(12) United States Patent

Robertson et al.
(10) Patent No.:
(45) Date of Patent:
(54) STABLE CELL LINES EXPRESSING HERG1A AND HERG1B
(75) Inventors: Gail A. Robertson, Madison, WI (US); Eugenia M. Jones, Madison, WI (US);
Jinling Wang, Pasadena, CA (US)
Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 493 days.
(21) Appl. No.: 10/976,122
(22) Filed:

Oct. 28, 2004
Prior Publication Data
US 2005/0164379 A1 Jul. 28, 2005

Related U.S. Application Data

(60) Provisional application No. 60/515,158, filed on Oct. 28, 2003.
(51) Int. Cl.

C12N 15/85	(2006.01)
C12N 5/08	(2006.01)
C07K 14/00	(2006.01)
C07K 16/00	(2006.01)
C07H 21/04	(2006.01)

 435/325; 435/366; 435/369; 530/350; 530/388.22; 536/23.1; 536/23.5
Field of Classification Search \qquad None See application file for complete search history.

References Cited

OTHER PUBLICATIONS

Alomone Labs, "ERG K+ Channels," Modulator 13:1-2 (2001).
Crociani, O., et al., "Cell Cycle-Dependent Expression of HERG1 and HERG1B Isoforms in Tumor Cells," The Journal of Biological Chemistry 278:2947-2955 (2003).
Curran, M.E., et al., "A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome," Cell 80:795-803 (1995). Delisle, B.P., et al., "Biology of Cardiac Arrhymias Ion Chanel Protein Trafficking," Circulation Research Jun. 11, 2004:1418-1428.
He, J.Q., et al., "Reduction in density of transverse tubules and L-type $\mathrm{Ca}(2+)$ channels in canine tachycardia-induced heart failure," Cardiovascular Research 49:298-307 (2001).
Jones, E. M., et al., "HERG-1b Protein is Experssed in Cardiac Ventricular Myocytes," Scientific Sessions 2003.
Kupershmidt, S., et al., "A K+ channel splice variant common in human heart lacks a C-terminal domain required for expression of
rapidly activating delayed rectifier current," J. Biol. Chem. 273:27231-27235 (1998).
Lees-Miller, J.P., et al., "Electrophysiological characterization of an alternatively processed ERG K+ channel in mouse and human hearts," Circ. Res. 81:719-726 (1997).
London, B., et al., "N- and C-terminal isoforms of HERG in the human heart," Biophysical J. (1998).
O'Leary, M.E., "Inhibition of Human Ether-A-Go-Go Potassium Channels by Cocaine," Molecular Pharmacology 59:269-277 (2001). Roti Roti, E.C., et al., "Interaction with GM130 during HERG Ion Channel Trafficking," The Journal of Biological Chemistry 277:47779-47785 (2002).
Sanguinetti, M.C., et al., "Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents," J. Gen. Physiol. 96: 195-215 (1990).
Sanguinetti, M.C., et al., "A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel," Cell 81:299-307 (1995).
Sanguinetti, M.C., et al., "Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel," Nature 384:80-83 (1996).

Trudeau, M.C., et al., "HERG, a Human Inward Rectifier in the Voltage-Gated Potassium Channel Family," Science 269:92-95 (1995).

Wang, J., et al., "Dynamic Control of Deactivation Gating by a Soluble Amino-Terminal Domain in HERGK+ Channels," J. Gen Phyiol. 115:749-758 (2000).
Wang, J., et al., "Regulation of Deactivation by an Amino Terminal Domain in Human Ether-a-go-go-related Gene Potassium Channels," J. Gen. Phyiol. 112:637-647 (1998).
Zhou, A., et al., "HERG channel dysfunction in human long QT syndrom. Intracellular transport and functional defects," J. Biol. Chem. 273:21061-21066 (1998).
Zhou, A., et al., "Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature," Biophys. J. 74:230-241 (1998).
Jones E, et al., "Cardiac IKr channels minimally comprise hERG la and 1 lb subunits," J. Biol. Chem. 279:44690-44694 (2004).
London B, et al., "Two isoforms of the mouse ether-a-go-go-related gene coassemble to form channels with properties similar to the rapidly activating component of the cardiac delayed rectifier $\mathrm{K}+$ current," Circ. Res. 81:870-878 (1997).
Ohya S, et al., "Functional and molecular identification of ERG channels in murine portal vein myocytes," Am. J. Physiol. Cell Physiol. 283:C866-877 (2002).
Pond L, et al., "Expression of distict ERG proteins in rat, mouse, and human heart. Relation to functional $\mathrm{I}(\mathrm{Kr})$ channels," J. Biol. Chem. 275:5997-6006 (2000).

Primary Examiner - Elizabeth C. Kemmerer
Assistant Examiner - Sandra Wegert
(74) Attorney, Agent, or Firm-Quarles \& Brady LLP

ABSTRACT

A line of cultured mammalian cells includes HERGlb subunits and optionally HERG1a subunits.

7 Claims, 2 Drawing Sheets

FIG 1

$60 \mathrm{mV} \begin{aligned} & \underline{20 \mathrm{~ms}} \\ & -120 \mathrm{mV}\end{aligned}$

FIG 2

STABLE CELL LINES EXPRESSING HERG1A AND HERG1B

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/515,158, filed Oct. 28, 2003.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with United States government support awarded by the following agency: NIH Grant Number HL55973. The United States government has certain rights in this invention.

BACKGROUND OF THE INVENTION

Ion channels expressed in the plasma membrane of excitable tissues (including heart) regulate the function of the tissues. Ion channels can comprise alpha, beta and auxiliary subunits. The alpha subunits are largely responsible for determining overall biophysical properties of the channels, such as ion selectivity, gating and drug sensitivity, whereas beta or auxiliary subunits modify these properties in important ways. Voltage-gated potassium channels comprise four alpha subunits that assemble into a pseudosymmetric array (MacKinnon, 1991), thereby providing the opportunity for heterogeneity by mixing of related subunits to form heterotetrameric channels (Christie et al., 1990; Isacoff et al., 1990). The potential for complexity and heterogeneity increases substantially when beta or auxiliary subunits are also present (England et al., 1995).

Cardiac $\mathrm{I}_{K_{r} r}$ is a rapidly-inactivating potassium current first identified by its sensitivity to the methanesulfonanilide drug E-4031 (Sanguinetti, M. C. and N. K. Jurkiewicz, 1990). Compared to all other known potassium currents, $\mathrm{I}_{K r}$ has a unique functional profile characterized by the suppression of current during depolarization and large, rebounding tail currents produced upon repolarization. Currents are suppressed during depolarization because channels open only briefly and then rapidly inactivate. Upon repolarization, channels recover rapidly from inactivation and revisit the open state. Because deactivation is slow, the channels linger in this highly stable open state and produce the resurgent current that is a hallmark of $\mathrm{I}_{K r}$. Moreover, the sensitivity to E-4031 and other antiarrhythmic drugs is unique to $\mathrm{I}_{K r}$.

Currents with comparable biophysical and pharmacological properties are produced when HERG1, a gene encoding an inwardly rectifying potassium channel that was cloned from human hippocampus (Warmke and Ganetzky, 1994), is transiently expressed in Xenopus oocytes, suggesting that HERG1 is a central component of the channels that give rise to the $\mathrm{I}_{K_{r}}$ currents (Sanguinetti et al., 1995; Trudeau et al., 1995). Trudeau, M. C., et al., "HERG, a Human Inward Rectifier in the Voltage-Gated Potassium Channel Family," Science 269:92 (1995), incorporated by reference as if set forth herein in its entirety, described the HERG gene and also depicted the inwardly rectifying HERG currents and a gating model in the same paper.

Families with a form of inherited (familial) Long QT Syndrome (LQTS-2) have mutations the HERG1 gene (Curran et al., 1995). LQTS-2 is a life-threatening illness characterized by polymorphic ventricular arrhythmias known as torsades de pointes (Roden, 1993). Undiagnosed or untreated, LQTS often leads to sudden death by young adulthood. The expres-
sion studies of Trudeau et al. (1995), defining HERG as the primary component underlying $\mathrm{I}_{K r}$, thus explained the underlying cause of LQTS-2 as a loss of $\mathrm{I}_{K r}$.

More clinically prevalent than familial LQTS is an 5 acquired form of the disease caused by block of $I_{K r}$ currents by a surprising variety of drugs, including antiarrhythmic drugs such as dofetilide (Tikosyn \mathbb{R}) (Snyders and Chaudhary, 1996), the antihistamines terfenadine (Seldane $\mathbb{\circledR}$) (Roy et al., 1996; Suessbrich et al., 1996) and astemizole (Hismanal®)
10 (Zhou et al., 1999b), the gastric motility drug cisapride (Propulsid®) (Mohammad et al., 1997; Rampe et al., 1997), and cocaine (Zhang S, 2001). An estimated 1-8\% of the general public is susceptible to acquired LQTS. Despite their therapeutic value, several of these drugs have been withdrawn from the market because of an unacceptable risk of torsades. As a result, to avoid the risk of torsades and the lost investment associated with withdrawal of a drug from the market, standard pharmaceutical industry practice today dictates that all pharmaceutics in development are screened against cultured cells that express HERG1 in the cell membranes with monitoring for changes in potassium channel behavior. Commercially available HERG-expressing cell lines express only HERGla channel subunits that assemble into HERG1 channels.

