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FOURIER SPACE TOMOGRAPHIC IMAGE 
RECONSTRUCTION METHOD 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claims the benefit of U.S. Provisional 
patent application Ser. No. 60/480,136 filed on Jun. 20, 2003 
and entitled "A Fourier Space Tomographic Image Recon­
struction Method". 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

This invention was made with govermnent support under 
Grant No. EB 001683 awarded by the National Institute of 
Health. The United States Govermnent has certain rights in 
this invention. 

BACKGROUND OF THE INVENTION 

The present invention relates to computed tomography 
(CT) imaging apparatus; and more particularly, to a method 
for reconstructing images from divergent beams of acquired 
image data. 

2 
A second generation of devices developed to shorten the 

scanning times by gathering data more quickly is shown in 
FIG. 2. In these units a modified fan beam in which 
anywhere from three to 52 individual collimated x-ray 

5 beams and an equal number of detectors are used. Individual 
beams resemble the single beam of a first generation scan­
ner. However, a collection of from three to 52 of these beams 
contiguous to one another allows multiple adjacent cores of 
tissue to be examined simultaneously. The configuration of 

10 these contiguous cores of tissue resembles a fan, with the 
thickness of the fan material determined by the collimation 
of the beam and in turn determining the slice thickness. 
Because of the angular difference of each beam relative to 
the others, several different angular views through the body 

15 slice are being examined simultaneously. Superimposed on 
this is a linear translation or scan of the x-ray tube and 
detectors through the body slice. Thus, at the end of a single 
translational scan, during which time 160 readings may be 
made by each detector, the total number of readings obtained 

20 is equal to the number of detectors times 160. The increment 
of angular rotation between views can be significantly larger 
than with a first generation unit, up to as much as 36°. Thus, 
the number of distinct rotations of the scanning apparatus 
can be significantly reduced, with a coincidental reduction in 

25 scanning time. By gathering more data per translation, fewer 
translations are needed. 

In a current computed tomography system, an x-ray 
source projects a fan-shaped beam which is collimated to lie 
within an X-Y plane of a Cartesian coordinate system, 
termed the "imaging plane." The x-ray beam passes through 
the object being imaged, such as a medical patient, and 
impinges upon an array of radiation detectors. The intensity 30 

of the transmitted radiation is dependent upon the attenua­
tion of the x-ray beam by the object and each detector 
produces a separate electrical signal that is a measurement of 
the beam attenuation. The attenuation measurements from 

To obtain even faster scanning times it is necessary to 
eliminate the complex translational-rotational motion of the 
first two generations. As shown in FIG. 3, third generation 
scanners therefore use a much wider fan beam. In fact, the 
angle of the beam may be wide enough to encompass most 
or all of an entire patient section without the need for a linear 
translation of the x-ray tube and detectors. As in the first two 
generations, the detectors, now in the form of a large array, 
are rigidly aligned relative to the x-ray beam, and there are 
no translational motions at all. The tube and detector array 

all the detectors are acquired separately to produce the 35 

transmission profile. 
The source and detector array in a conventional CT 

system are rotated on a gantry within the imaging plane and 
around the object so that the angle at which the x-ray beam 
intersects the object constantly changes. A group of x-ray 40 

attenuation measurements from the detector array at a given 
angle is referred to as a "view" and a "scan" of the object 
comprises a set of views made at different angular orienta­
tions during one revolution of the x-ray source and detector. 
In a 2D scan, data is processed to construct an image that 45 

corresponds to a two dimensional slice taken through the 
object. The prevailing method for reconstructing an image 
from 2D data is referred to in the art as the filtered back-
projection technique. This process converts the attenuation 
measurements from a scan into integers called "CT num- 50 

bers" or "Hounsfield units", which are used to control the 
brightness of a corresponding pixel on a display. 

are synchronously rotated about the patient through an angle 
of 180-360°. Thus, there is only one type of motion, 
allowing a much faster scanning time to be achieved. After 
one rotation, a single tomographic section is obtained. 

Fourth generation scanners feature a wide fan beam 
similar to the third generation CT system as shown in FIG. 
4. As before, the x-ray tube rotates through 360° without 
having to make any translational motion. However, unlike in 
the other scanners, the detectors are not aligned rigidly 
relative to the x-ray beam. In this system only the x-ray tube 
rotates. A large ring of detectors are fixed in an outer circle 
in the scanning plane. The necessity of rotating only the 
tube, but not the detectors, allows faster scan time. 

Most of the commercially available CT systems employ 
image reconstruction methods based on the concepts of 
Radon space and the Radon transform. For the pencil beam 
case, the data is automatically acquired in Radon space. 
Therefore a Fourier transform can directly solve the image 

The term "generation" is used in CT to describe succes­
sively commercially available types of CT systems utilizing 
different modes of scanning motion and x-ray detection. 
More specifically, each generation is characterized by a 
particular geometry of scanning motion, scanning time, 
shape of the x-ray beam, and detector system. 

As shown in FIG. 1, the first generation utilized a single 
pencil x-ray beam and a single scintillation crystal-photo­
multiplier tube detector for each tomographic slice. After a 
single linear motion or traversal of the x-ray tube and 
detector, during which time 160 separate x-ray attenuation 

55 reconstruction problem by employing the well-known Fou­
rier-slice theorem. Such an image reconstruction procedure 
is called filtered backprojection (FBP). The success of FBP 
reconstruction is due to the translational and rotational 
symmetry of the acquired projection data. In other words, in 

or detector readings are typically taken, the x-ray tube and 
detector are rotated through 1 ° and another linear scan is 
performed to acquire another view. This is repeated typically 
to acquire 180 views. 

