane 42 
above bounds the class + 1 points 46 and plane 40 bounds the 
class -1 points 48 when the two classes are strictly linearly 
separable, i.e., when the slack variable y=0. The linear sepa­
rating surface is the plane: 

x'w=y, (4) 

First, vectors will be colunm vectors unless transposed to a 
row vector by a prime superscript'. For a vector x in the 30 

n-dimensional real space Rn, the plus function x+ is defined as 
(xJ i=max {0, x,}, i=l, ... , n, while x* denotes the subgra­
dient of x+ which is the step function defined as (x*),=1 if 
x,>0, (x*),=0ifx,<0, and(x*),E[0, 1] ifx,=0, i=l, ... ,n. Thus, 
(x*), is any value in the interval [0, 1], when x,=0, and typi- 35 

cally (x*),=0.5 in this case. The scalar (inner) product of two 
vectors x and y in then-dimensional real space Rn will be 
denoted by x'y, the 2-norm of x will be denoted by llxll andx_l_y 
denotes orthogonality, i.e., x'y=0. The I-norm and oo-norm 
will be denoted by 11·11 1 and ll·lloo, respectively. 

midway between bounding planes 40, 42. If the classes are 

40 linearly inseparable, then the two planes 40, 42 bound the two 
classes with a "soft margin" determined by a nonnegative 
slack variable y, that is: For amatrixAERmxn,A, is the ithrow of A, which is a row 

vector in Rn, andllAII is the2-normofA: max IIAx II for llx 11=1. 
A colunm vector of ones of arbitrary dimension will be 
denoted bye and the identity matrix of arbitrary order will be 
denoted by I. For AERmxn and BERnxi, the kernel K(A, B) 45 

[27,4, 18] is an arbitrary function which maps R mxnxRnxl into 
Rmxl. In particular, ifx and y are colunm vectors in Rn, then 
K(x', y) is a real number, K(x', A') is a row vector in Rm and 
K(A, A') is an mxm matrix. If f is a real valued function 
defined on then-dimensional real space Rn, the gradient off 50 

at xis denoted by Vf(x), which is a column vector in Rn and 
the nxn matrix of second partial derivatives of f at x is 
denoted by V2f(x). 

For a piecewise quadratic function such as f(x)=½ll(Ax-
55 

b)J2 +½x'Px, where AERmxn, PERnxn, P=P', p positive 
semidefinite and bERm, the ordinary Hessian does not exist 
because its gradient, the nxl vector Vf(x)=A'(Ax-b t +Px, is 
not differentiable. However, one can define its generalized 
Hessian, which is the nxn symmetric positive semidefinite 

60 
matrix: 

a2 f(x)~A'diag(Ax-b )* A+P (1) 

(5) 

The I-norm of the slack variable y is minimized with 
weight v in equation (2). The quadratic term in equation (2), 
which is twice the reciprocal of the square of the 2-norm 
distance 

2 

llwll 

between the two bounding planes of equation (3) in then-di­
mensional space of wERn for a fixed y, maximizes that dis­
tance, often called the "margin." 

FIG. 4 depicts the points represented by A, the bounding 
planes of equation (3) with margin 

where diag(Ax-b )* denotes an mxm diagonal matrix with 2 

diagonal elements (A,x-b,)*, i=l, ... , m. The generalized 65 M' 
Hessian has many of the properties of the regular Hessian in 
relation to f(x). If the smallest eigenvalue of a2f(x) is greater 
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and the separating plane from equation (4) which separates 
A+, the points represented by rows of A with D,,=+1, from 
A-, the points represented by rows of A with D,,=-1. 

8 
programming formulation of equation (8). In the present 
approach, however, the fact that E will remain finite is estab­
lished so that an exact solution to the I-norm linear program­
ming SVM formulation of equation ( 6) can be obtained. To do In a linear programming formulation of the standard SVM 

in equation (2), the term 5 that, the Karush-Kuhn-Tucker necessary and sufficient opti­
mality conditions for the penalty function of equation (9) are 
stated as follows: 

1 
-w'w 
2 

10 0:;;u -'-(-u:+DA(A'Du-.s)+- (10) 

is replaced by llwll1 , which is twice the reciprocal of the 
oo-norm distance between the bounding planes of equation 
(3). Importantly, empirical evidence indicates that the I-norm 
formulation has the advantage of generating very sparse solu- 15 
tions. As a result, the normal w to the separating plane x'w=r 
has many zero components, which implies that many input 
space features do not play a role in defining the linear SVM 
classifier. 

DA(-A' Du - e)+ + D.se' Du+ (u - ve)+ ;a: 0, 

where J_ denotes orthogonality. Notably, these conditions in 
expression (10) are also the necessary and sufficient condi­
tions for finding an exact least 2-norm solution to the linear 
programming SVM formulation of equation (6) without E 
approaching zero. To do that, it is first necessary to formulate 

This solution sparseness, and its implications for definition 
SVM classifier, makes the I-norm linear programming for­
mulation suitable for feature selection in classification prob­
lems. Notably, in addition to the conventional interpretation 

20 the least 2-norm problem for equation (6) as follows: 

of smaller v as emphasizing a larger margin between the 
bounding planes of equation (3 ), a smaller v here also results 25 
in a sparse solution. This I-norm formulation leads to the 
linear programming problem: 

min ve' y + e' (p + q) + :': (IIPll 2 + llqll2 + y2 + IIYll2J 
(p,q,y,y) 2 

s.t. D(A(p-q)-ey)+y;a:e 

p, q, y ;a, 0, 

(11) 

min ve'y + e'(p + q) 
(p,q,y,y) 

(6) 30 with the Karush-Kuhn-Tucker necessary and sufficient opti­
mality conditions stated as follows: 

s.t. D(A(p - q) - ey) + y ;a: e 

p, q, y ;a, 0, 

where the following substitution for w has been made: 

w=p-q, p~0. q~0, 

35 

(7) 