While it is accepted that $\mathrm{I}_{K r}$ channels primarily contain HERG 1 subunits, the precise composition of these channels is unknown. The discovery of alternative HERG1a and HERG1b transcripts encoded by the HERG1 gene in human heart (Lees-Miller et al., 1997; London et al., 1997; Kupershmidt et al., 1998; London et al., 1998, each incorporated by reference as if set forth herein in its entirety), raised the possibility that alpha subunits other than HERG1 a contribute to the $\mathrm{I}_{K r}$ channels.
The proteins encoded by the HERG1a and HERG1b transcripts differ only at their amino termini, as shown in the attached Sequence Listing. The longer amino terminus of HERGla confers slow deactivation; the shorter amino terminus of HERG1b confers rapid deactivation, relative to HERGla. When transiently expressed together in a heterologous Xenopus oocyte system, the two subunits assemble to form heteromeric channels that produce currents with unique, intermediate deactivation properties that cannot be explained by the algebraic summation of two homomeric populations of channels. HERG1a DNA and amino acid sequences (SEQ ID NO:1 and 2, respectively) can be found at GenBank Accession No. NM_000238, and HERG1b DNA and amino acid sequences (SEQ ID NO:3 and 4, respectively) can be found at GenBank Accession No. NM_172057). The understanding of the art in this regard is presented in London, B. et al., "Two Isoforms of the Mouse Ether-a-go-go-Related Gene Co-assemble to Form Channels With Properties Similar to the Rapidly Activating Component of the Cardiac Delayed Rectifier K ${ }^{+}$Current," Circ. Res., 81:870 (1997), which is incorporated by reference as if set forth herein in its entirety.
Although HERG1b transcripts have been observed in human heart tissue, until now there was no convincing evidence for the existence in the heart of HERG1b protein, nor was there a consensus as to whether HERG1a and HERG1b channel subunits co-assemble in the heart in vivo. It has heretofore been presumed that HERG channels in cardiac myocytes are uniformly formed of HERGla subunits and a host of such HERG1a-containing cell lines are available for testing, as described. Even so, the potassium ion channel behavior of HERGla-containing cell lines does not fully match the behavior of $\mathrm{I}_{K_{r}}$ currents observed in cardiac myocytes. Additionally, from the prior work in Xenopus oocytes one cannot predict co-assembly of HERG1a and HERG1b
subunits, let alone production of an $\mathrm{I}_{K_{r}}$ current, in the membranes of mammalian cells, particularly upon heritable maintenance and expression of HERGla and HERG1b in such cells. Understanding cardiac $\mathrm{I}_{K r}$ physiology and the disease mechanisms of HERG-linked congenital and acquired LQTS necessitates approximating the native state in heterologous systems as closely as possible. It would be desirable to provide improved cell lines for pharmacologic testing, where the improved cell lines mirror the potassium ion channel behavior and subunit composition found in cardiac myocytes.

BRIEF SUMMARY OF THE INVENTION

ERG is understood by the skilled person to refer to the ether-a-go-go related gene, and ERG to the corresponding protein, identified in various mammalian, non-mammalian, and non-vertebrate species. HERG and HERG refer to the human ERG homolog, and corresponding protein, respectively. Reference herein to HERG refers to the human ether-a-go-go related gene while ERG indicates the homolog in lower mammals. When discussing an anti-ERG antibody, the applicants intend that the antibody reacts across species and interacts with the ERG protein (or ERG1a or ERG1b subunits) from both human and non-human animals. There is very close sequence similarity between the genes and the encoded proteins in higher and lower mammals, as well as interspecies cross-reactivity of isoform-specific antibodies.

The present invention relates to the direct demonstration by the inventors that both the HERG1a and HERG1b proteins are present in the cell membranes of heart tissue of human and non-human animals, and further that when both proteins are stably expressed in a mammalian cell line, a single antibody raised specifically against either the HERG1b or HERG1a subunits co-precipitates both the HERG1a and the HERG1b subunits. The inventors have demonstrated that ERG1a and ERG1b subunits of non-human animals are also expressed in non-human animal cardiac tissue.

Further, HERG1a and HERG1b expression in a heterologous mammalian cell system produced current with the characteristic hallmark pharmacological and biophysical properties of native $\mathrm{I}_{K r}$ channels, namely sensitivity to a methanesulfonanilide drug, suppression of current during depolarization and large, rebounding tail currents produced upon repolarization. These hallmarks, and the ability to distinguish an $\mathrm{I}_{K r}$ current from a non $-\mathrm{I}_{K r}$ current, are understood by the skilled artisan familiar with the papers by Sanguinetti, M C and Jurkiewicz (1990), Sanguinetti, M C et al. (1995) and by Trudeau, M C, et al. (1995), each incorporated by reference herein as if set forth in its entirety.

A first aspect of the invention follows from these demonstrations. In accord with the first aspect, the invention is summarized in that cardiac $\mathrm{I}_{K_{r} r}$ can be recapitulated in a line of cultured mammalian cells, notably human cells, having a cell membrane that comprises HERG potassium ion channels having HERG1a and HERG1b subunit components, wherein the HERG1a and HERG1b subunit components are heterologous to the line of cultured cells where the cultured cells do not contain the subunit components until polynucleotides encoding the components are provided in the cells. A cell line thus produced is useful for screening of a pharmacologic agent for an effect on potassium ion channel behavior, in the manner that cell lines comprising HERGla channels alone are now used. A heterologous subunit is expressed in the line of cultured cells as a result of stable and heritable transfer of a subunit-encoding polynucleotide into cells used to produce the cell line. Relatedly, a line of cultured cells having a HERG1b subunit component without a HERG1a subunit
component, wherein the HERG1b subunit component is heterologous to the cells, is also useful for evaluating the potassium ion channels formed in, and the membrane potential of, such cells, as a tool to evaluate ion channels in patients having a truncated HERG1a subunit or no HERG1a subunit and to screen and develop compounds that may be effective in enhancing HERG1b surface expression and thus rescuing the mutant phenotype. While it will be appreciated that mammalian cell lines comprising other ERG orthologs can be prepared and used as described herein, such cells are of less commercial interest than cells expressing HERG, as it is the behavior of the human ion channels in human cells that is of interest when screening prospective new drugs for use in humans. However, such cells could find utility in screening of veterinary pharmaceuticals for possible effects upon ERG ion channels in non-human animals. While the application is generally directed to HERG-expressing cells, it is understood that ERG-expressing cells are also within the scope of the disclosure.
A second aspect of the invention is summarized in that a method for screening a pharmacologic agent for an effect on potassium ion channel behavior includes the steps of (1) establishing a baseline potassium ion channel behavior of a line of cultured cells having a cell membrane that comprises HERG potassium ion channels having HERGla and HERG1b subunit components, (2) exposing the line of cultured cells to a pharmacologic agent, (3) determining the potassium ion channel behavior of the exposed cells, (4) comparing the potassium ion channel behavior of the exposed cells to the baseline potassium ion channel behavior, and (5) determining whether the pharmacologic agent affects the potassium ion channel behavior of the cells. Ion channel behavior can be assessed using any conventional electrophysiological approach such as a square voltage clamp protocol or an action potential clamp protocol. The latter is advantageous as it approximates the physiological behavior of the ion channels in cardiac tissue, particularly with regard to the opening and closing of the channels, and thereby yields more meaningful information about the binding of a pharmacologic agent to an open channel and the associated risk to an individual.

In a related aspect, the invention is further summarized in that a method for establishing a line of cultured cells includes the steps of (1) introducing into an expression-component cell line one or more expression vectors containing polynucleotides that encode HERG1b (and, optionally, HERG1a) under the control of an upstream transcriptional promoter and an optional downstream polyA addition sequence under conditions favoring transcription of one or more transcripts from the vector and translation from the transcripts to yield HERGla and HERGlb subunits for co-assembly into heterotetrameric HERG channels in the membranes of the cells, (2) selecting cells that express either the HERG1b subunit alone or the HERG1a and HERG1b subunits, and (3) expanding a single cell clone to establish the line of cultured cells. To confirm expression of the HERG1a and HERG1b in the cultured cell line, levels of HERG subunit expression can be evaluated in the line using biochemical or electrophysiological methods or both.

In still another related aspect, the invention is further summarized in that in the method for establishing a line of cultured cells, the polynucleotides that encode HERGla and HERG1b are the published polynucleotides that encode conventional HERG1a and HERG1b, wherein such sequences are presented herein in SEQ ID NO:1 and SEQ ID NO:3. Optionally, additional related cell lines in keeping with the invention can be established by substituting for the conven-
tional HERGla- or HERG1b-encoding polynucleotides, or both, related polynucleotides carrying mutations known in the art to be associated with LQTS. The skilled artisan will appreciate that the evaluation of a pharmacologic agent can be customized for a particular individual if the HERG profile (protein sequences of the HERG1a and HERG1b subunits) in the tested line of cultured cells matches or substantially matches the HERG profile of the individual.

These findings have significant implications for N -terminal mutations that are causally associated with LQTS. Approximately 20\% of LQTS-2 mutations reside in the N terminus of HERG1a, where they can truncate the protein, alter gating properties, and/or cause trafficking deficiencies. Since HERG1a and HERG1b are alternate transcripts produced by the HERG1 gene, mutations in exons encoding the HERG1a N-terminus are not likely to affect the production of wild-type HERG1b from this gene. These findings suggest the importance of screening LQTS patients for mutations in the HERGlb-specific exon and for assessing the disease mechanism of all mutations in heterologous expression systems in which HERG1a and HERG1b are co-expressed.

In another aspect, the invention relates to a polyclonal or monoclonal antibody specific for the ERG1b isoform. In this regard, the inventors have produced a polyclonal antibody specific for the ERG1b isoform. It is the only such antibody known to be in existence, and it is useful in many applications, especially for establishing and characterizing the cell lines of the invention and for localizing the ERG1b isoform in vivo. The anti-ERG1b antibody recognizes HERG1b (from humans) and ERG1b (from non-human species).

In a related aspect, the invention further relates to a polyclonal or monoclonal antibody specific for the ERGla isoform, the antibody being raised against an epitope in the ERG1a subunit, where the epitope shares amino acid similarity with the ERG1b epitope used to produce the ERG1b antibody and has a Jameson-Wolf antigenic index greater than 1. A portion of ERGla between amino acids 264 and 286, inclusive, has these attributes. Interestingly, the characteristics of this epitope are also found in the $1 \mathrm{a} / 1 \mathrm{~b}$ C-terminal epitope and the HERG1b N-terminal epitope, used to raise the ERG-KA antibody and the ERG1b antibody, respectively, but in no other contiguous -20 amino acid long portion of the HERG1a or HERG1b protein. In particular, these regions are characterized by a first pair of basic amino acid residues (such as conservatively related arginine or lysine residues) spaced apart by a single residue and a second pair of adjacent basic residues separated from the aforementioned pair by three to six amino acid residues.