60 a parallel beam data acquisition, the projection data are 
invariant under a translation and/or a rotation about the 
object to be imaged. For the fan beam case, one can solve the 
image reconstruction problem in a similar fashion, however, 
to do this an additional "rebinning" step is required to 

65 transform the fan beam data into parallel beam data. The 
overwhelming acceptance of the concepts of Radon space 
and the Radon transform in the two dimensional case gives 
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this approach to CT image reconstruction a paramount 
position in tomographic image reconstruction. 

4 
ture. The disadvantage of the convolution-based method is 
that the weight in the backprojection step depends on the 
individual image pixels and thus noise distribution may not 
be uniform. This may pose problems in the clinical inter-

The Radon space and Radon transformation reconstruc­
tion methodology is more problematic when applied to 
three-dimensional image reconstruction. Three-dimensional 
CT, or volume CT, employs an x-ray source that projects a 
cone beam on a two-dimensional array of detector elements 

5 pretation of tomographic images. In practice, different CT 
manufactures may utilize different strategies in balancing 
these advantages and disadvantages. 

In the cone-beam case, it is much more complicated to 
rebin cone-beam projections into parallel-beam projections. 

as shown in FIG. 5. Each view is thus a 2D array of x-ray 
attenuation measurements and a complete scan produced by 
acquiring multiple views as the x-ray source and detector 
array are revolved around the subject results in a 3D array 
of attenuation measurements. The reason for this difficulty is 
that the simple relation between the Radon transform and the 
x-ray projection transform for the 2D case in not valid in the 
3D cone beam case. In the three-dimensional case, the 
Radon transform is defined as an integral over a plane, not 
an integral along a straight line. Consequently, we have 
difficulty generalizing the success of the Radon transform as 
applied to the 2D fan beam reconstruction to the 3D cone 
beam reconstruction. In other words, we have not managed 
to derive a shift-invariant FBP method by directly rebinning 
the measured cone beam data into Radon space. Numerous 
solutions to this problem have been proposed as exemplified 

10 The huge cone-beam data set also poses a big challenge to 
the potential data storage during the rebinning process. The 
main stream of the developments in cone-beam reconstruc­
tion has been focused on the development of approximate or 
exact reconstruction methods. For circular-based source 

15 trajectories, methods disclosed by L. A. Feldkamp, L. C. 
Davis, and J. W. Kress, "Practical Cone Beam Algorithm," 
J. Opt. Soc. Am. A 1, 612-619(1984); G. Wang, T. H. Lin, 
P. Cheng, and D. M. Shinozaki, "A general cone-beam 
reconstruction algorithm," IEEE Trans. Med. Imaging 12, 

in U.S. Pat. Nos. 5,270,926; 6,104,775; 5,257,183; 5,625, 
660; 6,097,784; 6,219,441; and 5,400,255. 

20 486-496 (1993); generate acceptable image quality up to 
moderate cone angles (up to 10° or so). Exact reconstruction 
algorithms have also been proposed and further developed 
for both helical source trajectory and more general source 
trajectories. Most recently, a mathematically exact and shift-

25 invariant FBP reconstruction formula was proposed for the 
helical/spiral source trajectory A. Katsevich, "Theoretically 
exact filtered backprojection-type inversion algorithm for 
spiral CT," SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 62, 
2012-2026 (2002). Starting with either the original Tuy's 

It is well known that the projection-slice theorem (PST) 
plays an important role in the image reconstruction from 
two- and three-dimensional parallel-beam projections. The 
power of the PST lies in the fact that Fourier transform of a 
single view of parallel-beam projections is mapped into a 
single line (two-dimensional case) or a single slice (three­
dimensional case) in the Fourier space via the PST. In other 
words, a complete Fourier space of the image object can be 
built up from the Fourier transforms of the sequentially 
measured parallel-beam projection data. Once all the Fourier 35 

information of the image object is known, an inverse Fourier 
transform can be performed to reconstruct the image. Along 
the direction of the parallel-beam projections, there is a 
shift-invariance of the image object in a single view of the 
parallel-beam projections. This is the fundamental reason 40 

for the one-to-one correspondence between the Fourier 
transform of parallel-beam projections and a straight line or 

30 framework or Grangeat's framework, upon an appropriate 
choice of weighting function over the redundant data, shift­
invariant FBP reconstruction formula has been derived for a 
general source trajectory. Similar to the fan-beam FBP 

a slice in the Fourier space. The name of the projection-slice 
theorem follows from this one-to-one correspondence. 

In practice, divergent fan-beam and cone-beam scanning 45 

modes have the potential to allow fast data acquisition. But 
image reconstruction from divergent-beam projections 
poses a challenge. In particular, the PST is not directly 
applicable to the divergent-beam projections since the shift­
invariance in a single view of projections is lost in the 50 

divergent-beam cases. One way to bypass this problem is to 
explicitly rebin the measured divergent-beam projections 
into parallel beam projections. This is the basic method 
currently used in solving the problem of fan-beam image 
reconstruction. After the rebinning process, one can take the 55 

advantages of the fast Fourier transforms (FFT) to efficiently 
reconstruct images. There are some issues on the potential 
loss of image spatial resolution due to the data rebinning. 
But there are also some advantages in generating uniform 
distribution of image noise due to the non-local character- 60 

istic of the Fourier transform. Alternatively, a fan-beam 
projection can also be relabeled in terms of Radon variables 

reconstruction algorithm the characteristic of the convolu­
tion-based cone-beam reconstruction algorithm is the voxel­
dependent weighting factor in the backprojection step. This 
will cause non-uniform distribution of the image noise. 
Moreover, due to the local nature of the newly developed 
convolution-based cone-beam image reconstruction algo­
rithms, different image voxels are reconstructed by using 
cone-beam projection data acquired at different pieces of the 
source trajectory. Namely, different image voxels are recon­
structed by using the data acquired under different physical 
conditions. This will potentially lead to some data inconsis­
tency in dynamic imaging. Finally, the current convolution­
based image reconstruction algorithms are only valid for 
some discrete pitch values in the case of helical/spiral source 
trajectory. This feature limits their application in a helical/ 
spiral cone-beam CT scanner. 