This substitution results in a linear programming SVM for- 40 
mulation that is different and simpler than previous linear 
programming SVM formulations. Feature-kernel selection 
module 16 therefore relies on the dual of the linear program­
ming formulation of equation (6), as follows: 

0~epl_e+ep-A 'Du~0 

0~eql_e+eq+A 'Du=0 

ey+e'Du=0 

0~eyl_ ve+ey-u~0 

0~u1-DA(p-q)-Dey+y-e~0 (12) 

max e'u 
UE Rm 

It follows that, for any positive E such that EE(0,E] for some 
E>0, any (p, q, y, y) satisfying the Karush-Kuhn-Tucker con­
ditions of equation (12) for some uERm is the exact least 
2-norm solution to the linear programming SVM formulation 

45 of equation ( 6). However, if the Karush-Kuhn-Tucker condi­
tions of expression (10) are used in the penalty problem of 
equation (9): 

s.t. -e::;; A'Du :,; e, (8) 

-e'Du 0, 50 

u :,; ve, 
1 ' p = ;:(A Du-e)+, 

(13) 

u ;a: 0. 
1 ' q= ;:(-A Du-e)+, 

The asymptotic exterior penalty function for this dual linear 55 

programming formulation of equation (8) is the following 
nonnegatively constrained minimization problem: 

1' y=--eDu, 
E 

1 
y = ;:(u, ve)+, 

1 
~J' -.se'u + 211(A' Du- eJ+ll 2 + 

(9) 60 
and use is made of the simple equivalence: 

1 ' 2 1 ' 2 1 2 

211(-A Du- eJ+II + ;;:lie Dull + 211(u-veJ+II , 

where Eis a positive penalty parameter that needs to approach 
zero for standard penalty application to solve the dual linear 

(14) 

then equation (13) together with the Karush-Kuhn-Tucker 
65 conditions of expression (10) for the exterior penalty function 

of equation (9), become precisely the Karush-Kuhn-Tucker 
necessary and sufficient conditions of expression (12) for the 
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least 2-norm linear progrannning SVM formulation of equa­
tion (11 ). Thus, the proposition set forth below is proven: 

Proposition: Equivalence of Least 2-norm LPSVM to 
Dual Exterior Penalty 5 

A solution u to the dual exterior penalty (DEP) problem (9) 
for EE(0, E] for some E>0, provides an exact least 2-norm 
solution to the primal linear progrannning SVM of equation 
(6) as follows: 10 

1 
w = p -q == ;:((A' Du- e)+ - (-A' Du- eJ+J, 

r 

y 

= -~e'Du, 
E 

1 
= -(u-ve)+­

E 

(15) 

15 

10 
which is the linear kernel SVM in terms of the dual variable 
v=r-s. If the linear kernel AA' in equation (19) is replaced 
with the nonlinear kernel K(A, A'), the nonlinear kernel linear 
progrannning formulation is obtained as follows: 

min ve'y+e'(r+s) 
(r,s,y,y) 

(20) 

s.t. D(K(A, A' )D(r - s) - ey) + y ;a: e 

r, s, y ;a: 0. 

Note that the linear progrannning formulation (20) is identi­
cal to the linear classifier SVM of equation ( 6) if: 

A-K(A,A')D, (21) 

in equation (6) and n----;,m. Hence, the results outlined in the 
Proposition above are applicable to a nonlinear kernel if the 
replacement of equation (21) is made in equation (9) and (15) 
and p----;,r, q----;,s, w----;,v in equation (15), and the nonlinear 
kernel classifier of equation (16) is used. 

Hence, by minimizing the exterior penalty function, feature- 20 

kernel selection module 16 is able to produce a solution to the 
SVM function. As in the linear case, the I-norm formulation (21) leads to 

a very sparse v. Every zero component v, ofv implies non­
dependence of the nonlinear kernel classifier on the kernel 

25 function K(x', A',). This results because: 

The foregoing techniques are also useful with nonlinear 
kernel classifiers. For nonlinear kernel classifiers, this disclo­
sure will generally use the notation described in 0. L. Man­
gasarian, "Generalized support vector machines," in A. 
Smola, P. Bartlett, B. Scholkopf, andD. Schuurmans, editors, 
Advances in Large Margin Classifiers, pages 135-146, Cam­
bridge, Mass., 2000, MIT Press. For AERmxn and BERnxz, the 
kernel K(A, B)maps RmxnxRnxl into Rmxl_A typical kernel is 30 

the Gaussian kernel: 

m 

K(x', A')Dv = L,D;;v;K(x', A,) 
i=l 

= L, DiiViK(x', A;). 
{ilVj'FO) 

(22) 

An algorithmic implementation of the above linear pro-

where Eis the base of natural logarithms, while a linear kernel 
is K(A, B)=AB. Fora column vectorxinRn, K(x',A')is a row 
vector in Rm, and the linear separating surface of equation ( 4) 
is replaced by the nonlinear separating surface: 

35 grannning proposition will now be described with respect to 
a fast Newton method, which may be referred to as a Newton 
Method for Linear Programming Support Vector Machine 
(NLPSVM). In particular, the dual exterior penalty of equa-

K(x',A )Dv=y, (16) 40 

where v is the solution of the dual problem of equation (8) 
appropriately modified as follows. For a linear kernel K(A, 
A')=AA', w=A'Dv per equation (16). The primal linear pro­
grannning SVM of equation (4) then becomes, upon using 
w=p-q=A'Dv and the I-norm of v in the objective instead of 45 

that ofw: 

min 
(v,y,y) 

ve'y + llvll1 

s.t. D(AA' Dv - ey) + y ;a: e 

y ;a, 0. 

and setting: 

v=r-s, r~O, s~O, 

the linear programming formulation of (17) becomes: 

min 
(r,s,,y,y) 

ve'y + e'(r +s) 

s.t. D(AA' D(r-s) - ey) + y ;a: e 

r, s, y ;a: 0, 

(17) 
50 

55 

(18) 

60 

(19) 