In another related aspect, the cultured cells of the invention can also be employed in a screen for anti-cancer HERG blocker drugs, since it has been reported that HERG channels are upregulated in tumor cells and that proliferation of tumor cells is blocked by HERG blockers (Crociani et al., 2003).

It is an object of the invention to provide a line of cultured cells for screening of pharmacologic agents for an effect on potassium ion channel behavior where the line of cells recapitulates native cardiac $\mathrm{I}_{K r}$ or the $\mathrm{I}_{K r}$ observed in cardiac cells having mutant HERG channels.

It is a feature of the invention that the cultured cells have a cell membrane that comprises HERG potassium ion channels having native or mutant HERGla and HERG1b subunit components.

Other objects, advantages and features of the invention will become apparent upon consideration of the following description taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

FIG. 1 illustrates the schematic topology of N-terminal regions of HERG1a and HERG1b proteins showing divergent N termini (hatched) and identical regions (white and black). Predicted molecular mass for ERG1a is 127 kD , and 90 kD for ERG1b.
FIG. 2 illustrates an overlay of normalized currents recorded from HEK-293 cells expressing HERG1a, HERG1b and both HERG1a/ 1 b.

DETAILED DESCRIPTION OF THE INVENTION

Conventional or native HERG1a and HERG1b channel subunits are encoded by the HERG1 gene and arise as the result of differential splicing. The polynucleotide that encodes native HERG1a is published by NCBI and is presented herein at SEQ ID NO:1. The polynucleotide that encodes native HERG1b is published at http://www.ncbi.n1 m. nih.gov/ and is presented herein at SEQ ID NO:3. Additionally, several hundred separate mutations in the HERG1a polynucleotides (often in the portion shared by HERG1a and HERG1b) known to cause various changes in cardiac $\mathrm{I}_{\mathrm{K}_{r} r}$ are also known, and additional mutations in HERG1 will undoubtedly be reported. The skilled artisan is in possession of various databases of such mutations (as well as polymorphisms). For example, the Working Group on Arrhythmias of the European Society of Cardiology maintains an online database. Also, the Statens Serum Institute maintains a very similar online database. The current data are provided herein at Table 1, but it will be understood that the skilled artisan can be readily apprised of further cataloged mutations in HERG by consulting the literature or database of such mutations. Additionally, one or a plurality of mutations in either HERG1a, HERG1b, or both, can be incorporated using standard tools of the skilled molecular biologist into one or more of the HERG1 subunits.

It will be understood by the skilled artisan that a line of cultured cells produced according to the invention can comprise in the cell membrane a conventional HERG1b subunit or a mutant HERG1b subunit, optionally in combination with a conventional or mutant HERG1a subunit. It will be appreciated that if the cell line is used in a screening method as described herein, then it is desirable for the cell line to express both the HERG1b and the HERG1a subunits. It is of particular interest to evaluate the potassium ion channel behavior of cell lines carrying conventional HERG1a and HERG1b. Also of significant interest is the potassium ion channel behavior of cell lines carrying conventional HERG1b in combination with HERG1a mutants, even more particularly those HERG1a mutants that differ from conventional HERG1a in the N-terminal portion of the protein not shared with HERG1b. Further, when screening ion channels characteristic of HERG1a-defective mutants, a cell line that comprises HERG1b channels alone is indicated. A HERG1a-defective mutant subunit can be expressed in such cells to simulate channel formation and behavior in native tissue. The skilled artisan will appreciate that mutations in HERG1a- or HERG1b (which can be deletions, insertions, or substitutions) can alter, or can have no effect upon, the activity of the subunits or the channels formed therefrom. The attached list of mutations give a flavor for the types of mutations contemplated, but is not to be considered an exhaustive list.

Any of the aforementioned polynucleotides can be cloned into an expression vector (or plurality of expression vectors) engineered to support expression from the polynucleotides.

Suitable expression vectors comprise a transcriptional promoter active in a recipient cell upstream of the HERG1 polynucleotide and can optionally comprise a polyA-addition sequence downstream of the polynucleotide.

Suitable commercially available expression vectors are pcDNA3.1 and pcDNA3.1zeo (Invitrogen), which differ from one another in that pcDNA3.1 includes sequences conferring resistance to neomycin while pcDNA3.1zeo includes sequences conferring resistance to zeocin. The polyA-addition sequences, not required for expression, can be excised from these vectors by digesting both with Apal (nuc. 1002) and BbsI (nuc. 1217), respectively, filling in, and self-ligating. The vectors can be prepared to receive the HERGla or HERG1b polynucleotides, by cleavage with EcoRI and BamHI. For convenience during the subsequent selection step, HERG1a can then be cloned into the cleaved pcDNA3.1 vector; HERG1b can be cloned into the cleaved pcDNA3.1zeo vector. In addition, HERG1a and 1 b polynucleotides can be ligated into the two multiple cloning sites of a vector with an internal ribosomal entry site, such as pIRES (Novagen), which allows for production of two separate proteins from a single transcript. Use of this vector to produce clonal cell lines allows for selection with a single antibiotic.

The vector(s) can be introduced (or co-introduced) by, for example, transfection or lipofection, into cells competent to receive and express the HERG1 subunits in their cell membrane. A commercially lipofection kit, such as a kit available for this purpose from Mirus Corporation, Madison, Wis., can be employed. Preferably, the recipient cells do not natively contain HERG1 subunits in their cell membranes, so that the presence of HERG1 channels in the membrane is completely attributable to expression from the introduced expression vector. Suitable recipient cells are human embryonic kidney cells such as cells of the HEK-293 cell line, commercially available from the American Type Culture Collection (Accession Number CRL-1573).

Later, preferably about 24 hours later, cells can be harvested, distributed into wells and grown in selective media. In the exemplified embodiment, a selective medium suitable for selecting cells carrying the HERG1a-vector contains neomycin at $500 \mathrm{micrograms} / \mathrm{ml}$, a medium suited for carrying the HERG1b-vector contains zeocin at $100 \mathrm{micrograms} / \mathrm{ml}$, and a medium suited for growing cells carrying both vectors contains both antibiotics. Cells can be grown under selection for 2-3 weeks until the wells are confluent. Resulting clonal lines (24-48 for each type) can be examined biochemically or electrophysiologically to confirm the presence of the HERG1 channel subunit(s) and the level(s) of HERG produced.

EXAMPLES

Materials and Methods

Cell lines and Antibodies. Human embryonic kidney 293 (HEK-293) cell lines stably expressing conventional HERG1a have been previously described by Zhou, Z., et al., Biophys J. 74, 230-241 (1998), and by Furutani, M., et al., Circulation 99:2290-2294 (1999), each incorporated by reference as if set forth in its entirety. Cell lines stably expressing HERG1a and HERG1b were prepared by transfecting HEK293/HERG1a stable cells with HERG1b containing a Kozak consensus sequence cloned into the Bam HI/Eco RI sites of pcDNA3.1zeo (Invitrogen, Carlsbad, Calif.). Separate cell colonies were selected after plating cells at low density and grown in media containing $100 \mu \mathrm{~g} / \mathrm{ml}$ Zeocin, $500 \mu \mathrm{~g} / \mathrm{ml}$
neomycin for selection. All HEK-293 cells were cultured in Dulbecco's modified Eagle's medium at $37^{\circ} \mathrm{C}$.

A polyclonal antibody (termed "ERG-KA") raised against a peptide having an amino acid sequence of CRQRKRKLSFRRRTDKDTEQ (corresponding to amino acids 883 through 901 of SEQ ID NO: 1 plus a non-essential N-terminal cysteine residue provided to permit coupling of the peptide to an immunogenic carrier) can co-precipitate both HERG1a and HERG1b subunits from cardiac myocytes of the HERG channel protein and is diagnostic for the presence of both HERG1a and HERG1b in HERG channels in vivo or in cultured cell lines in vitro. See Roti Roti, E. et al., "Interaction with GM130 during HERG Ion Channel Trafficking," J. B. C., 277:47779 (2002), incorporated herein by reference as if set forth in its entirety. ERG1 isoform-specific antibodies were produced by Bethy1 Laboratories (Montgomery, Tex., USA) in rabbits. Antisera were affinity purified using the same peptides employed in immunization. An immunogenic ERG1b peptide was amino acids 12-25 (GALRPRAQKGRVRR) of SEQ ID NO:4 (HERG1b). The ERG1b antibody was raised against CGALRPRAQKGRVRR, corresponding to the aforementioned amino acids 12-25 plus a non-essential N -terminal cysteine residue provided to permit coupling of the peptide to an immunogenic carrier. An immunogenic ERG1 a peptide was amino acids 140-153 (SPAHDTNHRGPPTS) (Neoclone, Madison, Wis.) of SEQ ID NO:2 (HERG1a). A HERGla-specific antibody raised in goat (HERG N-20) was purchased from Santa Cruz Biotechnologies (Santa Cruz, Calif.). Horseradish Peroxidase-(HRP-) coupled secondary antibodies were purchased from Pierce (Rockford, Il1.) and Santa Cruz Biotechnology (Santa Cruz, Calif.). Fluorophore-coupled secondary antibodies were purchased from Molecular Probes (Lake Oswego, Oreg.).
Cardiac tissue preparation. Human male ventricular lysate was purchased from ProSci Inc. (Poway, Calif.). Canine ventricular myocytes were isolated from mongrel males and enzymatically treated as described by He, J. Q., et al. (2001), incorporated herein by reference as if set forth in its entirety. Sprague-Dawley rat ventricles were excised from anesthetized adult males after injection of sodium Pentobarbital (100 $\mathrm{mg} / \mathrm{kg}$ body weight intraperitoneal) as described by He, J. Q, et al. Rat ventricular myocytes were prepared using the same procedure as described for the canine tissue. All procedures were approved by the Research Animal Resources Center (RARC) at UW-Madison.