Therefore, it is desirable to have some alternative ways to 
allow a balance between computational efficiency and non­
local noise distribution in the cone-beam image reconstruc­
tion. It is also important to avoid a global data rebinning 
procedure. Namely, a data rebinning procedure from cone­
beam projection data to parallel-beam projections after the 
data acquisition is complete. 

SUMMARY OF THE INVENTION 

The present invention is a new method for reconstructing 
an image of an object from acquired divergent beam data in 
which the acquired data is backprojected to points along 
each divergent beam and weighted by a factor of one over 
the distance r (1/r) between the data point and the source 

so that the two-dimensional inverse Radon transform can be 
used to reconstruct images. In this way, a convolution-based 
fan-beam image reconstruction algorithm can be readily 
developed. The advantage of this type of reconstruction 
algorithm is the explicit filtered backprojection (FBP) struc-

65 point of the beam, Fourier transforming the backprojected 
data and processing it to form an acquired k-space data set, 
phase shifting and weighting the acquired k-space data to 
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correlate it with a reference k-space, and reconstructing an 
image by performing an inverse Fourier transformation of 
the k-space data. An image can be reconstructed as each 
view of divergent beam data is acquired by surmning 
together successive, referenced k-space data sets or by 5 

surmning together successive reconstructed images. 
A general object of the invention is to extend the parallel­

beam projection-slice theorem to the divergent fan-beam 
and cone-beam projections without rebinning the divergent 
fan-beam and cone-beam projections into parallel-beam 10 

projections directly. A novel link between the local Fourier 
transform of the projection data and the Fourier transform of 
the image object is established. Analogous to the two- and 
three-dimensional parallel-beam cases, the measured pro­
jection data are backprojected along the projection direction 15 

and then a local Fourier transform is taken for the back­
projected data array. However, due to the loss of the shift­
invariance of the image object in a single view of the 
divergent-beam projections, the measured projection data is 
weighted by a distance dependent weight w(r) before the 20 

local Fourier transform is performed. The variable r in the 
weighting function w(r) is the distance from the back­
projected point to the X-ray source position. It is shown that 
a special choice of the weighting function, w(r)=l/r, will 
facilitate the calculations and a simple relation can be 25 

established between the Fourier transform of the image 
function and the local Fourier transform of the 1/r­
weighted backprojection data array. Unlike the parallel­
beam cases, a one-to-one correspondence does not exist for 
a local Fourier transform of the backprojected data array and 30 

a single line in two-dimensional case or a single slice in 
three-dimensional case of the Fourier transform of the image 
function. However, the Fourier space of the image object can 
be built up after the local Fourier transforms of the 1/r­
weighted backprojection data arrays are shifted and added 35 

up in a laboratory frame. Thus relations between the Fourier 
space of the image object and the Fourier transforms of the 
backprojected data arrays can be viewed as a generalized 
projection-slice theorem for divergent fan-beam and cone­
beam projections. Once the Fourier space of the image 40 

function is built up, an inverse Fourier transform can be 
performed to reconstruct tomographic images from the 
divergent beam projections. Due to the linearity of the 
Fourier transform, the image reconstruction step can be 
performed either when the complete Fourier space is avail- 45 

able or in the course of building the Fourier space. 
An object of this invention is to provide a method of 

sequentially constructing the Fourier space of an image 
object during the divergent-beam projection data acquisition 
process. A connection between the Fourier transform of the 50 

pre-weighted backprojection data array and the Fourier 
transform of the image object is provided. Analogous to the 
parallel-beam PST, the established relation is called a gen­
eralized projection-slice theorem (GPST) for divergent fan­
beam and cone-beam projections. The advantages of this 55 

GPST are the following. First, the theoretical structure is in 
a unified fashion for both fan-beam and cone-beam cases 
due to the linearity of the Fourier transforms. Second, due to 
the non-local property of the Fourier transforms, a uniform 
distribution of noise background is possible. Third, a soft­
ware-FFT or a dedicated hardware-FFT electronic board can 
be used to efficiently reconstruct images. 

60 

6 
tion. Such embodiment does not necessarily represent the 
full scope of the invention, however, and reference is made 
therefore to the claims and herein for interpreting the scope 
of the invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIGS. 1-4 are schematic representations of different CT 
system geometries; 

FIG. 5 is a pictorial representation of a 3D, or volume, CT 
system; 

FIG. 6 is a pictorial view of a CT system which employs 
the present invention; 

FIG. 7 is a block diagram of the CT system of FIG. 6; 
FIGS. 8 and 9 are schematic representations of a gener­

alized parallel beam source and detector array; 
FIG. 10 is a graphic representation of a local coordinate 

system; 
FIG. 11 is a pictorial representation of Fourier space data 

produced by parallel beam projections; 
FIG. 12 is a pictorial representation of a divergent beam 

and its source trajectory; 
FIG. 13 is a pictorial representation of a back projected 

divergent beam projection; 
FIGS. 14A-14C are a pictorial representation of the steps 

used in the present invention to produce a Fourier space 
image from a weighted divergent beam backprojection; 

FIG. 15 is a flow chart of a preferred method for prac­
ticing the present invention on the CT system of FIG. 6; and 

FIG. 16 is a pictorial representation of a backprojection of 
a divergent beam projection. 