65 

tion (9) is solved for a finite value of the penalty parameter E 
by incorporating the nonnegativity constraint u~0 into the 
objective function of equation (9) as a penalty term as fol-
lows: 

1 
~nf(u) = -ce'u + ;;:ll(A' Du- eJ+ll 2 + 

1 1 

211(-A' Du- eJ+ll2 + ;;:lie' Dull 2 + 

1 CY 

211(u- veJ+ll
2 + 211(-uJ+ll

2
-

The gradient of this function is given by: 

Vf(u)~-ee+DA(A 'Du-e)+ -DA(-A 'Du-e)+ +Dee'Du+ 
(u-ve)+ -a(-u)+ 

(23) 

(24) 

and its generalized Hessian as defined in equation ( 1) is given 
as follows: 

82 f(u) = DA(diag((A' Du - e), + (-A' Du - e),)A' D + 

Dee' D + diag((u- ve), + a:(-u),) 

= DA(diag(IA' Dul - e),)A' D + 

Dee' D + diag((u-ve), + a:(-u),), 

(25) 



US 7,421,417 B2 
11 

where the last equality follows from the equality: 

(a-1)*+(-a-l)*~(lal-1 )*. (26) 

Given the above relationships, the Newton method for 
input feature selection can be described in detail. Specifically, 5 
the method involves letting f(u), and Vf(u) and a2f(u) be 
defined by equations (23)-(25), and setting the parameter 
values v, E, Ii, tolerancetol, a, andimax. Typically, E=lo- 1 for 
nonlinear SVMs and E=l0-4 for linear SVMs, tol=l0-3

, 

a=l03
, and imax=50, while v and Ii are set by a tuning 10 

procedure described in detail later in this disclosure. Starting 
withanyu0ERm, fori=0, 1, ... : 

12 
solution of the dual linear programming formulation (6). This 
result can be implemented computationally by using an E 
which, when decreased by some factor, yields the same solu­
tion to dual linear programming formulation (6). 

EXAMPLES 

In order to show that a fast Newton method as described 
herein can achieve very significant feature suppression, 
numerical tests and comparisons were carried out on a dataset 
with a high dimensional input space and a moderate number 
of data points. On the other hand, in order to show that the 
algorithm has a computational speed comparable to that of 
other fast methods, experiments also were performed on more 

([) 

u;+i = u; -A;(82 f(u;) + Mf1V f(u;) = u; + A;i, 

where the Annijo stepsize A;= max{ 1, ~- i, ... } 
is such that: 

(27) 

15 conventional datasets where the dimensionality of the input 
space is considerably smaller than the number of data points. 

. . . Ai . , . 
f(u')-f(u' +A;d') ;a: - 4 V f(u') d', 

All computations were performed on the University of 
Wisconsin Data Mining Institute "locopl" machine, which 
utilizes a 400 MHz Pentium II and allows a maximum of 2 

20 Gigabytes of memory for each process. This computer runs 
on Windows NT server 4.0, with MATLAB 6 installed. 

Because of the simplicity of the disclosed algorithm, a 
simple MATLAB implementation of the algorithm without 
the Armijo stepsize, which does not seem to be needed in 

and d' is the modified Newton direction: 

ct~-(a2f(u')+oJ)- 1Vf(u'). (28) 

(II) Stop ifllu'-u'+1ll~tol or i=imax. Else. set i=i+l, a=2a 
and go to (I). 

(III) Define the least 2-norm solution of the linear program­
ming SVM of equation (6) using equation (15) with 
u=ui. 

25 most applications, is presented below. Although this is merely 
an empirical observation in the present case, it considerably 
simplifies the MATLAB code. However, it has also been 
shown herein that under a well conditioned assumption, not 
generally satisfied in this example, the proposed Newton 

A convergence result for this algorithm is set forth accord­
ing to the following theorem. Let tol=0, imax=oo, and let E>0 

30 algorithm indeed terminates in a finite number of steps with­
out an Armijo stepsize. Note that this version of the algorithm 
is intended for cases where the number of data points m is 
smaller than the number of features n, i.e., when m<<n since 

be sufficiently small. Each accumulation point u of the 35 

sequence { u'} generated by the above algorithm solves the 
exterior penalty problem (9). The corresponding (w, y, y) 
obtained by setting u to u in equation (15) is the exact least 
2-norm solution to the primal linear program SVM of equa­
tion (6), as indicated by the following proof. 40 

The fact that each accumulation point u of the sequence 
{ u,} solves the minimization problem of equation (9) follows 
from exterior penalty results and standard unconstrained 
descent methods such as those detailed in 0. L. Mangasarian, 
"Parallel gradient distribution in unconstrained optimiza- 45 

tion," SIAM Journal on Control and Optimization, 33(6): 
1916-1925, 1995, and in this disclosure, and the facts that the 
direction choice d, of equation (19) satisfies, for some c>0: 

-V f(u;/d; = V f(u;/(M + 82 f(u;)f 1V f(u;) 

;a: cl IV f(u; )11 2
, 

(29) 
50 

55 

and that an Armijo step size is used per equation (27). The last 
statement of the theorem follows from the Proposition out­
lined above. 

As an application note, it is useful to understand that deter­
mining the size ofE, such that the solution u of the quadratic 60 

program (11) for EE(0,E], is the least 2-norm solution of prob­
lem (6), is not an easy problem theoretically. However, com­
putationally, this does not seem to be critical and is effectively 
addressed as follows. By equation (11) above, if for two 
successive values of E:E1 >E2