Cell membrane protein preparations. Membranes were prepared from myocytes or ventricular tissue after suspension in homogenization buffer (in mM: 25 Tris-HCl, $\mathrm{pH} 7.4 ; 10$ NaEGTA; 20 NaEDTA). All buffers used in this procedure contained the following protease inhibitor cocktail: $5 \mu \mathrm{~g} / \mathrm{ml}$ aprotinin, $50 \mu \mathrm{~g} / \mathrm{ml} 1,10$ phenanthroline, $0.7 \mu \mathrm{~g} / \mathrm{ml}$ pepstatin A, $1.56 \mu \mathrm{~g} / \mathrm{ml}$ benzamidine, and $1 \times$ Complete minitab (Roche, Indianapolis, Ind.). Suspensions were homogenized using a Polytron homogenizer at setting 6 for two bursts of 15 seconds each, followed by sonication on ice twice at an amplitude of 20 for 20 seconds each. Suspensions were spun at $2,000 \times \mathrm{g}$ at $4^{\circ} \mathrm{C}$. for 10 minutes to remove cellular debris. The supernatants were subjected to further centrifugation at $40,000 \times \mathrm{g}$ for 30 minutes at $4^{\circ} \mathrm{C}$. The resultant pellet was solubilized on a rotary shaker at $4^{\circ} \mathrm{C}$. for 2 hours, in either Triton buffer (in mM: $150 \mathrm{NaCl} ; 25$ Tris- $\mathrm{HCl}, \mathrm{pH} 7.4 ; 20$ NaEDTA; 10 NaEGTA; 5 glucose, and 1% v/v Triton X-100), or RIPA buffer (in mM: 150 NaCl ; 50 Tris- $\mathrm{HCl}, \mathrm{pH} 7.4,1$ NaEDTA, and $1 \% \mathrm{v} / \mathrm{v}$ Triton X-100, $1 \% \mathrm{v} / \mathrm{v}$ sodium deoxycholate, $0.1 \% \mathrm{v} / \mathrm{v}$ sodium dodecylsulfate). Samples were then spun at $10,000 \times \mathrm{g}$ to remove insoluble material. Cell line membrane pellets were prepared by washing plates gently
with PBS, aspirating, and adding either Triton buffer or RIPA buffer. Cells were then scraped, collected in a microfuge tube, and sonicated on ice twice at an amplitude of 20 for 20 seconds each. The suspension was rotated at $4^{\circ} \mathrm{C}$. for 2 hours and then centrifuged at $10,000 \times \mathrm{g}$ for 10 minutes to remove insoluble material. Protein concentrations of all samples were determined using a modified Bradford assay (DC Protein Assay, Bio-Rad, Hercules, Calif.).

Biochemical Analysis. Membrane proteins were deglycosylated using PNGase F and Endoglycosidase H (Roche Applied Science, Indianapolis, Ind.) as described by Zhou, Z., et al. (1998), supra, and by Zhou, Z., et al., J Biol Chem 273, 21061-21066 (1998), incorporated herein by reference as if set forth in its entirety. Proteins were denatured at $60^{\circ} \mathrm{C}$. to avoid thermal aggregation at higher temperatures. To determine which proteins were expressed on the surface membrane, proteins were surface biotinylated using sulfo-NHS-LC-Biotin reagent. Briefly, 100 mm tissue culture dishes with growth at $70-80 \%$ confluency were rinsed three times with cold PBS, and incubated with freshly prepared Biotin reagent $(5 \mathrm{mg} / \mathrm{ml})$ in PBS for 45 minutes at $4^{\circ} \mathrm{C}$. Cells were then rinsed once with 25 mM Tris- $\mathrm{HCl}(\mathrm{pH} 7.5)$ to quench the reaction, followed by three washes with cold PBS. Membrane proteins were prepared as indicated above.

Western Blot analysis. Membrane proteins (cell lines 2-10 $\mu \mathrm{g} /$ lane; heart lysates $30-50 \mu \mathrm{~g} / \mathrm{lane}$) were separated on 7.5% SDS-polyacrylamide electrophoresis gels along with prestained molecular weight markers (Bio-Rad, Hercules, Calif.), and were then transferred to PVDF membranes (Im-mobilon-P, Bedford, Mass.) for 1 hour at 100 mV . Western blots were blocked, probed, and analyzed as described. For peptide block experiments, $5 \mu 1$ antibody was incubated with $10 \mu \mathrm{~g}$ peptide in $100 \mu \mathrm{TBS}$ for 6 hours at $4^{\circ} \mathrm{C}$., then centrifuged at $10,000 \times \mathrm{g}$ for 20 min . The supernatant was carefully removed and used to probe Western blots. Western blot controls include probing blots with secondary antibody alone, and peptide block of primary antibody. In the case of heart lysates, a lane containing HERGla/lb cell membrane preparation was included as a positive control.

Co-immunoprecipitation. Membrane lysates (cell lines: $100-200 \mu \mathrm{~g} /$ reaction; heart lysates: $500-1000 \mu \mathrm{~g} /$ reaction) in 1 ml TBS ($150 \mathrm{mM} \mathrm{NaCl}, 25 \mathrm{mM}$ Tris-HCl, pH 7.4) were cleared with $50 \mu 1$ Protein A or G sepharose beads (Amersham, Palatine, I11.) on immunoprecipitating (IP) antibody; Protein A was used for rabbit and Protein G for goat IP antibodies. Cleared lysates were incubated with antibody (anti-ERG1b at $1 / 100$ or $\mathrm{N}-20$ at $1 / 20$) on a rotating platform for 3-16 hours at $4^{\circ} \mathrm{C} .50 \mu \mathrm{I}$ Protein A or G coupled beads were added and samples were incubated at $4^{\circ} \mathrm{C}$. for an additional $1-3 \mathrm{~h}$. Beads were collected by centrifugation at $10,000 \times \mathrm{g}$, and washed three times with $150 \mathrm{mMNaCl}, 25 \mathrm{mM}$ Tris- HCl , pH 7.4, 5 mM NaEDTA, $1 \%(\mathrm{v} / \mathrm{v})$ Trition X-100, followed by one wash with $150 \mathrm{mM} \mathrm{NaCl}, 25 \mathrm{mM}$ Tris- $\mathrm{HCl}, \mathrm{pH} 7.4$. Proteins were eluted with $200 \mathrm{ng} / \mathrm{ml}$ antibody-specific peptide for 1 hour at $4^{\circ} \mathrm{C}$. Samples were centrifuged at $10,000 \times \mathrm{g}$ and the supernatant was collected. $100 \mu \mathrm{LSB}(25 \mathrm{mM}$ Tris$\mathrm{HCl}, \mathrm{pH} 6.8,2 \% \mathrm{v} / \mathrm{v}$ sodium dodecylsulfate, 10% glycerol) was added to the beads to elute any proteins that remained bound. Additional controls included lysates processed without antibody. Eluted proteins were Western blotted as described above.

Immunohistochemistry. Isolated canine myocytes were fixed in 2% paraformaldehyde-PBS, pH 7.4 for 10 minutes at room temperature, and were washed $3 \times$ in PBS (pH 7.4). Myocytes were then either stored at $4^{\circ} \mathrm{C}$. (for up to 8 weeks) or processed immediately. Myocytes were washed once in PBS (pH 7.4) $+1 \%$ Triton $\mathrm{X}-100$, and permneabilized in PBS
(pH 7.4) $+0.5 \%$ Triton $\mathrm{X}-100$ for 10 minutes at room temperature followed by incubation in 0.75% glycine-PBS (pH 7.4) for 10 minutes at room temperature to quench any free aldehydes, and incubation in blocking buffer (PBS, $\mathrm{pH} 7.4,+0.1 \%$ Tween $-20+10 \%$ donkey serum $+2 \%$ BSA) for 2 hours at $4^{\circ} \mathrm{C}$., with rotation. Cells were washed $3 \times$ with $\mathrm{PBS}(\mathrm{pH} 7.4)+0.1 \%$ Tween-20, and divided into 0.5 ml aliquots. Each myocyte aliquot was incubated overnight at $4^{\circ} \mathrm{C}$. in diluted primary antibody. ERG1b antibodies were diluted 1:1000, ERG1a antibodies ($\mathrm{N}-20$), 1:10, and myosin binding protein C antibodies, 1:500. Myocytes were washed 3×1 hour in PBS (pH $7.4)+0.1 \%$ Tween- 20 . Secondary antibodies were diluted in PBS (pH 7.4) $+0.1 \%$ Tween $-20+5 \%$ BSA, and spun to remove any aggregates. Myocytes were suspended in 0.5 ml of diluted secondary antibody and incubated in the dark 2 hours at room temperature with rotation. Donkey anti-rabbit Alexa 488 and donkey anti-goat Alexa 568 antibodies were diluted 1:1000. Myocytes were washed briefly $3 \times$ with PBS (pH $7.4)+0.1 \%$ Tween- 20 followed by two 1 hour washes with PBS, pH 7.4 and were stored at $4^{\circ} \mathrm{C}$. until viewed on a Zeiss Axiovert 200 with a $63 \times$ objective. Optical sectioning was accomplished using the Apotome, and 3D rendering done within Axiovision software. Fluorescent excitation-emission filter set for Alexa 488 (excitation 450-490 nm: emission $515-565 \mathrm{~nm}$) and Alexa 568 (excitation $500-639 \mathrm{~nm}$, emission $560-700 \mathrm{~nm}$) do not overlap. Species specificity of secondary antibodies was confirmed by incubating cells probed with one primary with secondary antibody raised against the other species. No signal was detected demonstrating each secondary is species specific. Secondary alone controls were also used to ensure signal was specific.

Results

On a Western blot of rat heart tissue, the ERG-KA antibody identified three bands at 160,120 , and 95 kD . The two higher molecular mass bands are consistent in size with maturely glycosylated and unglycosylated rat ERG1a, respectively. The 95 kD band is consistent in size with ERGlb protein produced in heterologous expression systems (see below) but had not been previously observed in native tissue. The 95 kD band cannot represent ERG-USO, another HERG1 transcript that produces a protein of approximately the same size, since ERG-USO does not contain the C terminal sequence against which the ERG-KA antibody was raised.