GENERAL DESCRIPTION OF THE INVENTION 

To better understand the present invention a brief review 
of the conventional, parallel-beam projection slice theorem 
is helpful. For simplicity, suppose there exists an X-ray 
source that generates perfect parallel beams and the beams 
are sufficiently wide to cover the whole image object as 
shown in FIG. 1. A detector is used to detect the attenuated 
X-ray beams. For a specific orientation n of the X-ray 
beams, a profile of the attenuated X-ray parallel beams is 
recorded. We call such a profile a view of projections and 
denote it as gP(p,n). A subscript pis used to label the parallel 
beam projections. A Greek letter p is used to label the 
distance of a specific X-ray from the iso-ray as shown in 
FIG. 8. 

If a function f ( 7) is used to label the spatial distribution 
of the X-ray attenuation coefficients, the projection gP(p,n) 
is written as: 

gp(p,n)~ f d2
---; fC---; Jo(p----; .,1J_) (1) 

where n_i_ is a unit vector perpendicular to unit vector n. In 
the two-dimensional case, Eq. (1) is a line integral along the 
line parallel to the unit vector n and the distance between the 
integral line and the iso-ray is p. The definition (1) can also 
be viewed as a two-dimensional Radon transform in terms of 
another group of variables (p,n_i_). 

To connect the measured projections gP (p,n) to the 

Fourier components of the image function f( 7 ), a natural 
idea is to match the dimensions of measured projections and 
the Fourier transform of the image object. Note that the 

The foregoing and other objects and advantages of the 
invention will appear from the following description. In the 
description, reference is made to the accompanying draw­
ings which form a part hereof, and in which there is shown 
by way of illustration a preferred embodiment of the inven-

65 measured projections are one-dimensional for a two-dimen­
sional image object. To compensate the dimensional mis­
match between measured projections and the dimensions of 
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an image object, an operation called back-projection is 
introduced. Namely, we put the measured projections back 
(back-project) along the X-ray beams as shown in FIG. 9. 

An important observation about the backprojection opera­
tion in parallel beam projections is a shift-invariance of the 5 

image object along the X-ray projection directions. There­
fore, all the backprojecting lines are equivalent and thus an 
equal weight should be assigned to the backprojecting line 
during the backprojection operations. In FIG. 9, it is illus­
trated that the measured projection data are backprojected 10 

into two-dimensional data arrays such that the dimensional 
mismatch between the image object and its corresponding 
measured data disappears after the backprojection operation. 

If the backprojected projections are denoted as Gp( 7,ii), 15 
then the backprojection operation can be expressed as 

(2) 

8 

-continued 

= [oo dy~b(y~)e-,2,,J,,~) 

[

00 

dyne_,,,,),;;) 

Therefore, Eq. (4) is simplified as 

(7) 

Here f(k) is the Fourier transform of the image function 
Now a connection between the Fourier transform of the ----;, 

----;, 20 f ( x ) and it is defined as 
image function f( x) and the Fourier transform of back-

projected data array Gp( 7,ii) can be established. 
To do so, a local Fourier transform ofbackprojected data 

array is defined as 

(3) 

25 

(8) 

Therefore, Eq. (7) gives the relation between the Fourier 
transform of the image object and the Fourier transform of 
the backprojected data array. The Dirac Ii function tells that 

30 the longitudinal components of the Fourier transform of 
backprojected data array are zero. Namely, the Fourier 
transform of the backprojected data array cannot generate 
Fourier components along the projection direction. In other 

In the second equality, the definition of backprojection 
Eq. (2) has been used. Remember that our objective is to 35 
connect the Fourier transform of an image object to the 

words, the Fourier transform of the backprojected data array 
generates a line in the two-dimensional Fourier space of the 
image object. This is the well-known parallel beam projec-

Fourier transform [Fik,ii)] of backprojected data array 

GP(7,ii). Thus it is natural to insert the definition of 
projection gP(p,ii) in Eq. (1) into Eq. (3) to obtain: 

(4) 

----;, 

For convenience, a new vector y is introduced as 

tion-slice-theorem. Intuitively, this result is transparent if 
one remembers the nature of the parallel beam backprojec­
tion operation: The measured data has been backprojected 

40 along the X-ray projection direction with an equal weight. 

45 

50 

Thus only the zero DC component of the Fourier transform 
is generated along the X-ray projection direction. All the 
nonzero components appear in a line or a slice perpendicular 
to the X-ray projection directions. 

If the parallel beam is continuously rotated around a fixed 
direction in an angular range (0,180°), then a complete 
Fourier space can be built up by using the Fourier transform 
of the backprojected data arrays. This is schematically 
illustrated in FIG. 11. 

In the three-dimensional case, the parallel-beam PST can 
be illustrated similarly by performing equal weighted back­
projection and taking a local Fourier transform. It also 
should be noted that there are many other ways to derive the 

(5) 55 

parallel-beam PST. We revisit this theorem to extract two 
key procedures (backprojection and local Fourier transform) 
in building the Fourier space of the image object. 