, the corresponding solutions of 65 

the E-perturbed quadratic program (11): u1 and u2 are equal, 
then under certain assumptions, u=u1=u2 is the least 2-norm 

the speed of the algorithm depends on min a cubic fashion. 
The following is example MATLAB code for implement­

ing a Newton Linear Programming Support Vector Machine 
(NLPSVM) as described herein: 

function [w,gamma]~nlpsvm(A,d,nu,delta) 
%NLPSV: linear and nonlinear classification 
% without Armijo 
%INPUT: A, D, nu, delta. OUTPUT ~w, gamma. 
%[w,gamma]~nlpsvm(A,d,nu,delta) 
epsi~lO' (-4);alpha~10 '3;tol~10 '(-3);imax~50; 
[ m,n ]~size(A);en~ones(n,1 );em~ones(m,1 ); 
u=ones(m,l);o/oinitial point 
iter~0;g~l; 
epsi=epsi*em;nu=nu*em; 
DA~spdiags(d,0,m,m)* A; 
while (norm(g)>tol) & (iter<imax) 

iter=iter+ 1; 

end 

du~d. *u;Adu~A'*du; 
pp~max(Adu-en,0);np~max(-Adu-en,0); 
dd~sum(du)*d;unu~max(u-nu,0);uu~max(-u,0); 
g~-epsi+( d. * (A *pp))-( d. * (A *np) )+dd+unu-alpha *uu; 
E~spdiags(sqrt(sign(np )+sign(pp) ),0,n,n); 
H~[DA*Ed]; 
F~delta+sign(unu)+alpha*sign(uu); 
F ~spdiags(F, 0,m,m); 
di~-((H*H'+F)\g); 
u=u+di; 

du~d. *u;Adu~A'*du; 
pp~max(Adu-en,0);np~max(-Adu-en,0); 
w~l/epsi(l )*(pp-np ); 
gaunna~-(1/epsi(l))*sum(du); 
return 

The above MATLAB code works not only for a linear 
classifier, but also for a nonlinear classifier per equations (1) 
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and (10). In the nonlinear case, the matrix K(A, A')D is used 
as input instead of A, and the pair (v, y), is returned instead of 
(w, y). The nonlinear separating surface is then given by 
equation (11) as: 

14 
machines," Journal of Machine Leaming Research, 1:161-
177, 2001 and the NSVM described in G. Fung and 0. L. 
Mangasarian, "Finite Newton method for Lagrangian support 
vector machine classification," Technical Report 02-01, Data 

K(x,A')Dv-y~o. (30) 

Numerical testing and comparisons were carried out on the 
high dimensional Multiple Myeloma dataset available at: 
http://lambertlab.uams.edu/publicdata.htm. The structure of 
this dataset with very large n and (m<<n) results from the 
DNA microarray dataset used. Hence, feature selection is 
very desirable in such high dimensional problems. Other tests 
and comparisons were also carried out on six moderately 
dimensioned, publicly available datasets described below. 

5 Mining Institute, Computer Sciences Department, University 
of Wisconsin, Madison, Wis., February 2002. 

Reported times for the LSVM here differ from the ones 
reported in the Mangasarian and Musicant paper because the 

10 calculation time for the matrix Hof equation (9) is considered 

Multiple Myeloma Dataset 15 
Multiple Myeloma is cancer of the plasma cell. The plasma 

cell normally produces antibodies that destroy foreign bodies 
such as bacteria. As a product of the Myeloma disease the 
plasma cells produce a tumor. These tumors can grow in 
several sites, usually in the soft middle part of bone, i.e., the 20 
bone marrow. When these tumors appear in multiples sites, 
they are called Multiple Myeloma. A detailed description of 
the process used to obtain the data can be found in David 
Page, Fenghuang Zhan, James Cussens, Michael Waddell, 
Johanna Hardin, Bart Barlogie, and John Shaughnessy, Jr., 25 
"Comparative data mining for microarrays: A case study 
based on multiple myeloma," Technical Report 1453, Com­
puter Sciences Department, University of Wisconsin, 
November 2002. 

The Multiple Myeloma data set consists of 105 data points. 30 

74 of the points represent newly-diagnosed multiple 
Myeloma patients while 31 points represent 31 healthy 
donors. Each data point represents measurements taken from 
7008 genes using plasma cell samples from the patients. For 
each one of the 7008 genes, there are two measurements. One 35 

measurement is calledAbsolute Call (AC) and takes on one of 
three nominal values: A (Absent), M (Marginal) or P 
(Present). The other measurement, the average difference 
(AD), is a floating point number that can be either positive or 
negative. 40 

as input time in the Mangasarian and Musicant paper, 
whereas in this disclosure it is counted as part of the compu­
tational time. The other algorithm included in this compari­
son consists of solving the linear programming formulation 
(20) employing the widely used commercial solver CPLEX 
6.5, commercially available from the ILOG CPLEX Division 
of CPLEX, Inc, Incline Village, Nev. This approach can be 
referred to as CPLEX SVM. Termination criteria for all meth-
ods, with the exceptionofCPLEX SVM, was set to tol=0.001, 
which is the default for LSVM. For CPLEX SVM, the termi­
nation criterion used was the default supplied in the commer­
cial CPLEX package. Outlined below are some of the results 
of the comparative testing. 

All three methods tested, NSVM, NLPSVM in accordance 
with the invention, and CPLEX SVM, obtained 100% leave­
one-out correctness (looc ). The following tuning procedure 
was employed for each of the 105 folds: 

A random tuning set of the size of 10% of the training data 
was chosen and separated from the training set. 

Several SVMs were trained on the remaining 90% 
of the training data using values of v equal to 2' with 
i=-12, ... , 0, ... , 12. Values of the parameter Ii tried 
were HY withj=-3, ... , 0, ... , 3. This made the search 
space for the pair (v, Ii) a grid of dimension 25x7. 

Values of v and Ii that gave the best SVM correctness on the 
tuning set were chosen. 

A final SVM was trained using the chosen values of v and 
Ii and all the training data. The resulting SVM was tested 
on the testing data. 