To test the hypothesis that the 95 kD band represents ERG1b, Western blots of membrane proteins prepared from HEK-293 cells stably expressing HERG1a and HERG1b were evaluated with the ERG1a- and ERG1b N termini-specific antibodies. The ERG-KA antibody recognized bands at 155 and 135 kD , consistent with previously published results identifying these bands as mature and immature HERG1 glycoforms, respectively. As expected, blots probed with the ERG1a-specific antibody recognized the 155 and 135 kD bands but not the three lower-mass bands. The 155 and 135 kD bands were eliminated upon incubation of the ERGla antisera with the antigenic HERG1a peptide prior to probing the blots. Notably, cells expressing HERG1a alone produced only the 155 and 135 kD bands, representing the mature and immature HERG1a species, respectively.
ERG-KA also recognized three lower molecular mass bands at 95,85 and 80 kD . The ERG1b-specific antibody recognized the 95,85 , and 80 kD bands but not the two higher-mass HERG1a bands. These bands were similarly eliminated by preincubation of the antisera with the antigenic HERG1b peptide. These data show that ERG-KA antisera
recognize both HERG1a and HERG1b isoforms, and that ERG1a and HERGlb antisera are specific for their corresponding isoforms.

Membrane proteins from stable HEK-293 HERGla/lb cell lines were incubated with glycosidases to determine if the multiple HERG1b bands on Western blots correspond to different glycoforms, as shown previously for the HERG1a 155 and 135 kD bands. Removing all glycans from the HERG1b proteins by incubating membrane preparations with PNGase F reduced the higher molecular mass HERG1b species to a single 80 kD band. Digestion with Endoglycosidase H, which removes only glycans that are attached in the ER but not yet processed in the Golgi, reduced the 85 kD band to 80 kD but left the 95 kD band unaltered. Thus, the 95 kD band represents the maturely glycosylated (Golgi-processed) HERG1b isoform, the 85 kD band the core glycosylated, ER-retained form, and the 80 kD band the unglycosylated form. To determine if the mature HERG1b glycoform is expressed on the cell surface, where it could contribute to HERG1 currents, surface proteins were biotinylated prior to cell lysis. Biotinylated proteins were affinity purified with streptavidin beads, Western blotted, and probed with ERG-KA antisera. Like HERG1a, only the maturely glycosylated HERG1b (95 kD) protein band was biotinylated, showing that it is expressed on the cell surface in HEK-293 cells.

In Western blots from two separate human ventricular membrane preparations, the ERG-KA antibody revealed bands at $140,120,94$ and 83 kD . The 140 and 120 kD bands are consistent with previous reports from human tissue and represent the maturely glycosylated and unglycosylated HERG1a, respectively. The HERG1b-specific antibody recognized the 94 and 83 kD bands, demonstrating that ERG1b protein is expressed in human ventricle.

ERG1b was also observed in Western blots of canine ventricular tissue. There the ERG-KA antibody consistently recognized proteins at $160-165$ and $90-95 \mathrm{kD}$ and less consistently at 140-145, 115-125 and 80-85 kD. High molecular weight bands at 165 and 140 kD were recognized by both ERG-KA and ERGla antibodies and thus represent ERGla isoforms. The ERGlb antibody recognized the bands at 95 and 83 kD , which were also recognized by ERG-KA, demonstrating that these bands represent ERG1b isoforms. These data show conclusively both ERG1a and ERG1b proteins are expressed within the ventricle across a range of mammalian species.

The antibodies were also characterized by immunocytochemistry using confocal microscopy. The HERG-KA antibody detected HERG1a and HERG1b with a very high sensitivity and little background. The HERG1b-specific antibody stained cells expressing HERGlb but not those expressing HERGla. The ERG1a antibody gave a high background in immunocytochemistry.

Co-immunoprecipitation Evidence for of HERG1a and HERG1b Heteromerization in Animal Tissue and in HEK293 Cells

Immunoprecipitation studies confirmed that HERG1a and HERG1b co-assemble in heterologous expression systems and in animal tissue. Bidirectional co-immunoprecipitations were carried out in four separate canine cardiac membrane preparations to confirm in vivo assembly. Extracts of fresh, solubilized canine heart tissue were incubated with the HERG1b-specific antibody conjugated to sepharose beads. The beads were concentrated by centrifugation and washed, and the bound proteins were eluted, size-fractionated by SDS-PAGE and transferred to PVDF membrane. At least two membranes were prepared for each eluate. One was probed with the HERG1b-specific antibody to confirm HERG1b
immunoprecipitation. The second blot probed with the ERG1a-specific antibody showed HERG1a mature bands, demonstrating HERG1a associates with HERG1b in vivo. The immunoprecipitated proteins were visualized with the HERG-KA antibody, identifying both the precipitating and the associating subunits. The ERG1a-specific antibody immunoprecipitates both mature and immature HERG1a, and co-immunoprecipitates HERG1b. Interestingly, the ERGla antibody enriched for the mature HERGlb species, relative to its abundance in lysate. Signals were visualized on blots using ECL (Amersham) chemiluminescent detection. The converse IP experiment using bead-bound ERG1a-specific antibody was run to confirm the first IP results. A noantibody, bead-only control was included in each immunoprecipitation experiment to control for nonspecific precipitation.
Similar results were obtained from one human myocyte preparation immunoprecipitated with the ERG1a specific antibody. These data show that HERG1a and HERG1b proteins associate in mammalian ventricular myocytes in vivo.

To confirm that ERG1a and HERG1b isoforms co-assemble to form heteromeric channels in native tissues, we demonstrated that both ERG1a and ERG1b isoforms are present in rat and canine heart lysates, and that they can be visualized in confocal immunofluorescence microscopy images as puncta along the myocyte sarcolemma, characteristic of a T-tubular distribution. Localization of ERG1a and ERG1b to T-tubular structures in canine ventricular myocytes is consistent with electron microscopy studies in rat myocytes showing ERG1 protein predominantly localized to the T-tubules, where it could regulate action potential duration at the site of excitation-contraction coupling. The signal is similar for both fixed and live cells. No signal was observed when probed only with the secondary antibody. These data suggests that both subunits express at the surface membrane in a similar pattern.
To characterize ERG1 localization more precisely, we stained myocytes concurrently with ERG1a and Myosin binding protein C (MyBP-C) antisera. Three-dimensional images were rendered from a stack of deconvolved twodimensional immunofluorescent images. MyBP-C signal, in green, appeared as a repeating pattern of doublets separated by regions devoid of fluorescence that span the cell's width. MyBP-C signal localized to the myosin-containing sarcomere A-band; the unstained areas, between doublets, represent M-lines. ERG1a fluorescent signal, shown in red, was seen in I-bands, adjacent to A-bands. Both Z-lines and T-tubules were located in the I-band. The punctate red ERG1a signal extended in columns from the cell surface to the interior, as expected of aT-tubular-restricted protein, where it borders the green MyBP-C signal. These data indicate ERG1 signal in canine myocytes is consistent with a T-tubular distribution.
Co-assembly of HERG1a and HERG1b subunits in stably transfected cell lines.

HERG1a and HERG1b subunits can be co-immunoprecipitated by antibodies specific to either ERG1a or ERG1b subunits from HEK-293 cells. Membrane currents resulting from the co-assembly of these two subunits display characteristic $\mathrm{I}_{K r}$ current profile and sensitivity to E-4031 and antiarrhythmic drug quinidine.
FIG. 2 illustrates an overlay of normalized currents recorded from HEK-293 cells expressing HERG1a, HERG1b and both HERG1a/1b. The current of the cells that express HERG1a and HERG1b has the characteristic electrophysiological properties of an $\mathrm{I}_{K r}$ current.

The present invention is not intended to be limited to the foregoing embodiments, but rather to encompass all such modifications and variations as come within the scope of the appended claims.

LITERATURE CITED AND INCORPORATED BY REFERENCE AS IF SET FORTH HEREIN IN ITS ENTIRETY

Abbott, G W, Sesti F, Splawski I, Buck M E, Lehmann M H, Timothy K W, Keating M T, Goldstein S A (1999) MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 97:175-187
Brette, F., and Orchard, C. (2003) Circ Res 92, 1182-1192
Chen, J., Zou, A., Splawski, I., Keating, M. T., and San- 1 guinetti, M. C. (1999) J Biol Chem 274, 10113-10118
Christie, M J, North R A, Osborne P B, Douglass J, Adelman J P (1990) Heteropolymeric potassium channels expressed in Xenopus oocytes from cloned subunits. Neuron 4:405411.

Craig, R., and Offer, G. (1976) Proc R Soc Lond B Biol Sci 192, 451-461
Crociani, O, Guasti L, Balzi M, Becchetti A, Wanke E, Olivotto M, Wymore R S, Arcangeli A (2003) Cell cycledependent expression of HERG1 and HERG1B isoforms in tumor cells. J. Biol. Chem. 278: 2947-2955.
Cui, J, Melman Y, Palma E, Fishman G I, McDonald T V (2000) Cyclic AMP regulates the HERG K(+) channel by dual pathways. Curr Biol 10:671-674.
Curran, M E, Splawski I, Timothy K W, Vincent G M, Green E D, Keating M T (1995) A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80:795-803.
Delisle, B. P., Anderson, C. L., Balijepalli, R. C., Anson, B. D., Kamp, T. J., and January, C. T. (2003) J Biol Chem 278, 35749-35754
Deutsch, C (2002) Potassium channel ontogeny. Annu Rev Physiol 64:19-46.
Ellgaard, L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4:181-191.
England, S K, Uebele V N, Shear H, Kodali J, Bennett P B, Tamkun M M (1995) Characterization of a voltage-gated $\mathrm{K}+$ channel beta subunit expressed in human heart. Proc Nat1 Acad Sci U S A 92:6309-6313.
Ficker, E K, Thomas D, Viswanathan P, Rudy Y, Brown A M (2000) Rescue of a misprocessed mutant HERG channel linked to hereditary long QT syndrome. Biophysical Journal 78:342A.
Finley, M. R., Li, Y., Hua, F., Lillich, J., Mitchell, K. E., Ganta, S., Gilmour, R. F., and Freeman, L. C. (2002) AmJ Physiol 283, H126-H138
Gossen, M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766-1769.
Gulbis, J M, Zhou M, Mann S, MacKinnon R (2000) Structure of the cytoplasmic beta subunit-T1 assembly of volt-age-dependent K+ channels. Science 289:123-127.
Guo, W, Li H, Aimond F, Johns D C, Rhodes K J, Trimmer J S, Nerbonne J M (2002) Role of heteromultimers in the generation of myocardial transient outward $\mathrm{K}+$ currents. Circ Res 90:586-593.
Harris, S. P., Bartley, C. R., Hacker, T. A., McDonald, K. S., Douglas, P. S., Greaser, M. L., Powers, P. A., and Moss, R. L. (2002) Circ Res 90, 594-601