----;, 

In the second equality, the vector y is projected along the 
unit vector ii and the transverse direction il.-1-. The orthonor­
mal vectors ii and ii_i_ defines a local coordinate system as 
shown in FIG. 10. Using this decomposition, the integral in 
the curly bracket in Eq. ( 4) can be calculated as 

The present invention extends the parallel-beam PST 
method to divergent-beam projections. A divergent beam 

60 (for both fan-beam and cone-beam) projection gir,--;) is 
defined as 

(9) 

(6) 65 
gd[r, y(t)] = [ dsf[y(t) +sr]. 
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----;, 

Where the source trajectory vector y (t) is parameterized 

10 
beam projections and the Fourier transform of the image 

----;, 

function f( x ). In Eq. (10), the relevant variable in the 
backprojection operation is the distance rand the orientation 

----;, 

by a parameter t and r is a unit vector starting from the 
source position to the image object. This is illustrated in 
FIG. 12. The subscript dis used to label the divergent-beam 
projections while p has been used to label the parallel-beam 5 r. They form a vector r as follows: 

projections in Eq. (1 ). The image function f( 7) is assumed - - -r = X - y (t)~rr. (11) 
to have a compact support Q, i.e., it is non-zero only in a 
finite spatial region. Throughout the paper, a vector will be 

----;, 

decomposed as its magnitude and a unit vector, e.g. r =r r. 
Obviously, the measured data in Eq. (9) has a one-dimen­
sional structure in the fan-beam case (the detector is one 
dimensional and the unit vector r is a single-parameter 
object) and has two-dimensional structure in the cone beam 
case (the detector is two-dimensional and thus the unit 
vector r becomes a two-parameter object). This is similar to 
that of the parallel-beam cases. The same strategy will also 

Thus it is convenient to take a Fourier transform of the 
10 backprojected data array in a local coordinate system cen­

tered at the X-ray focal spot. Namely, a Fourier transform of 
----;, 

Eq. (10) with respect to the variable r. To distinguish it 
from the parallel beam case, the Fourier transform of the 

15 ----;, ----;, 
backprojected data array is denoted as FA k, y (t)]. Here a 

be employed to compensate the dimensional mismatch 
between the projection data and image object. Namely, a 

20 
backprojection operation shall be used to extend the mea­
sured fan-beam data into a truly two-dimensional data array 
and also a three-dimensional data array can be generated 
from the measured cone-beam projection data. 

When the measured divergent-beam projections are back-
25 

projected, a vital difference appears between the parallel­
beam and divergent-beam projections. Namely, in a single 
view of divergent beam projections, the shift-invariance of 
the image object is lost. This fact dictates that the equal 
weight is not appropriate for backprojecting the measured 

30 
divergent-beam projections as that in the parallel-beam 
cases. However, a striking feature of divergent-beam pro­
jections is their diverging nature. In other words, in each 
single view, all the projections converge to the same X-ray 
focal spot. Therefore, the backprojection operation is physi-

35 
cally sensible only in a semi-infinite line: from the X-ray 
source position to infinity. Intuitively, an appropriate weight 
for the divergent-beam backprojection operation should be a 
function of the distance from X-ray source position to the 
backprojected point. If the distance from an X-ray source 

40 
----;, ----;, 

position y (t) to a backprojected point x is denoted as r, i.e., 
----;, ----;, 

r=I r - y (t)I, then a weighting function w(r) can be assumed 
for backprojecting the divergent beam projections. Under 
this general assumption of weighting function, a weighted 45 
backprojection can be defined as 

(10) 

----;, 

vector y (t) explicitly labels the local address where the 
local Fourier transform is being taken. 

(12) 

Substituting gir,-;(t)] defined in Eq. (9) into Eq. (12), the 
following is obtained: 

(13) 

In the last line, a new dummy variable s'=s/r has been 
introduced. To establish the desired divergent-beam GPST, 

----;, 

the following observation is important: both the vector r 
and its amplitude r appear in the integrand and this compli­
cates the problem. However, up to this point, the choice of 
weighting function w(r) is arbitrary. Therefore, a proper 
weighting function could be used to simplify the calcula-

[

• • l I• • I) ~ - y(r) • 
Gd X, y(t) = w(r = X - y(t) gd [r = -•-•-, y(t)] 

lx-y(rJI 50 tions in Eq. (13). One choice is the following: 

The physical meaning of Eq. (10) is interpreted as follows 
and illustrated in FIG. 13. A measured projection value 

gjr,-;) is multiplied by a weight w(r=17 - -; (t)I) and then 

backprojected along the direction r to a point 7 with 
----;, ----;, 

distance r=I x - y (t)I. 

55 

After the backprojection operation in Eq. (10) is imple- 60 

mented, a one-dimensional fan-beam data array is upgraded 
into a two-dimensional data array. Similarly, a two-dimen­
sional cone-beam data array is upgraded in a three-dimen­
sional space. 

Analogous to the parallel beam case, an objective of the 65 

present work is to establish a link between the Fourier 
transform of the above-defined backprojected divergent 

1 
w(r)r = 1 i.e. w(r) = -

r 

(14) 

After the above choice on weight is made, the calculation 
of the Fourier transform of the backprojected divergent 
beam projections is significantly simplified as: 

Fd[k, y(t)] = lD a7D;{j:00 

a!sf[y(t) 

= F{f
00 

a!sf[y(t) + s;]} 

(15) 
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Here a symbol F is introduced to label a Fourier transform. 

If the Fourier transform of the image function f( 7) is 

written as J ( k ). Then the following scaling property and 
shifting property of Fourier transform can be used to further 5 

simplify Eq. (15). 