The remaining parameters were set to the following values: 
45 E=4x10-4

, a=l03
, tol=l0-3

, imax=50. TheNLPSVMmethod 

FIG. 5 is a diagram illustrating an exemplary absolute call 
feature set. In particular, FIG. 5 depicts real-valued represen­
tations of the AC features set { A,M,P}. Since each one of the 
7008 AC features takes on nominal values from the set { A,M, 
P}, a real valued representation is needed to utilize the SVM 
classifier disclosed herein, which requires an input of real 
numbers. Thus, each nominal value is mapped into a three­
dimensional binary vector depending on the value that is 
being represented. This simple and widely used "1 of N" 
mapping scheme for converting nominal attributes into real- 50 

valued attributes is illustrated in FIG. 5. 
Once this simple conversion is applied to the dataset, the 

AC feature space is transformed from a 7008-dimensional 
space with nominal values A, M, P into a 7008x3=21024 
real-valued dimensional space. Adding the numerical AD 
feature for each of the 7008 genes results in each data point 
being transformed to a point in R28032

, with 21024 coming 
from the AC transformation mentioned above and 7008 from 
the AD values. This conversion makes this dataset very inter­
esting for the disclosed algorithm, since a main objective is to 
show that it does a remarkable job of suppressing features 
especially for datasets in a very high dimensional input space. 

Performance of the NLPSVM algorithm of the invention 
on the Myeloma dataset, in terms of feature selection and 
generalization ability, is first compared with two publicly 
available SVM solvers: the LSVM described in 0. L. Man­
gasarian and D. R. Musicant, "Lagrangian support vector 

outperformed all others in the feature selection task, and 
obtained 100% looc using only 7 features out of28032 origi­
nal features. The closest contender was CPLEX SVM which 
required more than twice as many features. 

The average CPU time required by the NLPSVM algo­
rithm for the leave-one-out correctness (looc) computations 
was 75.16 seconds per fold and a total time for 105 folds was 
7891.80 seconds. This outperformed CPLEX SVM both in 

55 CPU time and number of features used. CPLEX SVM had a 
CPU time of108.28 per fold, a total time ofl 1369.40 seconds 
and used 28 features. However, NLPSVM was considerably 
slower than the NSVM, which had a CPU time of 4.20 sec-

60 ands average per fold and total looc time of 441.00 seconds. 
The NSVM classifier required 6554 features, more than any 
classifier obtained by all other methods. LSVM failed and 
reported an out of memory error. These results are summa­
rized in Table 1 below. In particular, Table 1 indicates looc 

65 results, total running times and number of average and overall 
features used by a linear classifier for the Myeloma dataset. 
The designation "oom" indicates "out of memory." 
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TABLE 1 

CPLEX 
SVM[ll] 

looc 
NSVM[8] Time (Sec.) 

Data Set looc Average 
mxn Time (Sec.) Features 

(points x Average Overall 
Features Features 

LSVM[21] 
looc 

Time (Sec.) 
Average 
Features 

NLPSVM 
looc 

Time (Sec.) 
Average 
Features 
Overall 
Features 

16 
and solve an (n+ 1 )x(n+ 1) linear system of equations instead 
of an mxm linear system of equations. For this purpose 
define: 

£ 2 :~diag(IA 'Dul-e)*. 

H:~D[AEe]. 

and F:~diag((u-ve)*+a(-u)*)+ol. (31) 

dimensions) 

Myeloma 100.0% 
105 X 28032 441.00 

100.0% oom 
11369.40 oom 

100% 
7891.80 

7 

10 Then, it follows from equation (25) that: 

a2 f(u)+o!~HH'+F. (32) 

6554 16 oom 
16 7 which is the matrix with the inverse needed in the Newton 

iteration (28). Applying the Sherman-Morrison-Woodbury 
15 identity: Tests on six other datasets have been performed. In the 

following description, the effectiveness of NLPSVM in per­
forming feature selection while maintaining accuracy and 
CPU time comparable to those of other methods that do not 
perform feature selection. The NLPSVM algorithm was 20 

tested for six publicly available datasets. Five datasets were 
from the University of California-Irvine Machine Learning 
Repository, and included the Ionosphere, Cleveland Heart, 
Pima Indians, BUPA Liver and Housing datasets. The sixth 
dataset is the Galaxy Dim dataset described in S. Odewahn, E. 25 

Stockwell, R. Pennington, R. Humphreys, and W. Zumach, 
"Automated star/galaxy discrimination with neural net­
works," Astronomical Journal, 103(1):318-331, 1992. The 
dimensionality and size of each dataset is given in Table 2 

30 
below. 

Data Set 
mxn 
(points x 
dimensions) 

Ionosphere 
351 X 34 

BUPALiver 
345 X 6 

Pima Indians 
768 X 8 

Cleveland 
Heart 

297 X 13 

Housing 
506 X 13 

Galaxy Dim 
4192 X 14 

NSVM 
Train 
Test 

Time (Sec.) 
Features 

92.9% 
88.9% 

0.91 
34 
70.3% 
70.2% 

0.24 
6 

77.7% 
77.2% 

0.55 
8 

87.2% 
86.6% 

0.14 
13 
87.7% 
86.8% 

0.69 
13 
94.0% 
94.2% 

6.67 
14 

TABLE2 

CPLEXSVM 
Train 
Test 

Time (Sec.) 
Features 

90.9% 
88.3% 
3.2 

17.7 
71.2% 
69.9% 
5.17 
6 

76.8% 
77.0% 

3.94 
5 

85.9% 
85.5% 

1.08 
7.5 

87.7% 
85.0% 
2.54 

10.9 
94.7% 
94.7% 
29.82 

5 

LSVM 
Train 
Test 

Time (Sec.) 
Features 

92.9% 
88.9% 

1.49 
34 
70.3% 
70.2% 

0.92 
6 

77.7% 
77.2% 

2.30 
8 

87.2% 
86.6% 
0.31 

13 
87.7% 
86.8% 

1.53 
13 
94.0% 
94.2% 
71.56 
14 

NLPSVM 
Train 
Test 

Time (Sec.) 
Features 

90.7% 
88.0% 

2.4 
11.2 
70.6% 
68.8% 

1.13 
4.8 

76.8% 
77.1% 

1.07 
4.9 

86.5% 
85.9% 

0.55 
7.1 

87.0% 
85.2% 

1.91 
6.5 

94.4% 
94.6% 

8.90 
3.4 
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(HH'+F)-1~r1-P-1H(I+Hr1H)-1Hr1
. 