He, J. Q., Conklin, M. W., Foell, J. D., Wolff, M. R., Haworth, R. A., Coronado, R., and Kamp, T. J. (2001) Cardiovascular Research 49, 298-307

Huxley, A. F., and Niedergerke, R. (1954) Nature 173, 971973
Isacoff, E Y, Jan Y N, Jan L Y (1990) Evidence for the formation of heteromultimeric potassium channels in Xenopus oocytes. Nature 345:530-534.
Ishii, M, Kurachi Y (2002) The 14-3-3 protein as a novel regulator of ion channel localisation. J Physiol 545:2.
Kagan, A, Melman Y F, Krumerman A, McDonald TV (2002) 14-3-3 amplifies and prolongs adrenergic stimulation of HERG K+ channel activity. EMBO J 21:1889-1898.
Kosolapov, A, Deutsch C (2003) Folding of the voltage-gated K+ channel T1 recognition domain. J Biol Chem 278: 4305-4313.
Kupershmidt, S, Snyders D J, Raes A, Roden D M (1998) A $\mathrm{K}+$ channel splice variant common in human heart lacks a C-terminal domain required for expression of rapidly activating delayed rectifier current. J Biol Chem 273:2723127235.

Lees-Miller, J P, Kondo C, Wang L, Duff H J (1997) Electrophysiological characterization of an alternatively processed ERG K+ channel in mouse and human hearts. Circ Res 81:719-726.
Lees-Miller, J P, Guo J, Somers J R, Roach D E, Sheldon R S, Rancourt D E, Duff H J (2003) Selective knockout of mouse ERG1 B potassium channel eliminates $\mathrm{I}(\mathrm{Kr})$ in adult ventricular myocytes and elicits episodes of abrupt sinus bradycardia. Mol Cell Biol 23:1856-1862.
Li, M, Jan Y N, Jan L Y (1992) Specification of subunit assembly by the hydrophilic amino-terminal domain of the Shaker potassium channel. Science 257:1225-1230.
Li, X, Xu J, Li M (1997) The human delta 1261 mutation of the HERG potassium channel results in a truncated protein that contains a subunit interaction domain and decreases the channel expression. J Biol Chem 272:705-708.
London, B, Aydar E, Lewarchik C, Seibel J S, January C T, Robertson G A (1998) N and C-terminal isoforms of HERG in the human heart. Biophysical J.
London, B, Trudeau M C, Newton K P, Beyer A K, Copeland N G, Gilbert D J, Jenkins N A, Satler C A, Robertson G A (1997) Two isoforms of the mouse ether-a-go-go-related gene co-assemble to form channels with properties similar to the rapidly activating component of the cardiac delayed rectifier K+ current. Circ Res 81:870-878.
Lu, J, Robinson J M, Edwards D, Deutsch C (2001) T1-T1 interactions occur in ER membranes while nascent Kv peptides are still attached to ribosomes. Biochemistry 40:10934-10946.
Larsen, L. A., Andersen, P. S., Kanters, J., Svendsen, I. H., Jacobsen, J. R., Vuust, J., Wettrell, G., Tranebjaerg, L., Bathen, J., and Christiansen, M. (2001) Clinical Chemistry 47, 1390-1395
MacKinnon, R (1991) Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350:232-235.
Mohammad, S, Zhou Z, Gong Q, January C T (1997) Blockage of the HERG human cardiac $\mathrm{K}+$ channel by the gastrointestinal prokinetic agent cisapride. Am J Physiol 273: H2534-2538.
Morais, Cabral J H, Lee A, Cohen S L, Chait B T, Li M, Mackinnon R (1998) Crystal structure and functional analysis of the HERG potassium channel N terminus: a eukaryotic PAS domain. Cell 95:649-655.
Newitt, R A, Houamed K M, Rehm H, Tempel B L (1991) Potassium channels and epilepsy: evidence that the epileptogenic toxin, dendrotoxin, binds to potassium channel proteins. Epilepsy Res Supp1 4:263-273.

O’Kelly, I, Butler M H, Zilberberg N, Goldstein S A (2002) Forward transport. 14-3-3 binding overcomes retention in endoplasmic reticulum by dibasic signals. Cell 111:577588.

Papazian, D M, Shao X M, Seoh S A, Mock A F, Huang Y, Wainstock D H (1995) Electrostatic interactions of S4 voltage sensor in Shaker K+ channel. Neuron 14:12931301.

Paulussen, A., Raes, A., Matthijs, G., Snyders, D. J., Cohen, N., and Aerssens, J. (2002) JBiol Chem 277, 48610-48616

Petcherski, A G, Kimble J (2000) LAG-3 is a putative transcriptional activator in the C. elegans Notch pathway. Nature 405:364-368.
Pond, A L, Scheve B K, Benedict A T, Petrecca K, Van Wagoner D R, Shrier A, Nerbonne J M (2000) Expression of distinct ERG proteins in rat, mouse, and human heart. Relation to functional $\mathrm{I}(\mathrm{Kr})$ channels. J Biol Chem 275: 5997-6006.
Rampe, D, Roy M L, Dennis A, Brown A M (1997) A mechanism for the proarrhythmic effects of cisapride (Propulsid): high affinity blockade of the human cardiac potassium channel HERG. FEBS Lett 417:28-32.
Rasmussen, H. B., Moller, M., Knaus, H. G., Jensen, B. S., Olesen, S. P., and Jorgensen, N. K. (2004) Am J Physiol 286, H1300-H1309
Robertson, G A (2000) LQT2: amplitude reduction and loss of selectivity in the tail that wags the HERG channel [editorial; comment]. Circ Res 86:492-493.
Roden, D M (1993) Torsade de pointes. Clin Cardiol 16:683686.

Roti Roti, EC, Myers C D, Ayers R A, Boatman DE, Delfosse S A, Chan E K, Ackerman M J, January C T, Robertson G A (2002) Interaction with GM130 during HERG ion channel trafficking. Disruption by type 2 congenital long QT syndrome mutations. Human Ether-a-go-go-Related Gene. J Biol Chem 277:47779-47785.
Roy, M, Dumaine R, Brown A M (1996) HERG, a primary human ventricular target of the nonsedating antihistamine terfenadine [see comments]. Circulation 94:817-823.
Sanguinetti, M C, Jurkiewicz N K (1990) Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 96:195-215.
Sanguinetti, M C, Jiang C, Curran M E, Keating M T (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81:299-307.
Sanguinetti, M C, Curran M E, Zou A, Shen J, Spector P S, Atkinson D L, Keating M T (1996), Co-assembly of K(V) LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 384:80-83.
Shen, N V, Pfaffinger P J (1995) Molecular recognition and assembly sequences involved in the subfamily-specific assembly of voltage-gated $\mathrm{K}+$ channel subunit proteins. Neuron 14:625-633.
Shi, W, Wymore R S, Wang H S, Pan Z, Cohen IS, McKinnon D, Dixon J E (1997) Identification of two nervous system-
specific members of the erg potassium channel gene family. J Neurosci 17:9423-9432.
Snyders, D J, Chaudhary A (1996) High affinity open channel block by dofetilide of HERG expressed in a human cell line. Mol Pharmacol 49:949-955.
Splawski, I, Tristani-Firouzi M, Lehmann M H, Sanguinetti M C, Keating M T (1997) Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat Genet 17:338-340.
Suessbrich, H, Waldegger S, Lang F, Busch A E (1996) Blockade of HERG channels expressed in Xenopus oocytes by the histamine receptor antagonists terfenadine and astemizole. FEBS Lett 385:77-80.
Thomas, D, Zhang W, Karle C A, Kathofer S, Schols W, Kubler W, Kiehn J (1999) Deletion of protein kinase A phosphorylation sites in the HERG potassium channel inhibits activation shift by protein kinase A. J Biol Chem 274:27457-27462.
Trudeau, M C, Warmke J W, Ganetzky B, Robertson G A (1995) HERG, a human inward rectifier in the voltagegated potassium channel family. Science 269:92-95.
Tu, L, Deutsch C (1999) Evidence for dimerization of dimers in K+ channel assembly. Biophys J 76:2004-2017.
Wang, J, Myers C D, Robertson GA (2000) Dynamic control of deactivation gating by a soluble amino-terminal domain in HERG K $(+)$ channels. J Gen Physiol 115:749-758.
Warmke, J W, Ganetzky B (1994) A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci U S A 91:3438-3442.
Xu, J, Yu W, Jan Y N, Jan L Y, Li M (1995) Assembly of voltage-gated potassium channels. Conserved hydrophilic motifs determine subfamily-specific interactions between the alpha-subunits. J Biol Chem 270:24761-24768.
Yang, T., Wathen, M. S., Felipe, A., Tamkun, M. M., Snyders, D. J., and Roden, D. M. (1994) Circ Res 75, 870-878

Yuan, H, Michelsen K, Schwappach B (2003) 14-3-3 dimers probe the assembly status of multimeric membrane proteins. Curr Biol 13:638-646.
Zerangue, N, Schwappach B, Jan Y N, Jan LY (1999) A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 22:537-548.
Zhou, Z, Gong Q, January C T (1999a) Correction of defective protein trafficking of a mutant HERG potassium channel in human long QT syndrome. Pharmacological and temperature effects. J Biol Chem 274:31123-31126.
Zhou, Z, Gong Q, Epstein M L, January C T (1998a) HERG channel dysfunction in human long QT syndrome. Intracellular transport and functional defects. J Biol Chem 273: 21061-21066.
Zhou, Z, Vorperian V R, Gong Q, Zhang S, January C T (1999b) Block of HERG potassium channels by the antihistamine astemizole and its metabolites desmethylastemizole and norastemizole. J Cardiovase Electrophysiol 10:836-843.
Zhou, Z, Gong Q, Ye B, Fan Z, Makielski J C, Robertson GA, January C T (1998b) Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys J 74:230-241.