1 
--weighted 
r 

backprojection of a divergent data array and the Fourier 

transform Jc k) of the image function f( 7 ). However, due 
to the diverging nature of the beams, the information pro-

Scaling property (in D-dimensional space): 

(16) 

Shifting property: 

(17) 

Substituting Eq. (17) into Eq. (15) yields: 

lO vided by a local Fourier transform of the backprojected data 
(Cn[R,y(t)]) does not simply correspond to a single slice or 
a single line in the Fourier space of the image object as 
happened in the parallel-beam cases. However, this local 
Fourier transform is related to the desired Fourier transform 

15 of the image function in an elegant way. To see this point 
better, a composite variable p is introduced as following: 

20 

(23) 

The meaning of the variable pis the projection distance of 

the X-ray source vector -;(t) on a specific orientation R in 
the Fourier space. In terms of variable p, the functions 

• • dis - k . • • I oo ( •) 

(18) 25 

Fn[R,-;(t)] and Cn[R,-;(t)] can be rebinned into Fn(R, p) 
and Cn(R, p) respectively via the following relations: 

Fd[k, y(t)] = o -;5 f :; e'2rrk y(t)/, 

To obtain a transparent and physical understanding ofEq. 30 

(18), the following change of variable is helpful: 

k 
s' = -

s 

ds 
and ds = -k­

s'2 

(19) 

In terms of new integral variable s', Eq. (18) is cast into: 

35 

-Cn(Ti, p)~Cn[Ti, y (t)] (24) 

(25) 

Therefore, Eq. (22) can be recast into the following form: 

(26) 

In other words, Cn(R, p) is linked to the Fourier transform 

Jc k) of the image object function by an inverse Fourier 
transform. A Fourier transform can be applied to obtain the 

Fd[k, y(t)] = kL [ dis' s'D-2 J(s'k)exp[i2;,rs'k · y(t)] 

= kL [ dis sD-2 J(sk)exp[i2;,rsk • y(t)] 

(20J 
4° Fourier transform J(k) from the local Fourier transforms 

In the second line in Eq. (20), the integral variable has 
been written as s again since it is dummy after integration. 
A nice property in Eq. (20) is a decoupling of the radial part 

45 

Cn(R, p): 

J(k) = k;-2 I:00 dipCD(k, 

=k[oodipFd(k, 

(27) 

50 Eqs. (21) and (25) have been used to achieve the second 

55 

from the angular part denoted as C n[R,-; ( t)]: 

(21) 60 

(22) 

Eq. (20), or equivalently, Eq. (22) gives the relation 
between the Fourier transform of 

65 

line of the above equation. Moreover, by noting the follow­
ing fact: 

(28) 

---;,---;, 

and the fact that factor exp [ -i2it k · y ( t)] is a phase shift, an 
intuitive understanding of Eq. (27) can be given as follow­
ing: for each individual view of the divergent-beam projec­
tions, a local Fourier transform of the 

1 
- -weighted 
r 

backprojected data is performed as shown in FIG. 14A. 
However, the objective is to build a global Fourier space of 
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the image object, and thus the information in these local 
Fourier transforms has to be shifted to the same laboratory 
coordinate system. This is accomplished by applying a phase 

----;,----;, 

factor exp[-i2it k · y (t)] to give a centered, "global" Fourier 
space of the image object as shown in FIG. 14B. This is 
repeated for other acquired projections and local phase 
shifted Fourier transforms are superposed into the Fourier 
space of the image object as shown in FIG. 14C. 

Our generalized Projection-Slice Theorem (GPST) for the 
divergent-beam projections is, therefore, as follows. The 
Fourier transform of the image function is a sum of the phase 
shifted local Fourier transforms of 1/r weighted backprojec­
tion data. 

14 
system. The control mechanism 20 includes an x-ray con­
troller 22 that provides power and timing signals to the x-ray 
source 13 and a gantry motor controller 23 that controls the 
rotational speed and position of the gantry 12. A data 

5 acquisition system (DAS) 24 in the control mechanism 20 
samples analog data from detector elements 18 and converts 
the data to digital signals for subsequent processing. An 
image reconstructor 25, receives sampled and digitized 
x-ray data from the DAS 24 and performs high speed image 

10 reconstruction according to the method of the present inven­
tion. The reconstructed image is applied as an input to a 
computer 26 which stores the image in a mass storage device 
29. 

It is easy to see that the Fourier space reconstructed by Eq. 
15 

(27) is intrinsically non-Cartesian. Thus the sampling den­
sity of the Fourier space is not uniform. The sampling 
density of the central Fourier space is higher than that of the 
peripheral Fourier space. To compensate the non-uniformity 

The computer 26 also receives commands and scanning 
parameters from an operator via console 30 that has a 
keyboard. An associated cathode ray tube display 32 allows 
the operator to observe the reconstructed image and other 
data from the computer 26. The operator supplied com­
mands and parameters are used by the computer 26 to 
provide control signals and information to the DAS 24, the 

of the Fourier space, a density weighting function 1&D-1 

20 
should be used in transforming a non-Cartesian data set into 
a Cartesian data set. However, in the first line of Eq. (27), a 
prefactor 1&D-2

, not 1&D-1 appears and dominates the 
divergence of the Fourier space. To mitigate this discrep­
ancy, an integration by parts can be used to rewrite Eq. (27) 

25 

x-ray controller 22 and the gantry motor controller 23. In 
addition, computer 26 operates a table motor controller 34 
which controls a motorized table 36 to position the patient 
15 in the gantry 12. as 

(29) 

In Eq. (29), the prefactor is 1&D-1
. Therefore, it repre­

sents a 1/k Fourier space sampling density compensation in 
two-dimensional case and 1/k2 Fourier space sampling den­
sity compensation in three-dimensional case. Geometrically, 
it is also easy to understand this prefactor. It is essentially the 
inverse of the radial part of the Jacobian of a polar coordi­
nate and spherical coordinate system in two- and three­
dimensional cases respectively. 