Note that the inverse F- 1 ofF is trivial to calculate because F 
is a diagonal matrix. This simple but effective algebraic 
manipulation makes the NLPSVM algorithm very fast even 
when m>>n but n is relatively small. 

The values for the parameters v and Ii were again calculated 
using the same tuning procedure described above. The values 
of the remaining parameters were the same as those used with 
respect to the Myeloma dataset. As shown in Table 2, the 
correctness of the four methods was very similar. In addition, 
the execution time including tenfold cross validation for 
NSVM was less for all the datasets tested. However, all solu-
tions obtained by NSVM depended on all of the original input 
features. In contrast, NLPSVM performed comparably to 
LSVM, and was always faster than CPLEX SVM, but used 
the least number of features on all of the datasets compared to 
all other methods tested. 

In order to show that the NLPSVM algorithm can also be 
used to find nonlinear classifiers, three datasets from the 
University of California-Irvine Machine Leaming Reposi­
tory were chosen for which it is known that a nonlinear 
classifier performs better that a linear classifier. The NSVM, 

40 LSVM, CPLEX SVM and the disclosed LPSVM algorithm 
were used in order to find a nonlinear classifier based on the 

45 

Gaussian kernel: 

(K(A,B) );,~E-PIIA;"-Bjll
2
, 

i~l, ... ,m,j~l, ... ,k. (32) 

where AERmxn, BERnxk andµ is a positive constant. The 
value ofµ in the Gaussian kernel and the value of v in all the 
algorithms were chosen by tuning on the values 2' with i being 

50 an integer ranging from -12 to 12 following the same tuning 
procedure described above. The value of Ii in the NLPSVM 
method was obtained also by tuning on the values HY with 
j=-3, ... , 0, ... , 3. The value of the parameter E in was set to 
10-1

. The values of the remaining parameters were the same 

55 as with respect to the Myeloma dataset. 

In this set of experiments, linear classifier to was used to 60 

compare the NLPSVM method of the invention with LSVM, 
NSVM and CPLEX SVM on the six datasets mentioned 
above. Because m>>n for these datasets, it was preferable to 
use the Sherman-Morrison-Woodbury identity, described in 

Because the nonlinear kernel matrix is square and since 
NLPSVM, NSVM and LSVM perform better on rectangular 
matrices, a rectangular kernel formulation was also used as 
described in the Reduced SVM (RSVM) described in Y. J. Lee 
and 0. L. Mangasarian, "RSVM: Reduced support vector 
machines," Technical Report 00-07, Data Mining Institute, 
Computer Sciences Department, University of Wisconsin, 
Madison, Wis., July 2000, reprinted in Proceedings of the 
First SIAM International Conference on Data Mining, Chi-

G. H. Golub and C. F. Van Loan, "Matrix Computations," The 
John Hopkins University Press, Baltimore, Md., 3rd edition, 
1996, to calculate the direction cl, in the Newton iteration (28) 

65 cago, Apr. 5-7, 2001, CD-ROM Proceedings. 
This approach resulted in as good or better correctness and 

much faster running times for NLPSVM. The size of the 
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random sample used to calculate the rectangular kernel was 
10% of the size of the original dataset in all cases. These 
variations of NSVM, LSVM, CPLEX SVM and NLPSVM 
are referred to as Reduced NSVM, Reduced LSVM, Reduced 
CPLEX SVM and Reduced NLPSVM, respectively. The 
results are summarized in TABLE 3 below for these nonlinear 
classifiers. 

TABLE3 

Data Set 
mxn Cleveland 
(points x Ionosphere BUPALiver Heart 

Algorithm dimensions) 351 X 34 345 X 6 297 X 13 

NSVM Train 96.1 75.7 87.6 
Test 95.0 73.1 86.8 
Time (Sec.) 23.27 25.54 17.51 
Card(v) 351 345 297 

Reduced Train 96.1 76.4 86.8 
NSVM Test 94.5 73.9 87.1 

Time (Sec.) 0.88 0.67 0.53 
Card(v) 35 35 30 

LSVM Train 96.1 75.7 87.6 
Test 95.0 73.1 86.8 
Time (Sec.) 23.76 27.01 12.98 
Card(v) 351 345 297 

Reduced Train 96.1 75.1 87.1 
LSVM Test 94.5 73.1 86.2 

Time (Sec.) 2.09 1.81 1.09 
Card(v) 35 35 30 

NLPSVM Train 94.4 75.4 86.9 
Test 93.5 73.9 86.2 
Time (Sec.) 195.31 187.91 70.47 
Card(v) 22.3 32.7 50.1 

Reduced Train 94.4 74.5 85.9 
NLPSVM Test 95.1 73.9 86.5 

Time (Sec.) 2.65 6.82 5.17 
Card(v) 14.6 16.4 12.3 

CPLEX SVM Train 99.2 76.4 87.8 
Test 96.1 73.6 86.2 
Time (Sec.) 34.8 34.48 18.37 
Card(v) 36.1 26.2 14.1 

Reduced Train 98.7 76.4 87.0 
CPLEX SVM Test 95.5 73.9 85.6 

Time (Sec.) 3.08 4.42 2.47 
Card(v) 26.9 18.7 12.6 

Table 3 illustrates NVSM, LVSM, NLPSVM, CPLEX 
SVM and Reduced NSVM, LSVM, NLPSVM, CPLEX SVM 
in terms of training correctness, ten-fold testing correctness, 
ten-fold training times and cardinality ofv(Card(v)) using a 
nonlinear classifier. Training and testing correctness and car­
dinality of v are all averages over ten folds, while time is the 
total time over ten folds. 

18 
selection or a fast nonlinear kernel classifier is required, as in 
the case of online decision-making such as fraud or intrusion 
detection. 