TABLE 1

Nucleotide change	$\underline{\mathrm{KCNH} 2 \text { (HERG) mutations }}$					
	Mutation	Coding effect	Region	Ethnic background	Reference	More data
-	S26I	Missense	PAS domain	USA	Moss et al, 2002	
$87 \mathrm{C}>\mathrm{A}$	F29L	Missense	PAS domain	USA	Chen et al, 1999, Splawski et al, 2000	

TABLE 1-continued

Nucleotide change	KCNH2 (HERG) mutations					
	Mutation	Coding effect	Region	Ethnic background	Reference	More data
$98 \mathrm{~A}>\mathrm{C}$	N33T	Missense	PAS domain	USA	Chen et al, 1999, Splawski et al, 2000	
$132 \mathrm{C}>\mathrm{A}$	C44X	Missense	PAS domain	USA	Splawski et al, 2000	
$140 \mathrm{G}>\mathrm{T}$	G47V	Missense	PAS domain	USA	Splawski et al, 2000	
$157 \mathrm{G}>\mathrm{C}$	G53R	Missense	PAS domain	USA	Chen et al, 1999, Splawski et al, 2000	
$167 \mathrm{G}>\mathrm{A}$	R56Q	Missense	PAS domain	USA	Chen et al, 1999, Splawski et al, 2000	
$196 \mathrm{~T}>\mathrm{G}$	C66G	Missense	PAS domain	USA	Chen et al, 1999, Splawski et al, 2000	
$209 \mathrm{~A}>\mathrm{G}$	H70R	Missense	PAS domain	USA	Chen et al, 1999, Splawski et al, 2000	
$215 \mathrm{C}>\mathrm{A}$	P72Q	Missense	PAS domain	USA	Splawski et al, 2000	
221-251del	31 bp deletion	Frameshift	PAS domain	USA	Splawski et al, 2000	
234-250dup	16 bp duplication	Frameshift	PAS domain	USA	Splawski et al, 2000	
-	A78P	Missense	PAS domain	USA	Moss et al, 2002	
$241 \mathrm{C}>\mathrm{T}$	Q81X	Nonsense	Pas domain	USA	Splawski et al, 2000	
244-252 ins9	82-84insIAQ	Duplication	PASdomain	Da	Larsen et al, 2001	
-	fs83/37aa	Frameshift	PAS domain	USA	Moss et al, 2002	
$257 \mathrm{G}>\mathrm{T}$	L86R	Missense	PAS domain	USA	Chen et al, 1999, Splawski et al, 2000	
$260 \mathrm{~T}>\mathrm{C}$	L87P	Missense	PAS domain	Du	Jongbloed et al, 2002	
$287 \mathrm{~T}>\mathrm{C}$	196T	Missense	PASdomain	Da	Larsen et al, 2001	
296A > C	Y99S	Missense	PAS domain	Du	Jongbloed et al, 2002	
$391 \mathrm{~A}>\mathrm{G}$	K101E	Missense	PASdomain	Da	Larsen et al, 2001	
-	M124R	Missense	-	USA	Moss et al, 2002	
422 insC	1 bp insertion	Frameshift	PAS-S1	USA	Splawski et al, 2000	
453 insC	1 bp insertion	Frameshift	PAS-S1	USA	Splawski et al, 2000	
453 delC	1 bp deletion	Frameshift	PAS-S1	Fi	Swan et al, 1999, Lätinen et al, 2000	
$526 \mathrm{C}>\mathrm{T}$	R176W	Missense	PAS-S1	Fi	$\begin{aligned} & \text { Swan et al, 1999, Lätinen et al, } \\ & 2000 \end{aligned}$	
558-600dup	$42 \mathrm{bp}$	Frameshift	PAS-S1	Mediteranean	Hoorntje et al, 1999	
$\begin{aligned} & 582-587 \\ & \text { delCCGTG } \end{aligned}$	G192fs 328	Deletion	PAS-S1	Du	Jongbloed et al, 2002	
724insC	1 bp insertion	Frameshift	PAS-S1	USA	Splawski et al, 2000	
885 delC	1 bp insertion	Frameshift	PAS-S1	USA	Splawski et al, 2000	
-	FsV295/63aa	Frameshift	PAS-S1	USA	Moss et al, 2002	
$934 \mathrm{C}>\mathrm{T}$	R312C	Missense	PAS-S1	USA	Splawski et al, 2000	
$1039 \mathrm{G}>\mathrm{A}$	P347S	Missense	PAS-S1	USA	Splawski et al, 2000	
$1039 \mathrm{C}>\mathrm{T}$	P347S	Missense	PAS-S1	Du	Jongbloed et al, 2002	
$1096 \mathrm{C}>\mathrm{T}$	R366X	Nonsense	PAS-S1	Da	Larsen et al, 2001	
-	Q376-	Splice site	PAS-S1	USa	Moss et al, 2002	
$1128 \mathrm{G}>\mathrm{A}$	-	Splice site	PAS-S1	USA	Splawski et al, 2000	
$1129-2 \mathrm{G}>\mathrm{A}$	-	Splice site	PAS-S1	USA	Splawski et al, 2000	
$1199 \mathrm{~T}>\mathrm{A}$	I100N	Missense	S1	Da	Larsen et al, 2001	
1261 delA	1 bp deletion	Frameshift	S1	It	Curran et al, 1995	
$1283 \mathrm{C}>\mathrm{A}$	S428X	Nonsense	S1-S2	It	Priori et al, 1999	
-	S428L	Missense	S1-S2	USA	Moss et al, 2002	
$1307 \mathrm{C}>\mathrm{T}$	T436M	Missense	S1-S2	It	Priori et al, 1999	
$1341 \mathrm{C}>\mathrm{A}$	Y447X	Nonsense	S1-S2	Du	Jongbloed et al, 2002	
$1352 \mathrm{C}>\mathrm{T}$	P451L	Missense	S2	Fi	Lä"tinen et al, 2000	
$1408 \mathrm{~A}>\mathrm{G}$	N470D	Missense	S2	Me, Ge, Eng, Da	Curran et al, 1995	
$1421 \mathrm{C}>\mathrm{T}$	T474I	Missense	S2-S3	Ja	Tanaka et al, 1997	
$1479 \mathrm{C}>\mathrm{G}$	Y493X	Nonsense	S2-S3	Ja	Itoh et al, 1998	
1496-1523dle	I500-F508del	Deletion	S3	Me, Ge, Eng, Da	Curran et al, 1995	
$1501 \mathrm{~A}>\mathrm{G}$	D501N	Missense	S3	Du	Jongbloed et al, 2002	