Eq. (27) and Eq. (29) are central results of the present 
invention. Starting with the intrinsic nature of the diverging 
fan-beam and cone-beam projections, by performing a 
weighted backprojection, and shifting and adding the local 
Fourier transform of the 1/r-weighted backprojected data 
array, the Fourier space of the image object is reconstructed. 
This theorem is valid for both fan beam and cone-beam 
projections. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

With initial reference to FIGS. 6 and 7, a computed 
tomography (CT) imaging system 10 includes a gantry 12 
representative of a "third generation" CT scanner. Gantry 12 
has an x-ray source 13 that projects a cone beam of x-rays 

The CT imaging system is operated to acquire views of 

attenuation data g[--; (t),r] at a series of gantry angles as the 
x-ray source 13 is moved to a series oflocations on a circular 

30 path. In the preferred embodiment an arcuate shaped detec­
tor array 16 is employed. As will now be described, each 
acquired view is processed in near real time and the resulting 
image data is added to an image data set which can be 
displayed even as the scan is being performed. 

35 
Referring particularly to FIG. 15, after each projection 

view is acquired as indicated at process block 100 the 
attenuation data acquired by each detector element is back­
projected along its divergent ray or beam as indicated at 

40 
process block 102. As shown in FIG. 16, an array of data 
points are thus formed in the region between the source 13 
of the divergent beam and the arcuate detector 16. These 
backprojected data points are then weighted by a weighting 
factor 1/r, where r is the distance of the data point from the 

45 
beam source point 13. 

The backprojected data points are then Fourier trans­
formed as indicated by process block 104. In this embodi­
ment the transformation is a two-dimensional Fourier trans­
formation followed by processing to form a two-

50 dimensional acquired k-space data set, but it can be 
appreciated that if a cone beam acquisition is performed 
rather than a fan beam acquisition, a three-dimensional 
Fourier transformation is performed and a three-dimensional 
acquired k-space data set is formed by this step. As illus-

55 trated in FIG. 14A the Fourier transformation and processing 
of a backprojected view produces a highly undersampled 
Fourier space, or k-space, data set whose location and 
orientation in k-space is determined by the view angle at 
which it was acquired. 

14 toward a detector array 16 on the opposite side of the 
gantry. The detector array 16 is formed by a number of 
detector elements 18 which together sense the projected 
x-rays that pass through a medical patient 15. Each detector 
element 18 produces an electrical signal that represents the 60 

intensity of an impinging x-ray beam and hence the attenu­
ation of the beam as it passes through the patient. During a 
scan to acquire x-ray projection data, the gantry 12 and the 
components mounted thereon rotate about a center of rota­
tion 19 located within the patient 15. 

The next steps shift and reorient the acquired k-space data 
set for a particular view angle to align it with a reference 
k-space having its origin located at the isocenter of the 
scanner. The first step as iu.dicated at process block 106 is to 
perform a phase shift e['2otk · Y (t)J to the acquired k-space data 

65 to effectively shift its location ink-space to the isocenter as 
illustrated in FIG. 14B. Then, as indicated at process block 
108, each phase shifted k-space data point is multiplied by 

The rotation of the gantry and the operation of the x-ray 
source 13 are governed by a control mechanism 20 of the CT 
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a weighting factor w(R, t) to align the direction of the 
acquired k-space data set with the reference k-space data set 
as illustrated in FIG. 14C. 

16 
projection direction with an equal weight. After the back­
projection step, a local Fourier transform is taken for the 
backprojected data array. Upon aligning and adding all these 
local Fourier transforms, the Fourier space of the image The properly correlated k-space data set is then added to 

an accumulated k-space data set as indicated at process 
block 110. As each acquired view is processed, it is added to 
this accumulated k-space data set, and when the data suffi­
ciency condition is satisfied as determined at decision block 
112, an image is reconstructed as indicated at process block 
114. In this embodiment an inverse two-dimensional Fourier 
transformation is performed to reconstruct an image of the 
object acquired by the 2D fan beam. 

5 object is constructed. A difference between parallel beam 
and divergent beam is manifested in the aligning and adding 
steps. Due to the equal weighting in the parallel-beam 
backprojection, the alignment of the local Fourier transform 
does not induce an extra phase factor. However, in the 

10 divergent fan-beam and cone-beam cases, the aligning of a 
local Fourier transform into a global and common reference 
frame induces an extra phase factor 

Because each acquired view can be separately processed ----;,----;, 

exp[i2it k · y (t)]=exp(i2itp ). Thus, in the divergent fan­
beam and cone-beam cases, adding all the local Fourier 
transform together is equivalent to performing a Fourier 

transform with respect to the auxiliary variable p=R---; (t). 
The physical meaning of variable p is the projection distance 
of the X-ray source position along a specific orientation R in 
Fourier space. Although there are some intrinsic differences 
between parallel-beam and divergent-beam projections, the 
logical steps in the construction of a Fourier space of an 
image object are similar in both parallel-beam projection 
and divergent-beam projections. Thus the results dictated by 

to produce an image (albeit not a clinically useful image), a 
number of variations of this method are possible. For 15 

example, process block 114 may be moved to the location 
indicated by dashed lines 116 in FIG. 15 such that a new 
image is reconstructed as each view is acquired, processed 
and accumulated. In this embodiment the image will appear 
very abstract at the beginning of the scan, become a blurry 20 

image of the object, and improve in quality as more views 
are acquired and processed. If the scan is continued and 
older views discarded as newer ones at the same view angle 
are acquired and processed, the image is continuously 
updated to accurately indicate object motion. 

It should also be apparent that it is not necessary to 
accumulate processed views only ink-space. Such an accu­
mulation can be performed in real space as part of the image 
reconstruction process 114. In such an embodiment each 
correlated k-space view is transformed to image space at 30 

process block 114 and the resulting image data is added to 
previously acquired image data. 

25 Eq. (27) and (29) are dubbed as a generalized projection­
slice theorem for divergent beam projections, although the 
concept of a line in the two-dimensional space or a slice in 
the three-dimensional space loses its original meaning. 