Advantageously, the NLPSVM algorithm requires only a 
5 linear equation solver, which makes is simple, fast and easily 

accessible. In addition, NLPSVM can be applied very effec­
tively to classification problems in very large dimensional 
input spaces, which is often the case in the analysis of gene 
expressionmicroarray data. NLPSVM can also be used effec-

10 tively for classifying large datasets in smaller dimensional 
input space. As such, NLPSVM is a versatile stand-alone 
algorithm for classification which is a valuable addition to the 
tools of data mining and machine learning. 

The invention may be embodied as a computer-readable 
15 medium that includes instructions for causing a program­

mable processor to carry out the methods described above. A 
"computer-readable medium" includes but is not limited to 
read-only memory, random access memory, Flash memory, 
magnetic and optical storage media The instructions may be 

20 implemented as one or more software modules, which may be 
executed by themselves or in combination with other soft­
ware. The instructions and the media are not necessarily 
associated with any particular computer or other apparatus, 
but may be carried out by various general-purpose or special-

25 ized machines. The instructions may be distributed among 
two or more media and may be executed by two or more 
machines. The machines may be coupled to one another 
directly, or may be coupled through a network, such as a local 
access network (LAN), or a global network such as the Inter-

30 net. 
The invention may also be embodied as one or more 

devices that include logic circuitry to carry out the functions 
or methods as described herein. The logic circuitry may 
include a processor that may be programmable for a general 

35 purpose, or a microcontroller, a microprocessor, a Digital 
Signal Processor (DSP), Application Specific Integrated Cir­
cuit (ASIC), and the like. 

Various techniques described in this disclosure are also 
described in "A Feature Selection Newton Method for Sup-

40 port Vector Machine Classification," Glenn Fung and Olvi 
Mangasarian, Data Mining Institute Technical Report 02-03, 
September 2002, the entire content of which is incorporated 
herein by reference. 

Various embodiments of the invention have been 
45 described. These and other embodiments are within the scope 

of the following claims. 

The invention claimed is: 
1. A computer-implemented method comprising: 

Again, as in the linear case, the correctness of the four 50 

methods for a nonlinear SVM was similar on all the datasets. 
The execution time including ten-fold cross validation for 
NSVM was less for all the datasets tested, but with non-sparse 
solutions. NLPSVM performance was fast when a reduced 
rectangular kernel was used, and it obtained very sparse solu- 55 

tions that resulted in nonlinear kernel classifiers that are easier 

defining a primal linear progranmiing formulation of a 
support vector machine classifier; 

solving an exterior penalty function of a dual of the primal 
linear programming formulation to produce a solution to 
the primal linear progranmiing formulation of the sup­
port vector machine classifier; and 

selecting an input set for the support vector machine clas­
sifier based on the solution. 

to store and to evaluate. 

In general, the NLPSVM of the invention provides a fast 
and finitely terminating Newton method for solving a funda- 60 
mental classification problem of data mining with a pro­
nounced feature selection property for linear classifiers. 
When nonlinear classifiers are used, the algorithm performs 
feature selection in a high dimensional space of the dual 
variable, which results in a nonlinear kernel classifier that 65 

depends on a small number of kernel functions. This makes 
the method a very good choice for classification when feature 

2. The method of claim 1, further comprising minimizing 
the exterior penalty function for a finite value of a penalty 
parameter. 

3. The method of claim 1, wherein the primal linear pro­
gramming formulation is a I-norm linear programming for­
mulation. 

4. The method of claim 1, wherein the solution is a least 
2-norm solution. 

5. The method of claim 1, wherein the support vector 
machine classifier is a linear support vector machine classi-
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fier, and selecting an input set includes selecting a set of input 
features of the linear support vector machine classifier. 

6. The method of claim 1, wherein the support vector 
machine classifier is a nonlinear support vector machine clas­
sifier, and selecting an input set includes selecting a set of 5 

kernel functions for the nonlinear support vector machine 
classifier. 

7. The method of claim 1, further comprising: 
calculating a separating surface based on the input set and 

the support vector machine classifier; and 
classifying data using the separating surface. 
8. The method of claim 7, further comprising classifying 

the data into two sets of data using the separating surface. 

10 

20 
25. The system of claim 19, wherein the processor calcu­

lates a separating surface based on the input set and the 
support vector machine classifier, and classifies data using the 
separating surface. 

26. The system of claim 25, wherein the processor classi­
fies the data into two sets of data using the separating surface. 

27. The system of claim 25, wherein the separating surface 
is one of an n-dimensional hyperplane and a nonlinear sur­
face. 

28. The system of claim 19, wherein the input module 
applies a Newton-based algorithm to solve the exterior pen­
alty function. 

29. The system of claim 19, wherein the solution to the 
exterior penalty function is subject to one or more linear 
constraints. 

9. The method of claim 7, wherein the separating surface is 
one of an n-dimensional hyperplane and a nonlinear surface. 15 

10. The method of claim 1, further comprising applying a 
Newton-based algorithm to solve the exterior penalty func­
tion. 

30. The system of claim 19, wherein the input set is a subset 
of input features selected from a larger set of input features 
that is substantially larger than the subset of input features. 

31. The system of claim 30, wherein the subset of input 
20 features includes less than approximately one percent of the 

larger set of input features. 

11. The method of claim 1, further comprising applying 
one or more linear constraints to the solution of the exterior 
penalty function. 

12. The method of claim 1, wherein selecting an input set 
includes selecting a subset of input features from a larger set 
of input features that is substantially larger than the subset of 
input features. 

13. The method of claim 12, wherein the subset of input 
features includes less than approximately one percent of the 
larger set of input features. 

14. The method of claim 12, wherein the subset of input 
features includes less than approximately 0.1 percent of the 
larger set of input features. 

15. The method of claim 12, wherein the larger set of input 
features includes more than 20,000 input features, and the 
subset of input features includes less than ten input features. 

32. The system of claim 30, wherein the subset of input 
features includes less than approximately 0.1 percent of the 
larger set of input features. 

25 33. The system of claim 30, wherein the larger set of input 
features includes more than 20,000 input features, and the 
subset of input features includes less than ten input features. 

34. The system of claim 19, wherein the processor applies 
the support vector machine classifier to classify data relating 

30 to one of fraud detection, credit evaluation, gene expression, 
intrusion detection, medical diagnosis or medical prognosis. 

35. The system of claim 19, wherein the processor applies 
the support vector machine classifier to classify data relating 
to multiple myeloma. 

16. The method of claim 1,further comprising applying the 35 

support vector machine classifier to classify data relating to 
one of fraud detection, credit evaluation, gene expression, 
intrusion detection, medical diagnosis or medical prognosis. 

36. The method of claim 19, wherein the processor applies 
the support vector machine classifier to classify data relating 
to absolute call measurements for multiple myeloma. 

37. A computer-readable medium comprising instructions 
to cause a processor to: 17. The method of claim 1, further comprising applying the 

support vector machine classifier to classify data relating to 40 

multiple myeloma. 
18. The method of claim 1, further comprising applying the 

support vector machine classifier to classify data relating to 
absolute call measurements for multiple myeloma. 

19. A classification system comprising: 
a processor that applies a primal linear programming for­

mulation of a support vector machine classifier to clas­
sify data based on an input set; and 

45 

an input module that generates the input set based on a 
solution of an exterior penalty function of a dual of the 50 

primal linear progranmiing formulation. 
20. The system of claim 19, wherein the input module 

generates the input set based on a minimization of the exterior 
penalty function for a finite value of a penalty parameter. 

define a primal linear programming formulation of a sup­
port vector machine classifier; 

solve an exterior penalty function of a dual of the primal 
linear programming formulation to produce a solution to 
the primal linear progranmiing formulation of the sup­
port vector machine classifier; and 

select an input set for the support vector machine classifier 
based on the solution. 

38. The computer-readable medium of claim 37, further 
comprising instructions to cause a processor to minimize the 
exterior penalty function for a finite value of a penalty param­
eter. 

39. The computer-readable medium of claim 37, wherein 
the primal linear programming formulation is a I-norm linear 
programming formulation. 

40. The computer-readable medium of claim 37, wherein 
the solution is a least 2-norm solution. 

21. The system of claim 19, wherein the primal linear 55 

programming formulation is a I-norm linear progranmiing 
formulation. 41. The computer-readable medium of claim 37, wherein 

the support vector machine classifier is a nonlinear support 
vector machine classifier, and the input set includes a set of 

60 input features for the linear support vector machine classifier. 

22. The system of claim 19, wherein the solution is a least 
2-norm solution. 

23. The system of claim 19, wherein the support vector 
machine classifier is a linear support vector machine classi­
fier, and the input set includes a set of input features of the 
linear support vector machine classifier. 

24. The system of claim 19, wherein the support vector 
machine classifier is a nonlinear support vector machine clas­
sifier, and the input set includes a set of kernel functions for 
the nonlinear support vector machine classifier. 

42. The computer-readable medium of claim 37, wherein 
the support vector machine classifier is a nonlinear support 
vector machine classifier, and the input set includes a set of 
kernel functions for the nonlinear support vector machine 

65 classifier. 
43. The computer-readable medium of claim 37, further 

comprising instructions to cause a processor to: 
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calculate a separating surface based on the input set and the 
support vector machine classifier; and 

classify data using the separating surface. 
44. The computer-readable medium of claim 43, further 

comprising instructions to cause a processor to classify the 5 

data into two sets of data using the separating surface. 
45. The computer-readable medium of claim 43, wherein 

the separating surface is one of an n-dimensional hyperplane 
and a nonlinear surface. 

46. The computer-readable medium of claim 37, further 10 

comprising instructions to cause a processor to apply a New­
ton-based algorithm to solve the exterior penalty function. 

47. The computer-readable medium of claim 37, further 
comprising instructions to cause a processor to apply one or 
more linear constraints to the solution of the exterior penalty 15 

function. 
48. The computer-readable medium of claim 37, further 

comprising instructions to cause a processor to select a subset 
of input features from a larger set of input features that is 
substantially larger than the subset of input features. 20 

49. The computer-readable medium of claim 48, wherein 
the subset of input features includes less than approximately 
one percent of the larger set of input features. 

50. The computer-readable medium of claim 48, wherein 
the subset of input features includes less than approximately 25 

0.1 percent of the larger set of input features. 
51. The computer-readable medium of claim 48, wherein 

the larger set of input features includes more than 20,000 
input features, and the subset of input features includes less 
than ten input features. 30 

52. The computer-readable medium of claim 37, wherein 
the instructions cause the processor to apply the support vec­
tor machine classifier to classify data relating to one of fraud 
detection, credit evaluation, gene expression, intrusion detec­
tion, medical diagnosis or medical prognosis. 

22 
53. The computer-readable medium of claim 37, wherein 

the instructions cause the processor to apply the support vec­
tor machine classifier to classify data relating to multiple 
myeloma. 

54. The computer-readable medium of claim 37, wherein 
the instructions cause the processor to apply the support vec­
tor machine classifier to classify data relating to absolute call 
measurements for multiple myeloma. 

55. A support vector machine classification system com­
prising: 

a data storage medium storing input data for classification; 
a support vector machine classifier that classifies the input 

data into a first set of data and a second set of data based 
on a set of input features; and 

a selection module that produces a reduced set of input 
features for the support vector machine classifier based 
on a minimization of an exterior penalty function of a 
dual of a primal linear programming formulation of the 
linear support vector machine classifier for a finite value 
of a penalty parameter. 

56. The system of claim 55, wherein the selection module 
includes: 

a dual generator that generates the dual of the primal linear 
programming formulation of the linear support vector 
machine classifier; 

an exterior penalty function solver that minimizes the exte­
rior penalty function of the dual; and 

a feature generator that generates the reduced set of input 
features for the support vector machine classifier. 

57. The system of claim 55, wherein the support vector 
machine classifier classifies data relating to one of fraud 
detection, credit evaluation, gene expression, intrusion detec­
tion, medical diagnosis or medical prognosis. 

* * * * * 
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