While a specific x-ray source and detector array geometry 
is employed in the above-described preferred embodiment, 
the present invention is not limited to any specific geometry. 35 

It is not necessary for the x-ray source to follow a circular 
path, and indeed, the inventors contemplate that the exact 
path of the x-ray source may be measured in a calibration 
procedure and this exact path used in the above processing 
rather than an assumed perfect circular path. The same is 40 

true for a helical scan path. The present invention enables the 
exact source trajectory to be determined in a calibration step 
and then used in the subsequent image reconstruction. 

The present invention is also applicable to other imaging 
modalities such as single photon emission computed tomog- 45 

raphy (SPECT) which employs fan beam collimation with 
varying focal length. 

The conventional PST plays a pivotal role in tomographic 
image reconstruction from parallel beam projections. It 
directly maps the Fourier transform of a specific view 50 

parallel-beam of projection data into a radial line in the 
Fourier space of the image object. Sequential measurements 
at different view angles give a sequential construction of the 
Fourier space of the image object. The reconstruction of the 
image object can be performed after the complete Fourier 55 

space is constructed or, using the linearity of the Fourier 
transforms, it can be sequentially performed after each 
projection is measured. In the present invention, the above 
concept of reconstructing the Fourier space of image object 
has been generalized to build the Fourier space of an image 60 

object directly from divergent fan-beam and cone-beam 
projections. The results are expressed in Eq. (27) and (29). 
An important step in the derivation is to incorporate the 
diverging nature of the fan-beam and cone-beam projections 
into the backprojection procedure. It results in a 1/r- 65 

weighting factor in the backprojection. In contrast, in the 
parallel-beam cases the data is backprojected along the 

The invention claimed is: 
1. A computed tomography imaging system, comprising: 
an x-ray source producing divergent beams; 
a plurality of detector elements for receiving impinging 

x-ray beams emanating from the x-ray source for a 
series of projection views in which the source revolves 
around an object to be imaged; 

an acquisition system for acquiring from the detector 
elements x-ray attenuation data corresponding to each 
beam at each of the projection views; and 

an image reconstructor that receives the x-ray attenuation 
data from the acquisition system and performs the 
following steps to reconstruct an image: (a) back­
projecting the x-ray attenuation data for each beam to 
form an array of data points therealong, (b) weighting 
each backprojected data point by a weighting factor 
w(r), where r is the distance between the backprojected 
data point and a source location of the divergent beams 
to form weighted backprojected data points, ( c) Fourier 
transforming and processing an array of data which 
includes the weighted backprojected data points to 
form an acquired k-space data set; (d) aligning the 
acquired k-space data set with a reference k-space, and 
( e) reconstructing an image from the referenced 
k-space data by performing an inverse Fourier trans­
formation thereon. 

2. The system as recited in claim 1 wherein the image 
reconstructor repeats steps (a) through (e) a plurality of 
times with the divergent beam moved to a different source 
position for each repetition. 

3. The system as recited in claim 1 wherein the image 
reconstructor repeats steps (a) through (d) a plurality of 
times with the divergent beam moved to a different source 
position for each repetition. 

4. The system as recited in claim 1 wherein each divergent 
beam is a two-dimensional fan beam of x-rays and the 
Fourier transformations performed in steps (c) and (e) are 
two-dimensional Fourier transformations. 
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5. The system as recited in claim 1 wherein each divergent 
beam is a three-dimensional cone beam of x-rays and the 
Fourier transformations performed in steps (c) and (e) are 
three-dimensional Fourier transformations. 

18 
series of projection views in which the source revolves 
around an object to be imaged; 

6. The system as recited in claim 1 wherein the aligning 5 

an acquisition system for acquiring from the detector 
elements x-ray attenuation data corresponding to each 
beam at each of the projection views; and 

step (d) includes: 
i) phase shifting the acquired k-space data set; and 
ii) weighting the phase shifted k-space data set. 
7. The system as recited in claim 1 wherein the weighting 

factor w(r) is 1/r. 
8. The system as recited in claim 2 wherein the different 

source positions are located along a source trajectory which 
extends around the object being imaged. 

9. The system as recited in claim 8 wherein the source 
trajectory is substantially circular. 

10. The system as recited in claim 8 wherein the source 
trajectory is substantially helical. 

11. The system as recited in claim 3 wherein the different 
source positions are located along a source trajectory which 
extends around an object being imaged. 

12. The system as recited in claim 11 wherein the source 
trajectory is substantially circular. 

13. The system as recited in claim 11 wherein the source 
trajectory is substantially helical. 

14. A computed tomography imaging system, comprising: 
an x-ray source producing divergent beams; 
a plurality of detector elements for receiving impinging 

x-ray beams emanating from the x-ray source for a 

10 

15 

an image reconstructor that receives the x-ray attenuation 
data from the acquisition system and performs the 
following steps: (a) backprojecting each acquired pro­
jection to form a set ofbackprojected data; (b) weight­
ing each set of backprojected data; (c) Fourier trans­
forming the weighted backprojected data to form 
acquired k-space data; ( d) aligning the acquired k-space 
data for each acquired projection with a reference 
k-space; and (e) reconstructing an image from the 
aligned k-space data. 

15. The system as recited in claim 14 wherein step (e) 
includes performing an inverse Fourier transformation. 

16. The system as recited in claim 14 wherein step (d) 
includes phase shifting the acquired k-space data by an 

20 amount which is a function of the location of a divergent 
beam source at the time the corresponding projection was 
acquired. 

17. The system as recited in claim 16 wherein step (b) 
employs a weighting factor which is a function of the 

25 distance of the backprojected data from the divergent beam 
source. 

* * * * * 
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