TABLE 1-continued

Nucleotide change	KCNH2 (HERG) mutations					
	Mutation	Coding effect	Region	Ethnic background	Reference	More data
$1592 \mathrm{G}>\mathrm{A}$	R531Q	Missense	S3	USA	Splawski et al, 2000	
-	L552S	Missense	S3	USA	Moss et al, 2002	
$1600 \mathrm{C}>\mathrm{T}$	R635C	Missense	S4	Ja	Itoh et al, 1998, Nakajima et al, 1999	
1631delAG	2 bp deletion	frameshift	S4-S5	Fi	Wsan et al, 1999, Lätinen et al, 2000	
$1655 \mathrm{~T}>\mathrm{C}$	L552S	Missense	S5	Fi, USA	Swan et al, 1999, Splawski et al, 2000	
$1672 \mathrm{G}>\mathrm{C}$	A558P	Missense	S5	Du	Jongbloed et al, 1999	
$1681 \mathrm{G}>\mathrm{A}$	A561T	Misense	S5	Fr, USA	Dausse et al, 1996, Splawski et al, 2000	
$1682 \mathrm{C}>\mathrm{T}$	A561V	Missense	S5	Me, Ge, Emg, Da, Ja, USA	Curran et al, 1995, Tanaka et al, 1997, Priori et al, 1999, Larsen et al, unpublished, Splawski et al, 2000	
$1691 \mathrm{~T}>\mathrm{C}$	L564P	Missense	S5	Fr, Ca	St-Pierre et al, 2000	
$1705 \mathrm{~T}>\mathrm{C}$	Y569H	Missense	S5	Fi	Swan et al, 1999, Lätinen et al, 2000	
$1714 \mathrm{G}>\mathrm{C}$	G572R	Missense	S5-pore	Da	Larsen et al, 2000	
$1714 \mathrm{G}>\mathrm{T}$	G572C	Missense	S5-pore	Du	Jongbloed et al, 1999	
$1750 \mathrm{G}>\mathrm{A}$	W585C	Missense	S5-pore	Fi, USA	swan et al, 1999, Splawski et al, 2000 , Lätinen et al, 2000	
1755G>T	W585C	Missense	S5-pore	USA	Splawski et al, 2000	
$1762 \mathrm{~A}>\mathrm{G}$	N588D	Missense	S5-pore	USA	Splawski et al, 2000	
$1778 \mathrm{~T}>\mathrm{C}$	I593B	Missense	S5-pore	Eng?, USA	Benson et al, 1996, Splawski et al, 2000	
$1778 \mathrm{~T}>\mathrm{G}$	I593G	Missense	S5-pore	USA	Benson et al, 1996, Splawski et al, 2000	
-	1593X	Nonsense	S5-pore	USA	Moss et al, 2002	
	P596L	Missense	S5-pore	USA	Moss et al, 2002	
$1801 \mathrm{G}>\mathrm{A}$	G601S	Missense	S5-pore	Ja, Fi	Akimoto et al, 1997, Swan et al, 1999, Lätinen et al, 2000	
$1810 \mathrm{G}>\mathrm{A}$	G604S	Missense	S5-pore	Du, USA	Jongbloed et al, 1999, Splawski et al, 2000	
$1825 \mathrm{G}>\mathrm{A}$	D609N	Missense	S5-pore	USA	Splawski et al, 2000	
$1831 \mathrm{~T}>\mathrm{C}$	Y611H	Missense	S5-pore	Ja	Tanaka et al, 1997	
$1833 \mathrm{~T}>\mathrm{A} / \mathrm{G}$	Y611X	Nonsense	S5-pore	Ge	Schultze-Bahr et al, 1995	
$1834 \mathrm{G}>\mathrm{T}$	V612L	Missense	S5-pore	Ir, It, Du	Satler et al, 1998	
$1838 \mathrm{C}>\mathrm{T}$	T613M	Missense	S5-Pore	Du, Fi	Jongbloed et al, 1999, Lätinen et al, 2000	
$1842 \mathrm{C}>\mathrm{T}$	A614V	Missense	Pore	$\mathrm{Ja}, \mathrm{Ir}, \mathrm{Cz}$, Eng, Fr, Fi, It, Tw	Tanaka et al, 1997, Satler et al, 1998, Splawski er al, 1998, Priori et al, 1999, Lee-Chen et al, 1999	
1843G $>$	L615V	Missense	Pore	USA	Splawski et al, 2000	
$1862 \mathrm{G}>\mathrm{A}$	S621N	Missense	Pore	Da	Larsen et al, 2001	
$1876 \mathrm{G}>\mathrm{A}$	G626S	Missense	Pore	USA	Splawski et al, 2000	
$1877 \mathrm{G}>\mathrm{T}$	G626V	Missense	pore	Ge	Jahr et al, 2000	
$1881 \mathrm{G}>\mathrm{C}$	F627L	Missense	Pore	USA	splawski et al, 2000	
$1882 \mathrm{G}>\mathrm{A}$	G628S	Missense	Pore	Me, Ge, Eng, Da	Curran et al, 1995, Splawski et al, 2000	
$1885 \mathrm{~A}>\mathrm{G}$	N629D	Missense	Pore	$\mathrm{Ge}, \mathrm{Ir}, \mathrm{Na}$	Satler et al, 1998, Lees-Miller et al, 2000	
$1886 \mathrm{~A}>\mathrm{G}$	N629S	Missense	Pore	Unknown, Da	Satler et al, 1998, Larsen et al, unpublished	
-	N629K	Missense	Pore	Ja	Yoshida et al, 1999	
1888G $>$ C	V630L	Missense	Pore	Ja	Tanaka et al, 1997	
$1889 \mathrm{~T}>\mathrm{C}$	V630A	Missense	Pore	USA	Splawski et al, 1998	
$1894 \mathrm{C}>\mathrm{T}$	P632S	Missense	Pore	USA	Splawski et al, 2000	
$1898 \mathrm{~A}>\mathrm{G}$	N633S	Missense	Pore	Eng	Satler et al, 1998	
$1912 \mathrm{~A}>\mathrm{G}$	K638E	Missense	S6	USA	Splawski et al, 2000	
1913-15del	K638del	Deletion	S6	USA	Splawski et al, 2000	
$1920 \mathrm{C}>\mathrm{A}$	F640L	Missense	S6	Du	Jongbloed et al, 1999	
1933 A > T	M645L	Missense	S6	USA	Splawski et al, 2000	
$\begin{aligned} & 1951-1952 \\ & \text { delAT } \end{aligned}$	2 bp deletion	Frameshift	S6	Ja	Itoh et al, 1998	
$2001 \mathrm{C}>\mathrm{A}$	Y667X	Nonsense	S6	Be	Paulussen et al, 2000	
2044G>T	E682X	Nonsense	S6	USA	Splawski et al, 2000	
$2092 \mathrm{G}>\mathrm{T}$	E698X	Nonsense	S6	Du	Jongbloed et al, 2002	
$2173 \mathrm{C}>\mathrm{T}$	Q725X	Nonsense	S6	Ja	Itoh et al, 1998	
2218insT	1 bp insertion	Frameshift	S6--	USA	Splawski et al, 2000	
$2232 \mathrm{C}>\mathrm{T}$	R744X	Nonsense	S6--	Tw	Ko et al, 2001	
$2254 \mathrm{C}>\mathrm{T}$	R752W	Nonsense	S6--	USA	Splawski et al, 2000, Ficher e al, 2000	
$2350 \mathrm{C}>\mathrm{T}$	R784W	Missense	S6--	USA	Yang et al, 2002	

TABLE 1-continued

Nucleotide change	Mutation	Coding effect	KCNH2 (HERG) mutations		Reference	More data
			Region	Ethnic background		
$\begin{aligned} & 2356-2376 \\ & \text { dup } \end{aligned}$	31 bp duplication	Frameshift	CNB domain	Ja	Itoh et al, 1998	
2395delC	1 bp deletion	Frameshift	CNB domain	USA	Splawski et al, 2000	
$2398+1 \mathrm{G}>\mathrm{C}$	IVS9 DS + 1	Splice mutation	CNB domain	USA	Curran et al, 1995	
$2414 \mathrm{~T}>\mathrm{C}$	F805S	Missense	CNB domain	USA	Splawski et al, 2000	
$2414 \mathrm{~T}>\mathrm{G}$	F805C	Missense	CNB domain	USA	Splawski et al, 2000	
$2453 \mathrm{C}>\mathrm{T}$	S818L	Missense	CNB domain	Fr	Berthet et al, 1999	
$2464 \mathrm{G}>\mathrm{A}$	V822M	Missense	CNB domain	Ir, Fr	Satler etal, 1996, Berthet et al,	
$2467 \mathrm{C}>\mathrm{T}$	R823W	Missense	CNB domain	USA	Spalwski et al, 2000	
2471insG	R823fs828	Deletion	CNB domain	Du	Jongbloed et al, 2000	
$2582 \mathrm{~A}>\mathrm{T}$	N861I	Missense	C- terminal	USA	Splawski et al, 2000	
$2592+1 \mathrm{G}>\mathrm{A}$	IVS1 + DS + 1	Frameshift	Cterminal	Be, USA	Berthet et al, 1999 Splawski et al, 2000	
2616delC	P872fs877	Deletion	Cterminal	Du	Jongbloed et al, 2002	
2660delG	1 bp deletion	Frameshift	Ctermnal	USA	Splawski et al, 2000	
$2750 \mathrm{C}>\mathrm{T}$	R917L	Missense	Cterminal	USA	Splawski et al, 2000	
2762delA	1 bP deletion	Frameshift	C- terminal	USA	Splawski et al, 2000	
$2764 \mathrm{C}>\mathrm{T}$	R922W	Missense	C- terminal	USA	Splawski et al, 2000	
2775insG	1 bp insertion	Frameshift	Cterminal	USA	Splawski et al, 2000	
2906delG	1 bp deletion	Frameshift	C- terminal	USA	Splawski et al, 2000	
-	P968/4aa	Frameshift	Cterminal	USA	Moss et al, 2002	
2959delCT	2 bp deletion	Frameshift	C- terminal	USA	Splawski et al, 2000	
-	W1001X	Nonsense	Cterminal	USA	Moss et al, 2002	
$3040 \mathrm{C}>\mathrm{T}$	R1014X	Nonsense	Cterminal	USA	Splawski et al, 2000	
3094delC	1 bp deletion	Frameshift	Cterminal	USA	Splawski et al, 2000	
3108insG	-	Frameshift	Cterminal	Sp	Berthet et al, 1999	
3303insC	1 bp insertion	Frameshift	C- terminal ninoacid	USA olymorphism	Splawski et al, 2000	
2690 A $>\mathrm{C}$	K897T	-	-	-	Iwasa et al, 2000, Lätinen et al, 2000, Yang et al, 2002	
-	R1047L	-	-	-	Larsen et al, 2001	
		Single nucleotide polymorphisms (SNPs)				
IVS2 $+27 \mathrm{G}>\mathrm{C}$	Intron variant	SNP	-	-	Jongbloed et al, 2002	
IVS8-61 A/G	Intron variant	SNP	-	-	Larsen et al, 2001	
IVS13 + 12	Intron variant	SNP	-	-	Larsen et al, 2001	
C/A						
IVS13 + 22	Intron variant	SNP	-	-	Larsen et al, 2001	
A/G						
$1467 \mathrm{C}>\mathrm{T}$	I4891	SNP	-	-	Akimoto et al, 1997	
$1539 \mathrm{C}>\mathrm{T}$	F513F	SNP	-	-	Akimoto et al, 1997	
$1692 \mathrm{~A}>\mathrm{G}$	L564L	SNP	-	-	Akimoto et al, 1997	
$1956 \mathrm{~T}>\mathrm{C}$	Y652Y	SNP	-	-	Larsen et al, 1999	
$2965+22$	Intronic	-	-	-	Iwasa et al, 2000	
A $>\mathrm{G}$	variant					

[^0]

- continued

- continued

ccetgggcet taggcacctc aaggactttt ctgctattta ctgctcttat tgttaaggat	3823
aataattaag gatcatatga ataattaatg aagatgctga tgactatgaa taataaataa	3883
thatcctgag gagaaaa	3900

$<210>$ SEQ ID NO 2
$<211>$ LENGTH: 1159
$<212>$ TYPE PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 2

- continued

$<210>$ SEQ ID NO 3
$<211>$ LENGTH: 3191
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Homo sapiens
$<220>$ FEATURE:
$<221>$ NAME/KEY: CDS
$<222>$ LOCATION: (325) .. (2784)
$<400>$ SEQUENCE : 3

- continued

tgttaaggat aataattaag gatcatatga ataattaatg aagatgctga tgactatgaa	3164
taataataa ttatcctgag gagaaaa	3191

$<210>$ SEQ ID NO 4
$<211>$ LENGTH: 819
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE : 4

Val Ala Gln Glu Val Leu Ser Leu Gly Ala Asp Val Leu Pro Glu Tyr
Lys Leu Gln Ala Pro Arg Ile His Arg Trp Thr Ile Leu His Tyr Ser

Pro Phe Lys Ala Val Trp Asp Trp Leu Ile Leu Leu Leu Val Ile Tyr	
65	70

Thr Ala Val Phe Thr Pro Tyr Ser Ala Ala Phe Leu Leu Lys Glu Thr
85
Glu Glu Gly Pro Pro Ala Thr Glu Cys Gly Tyr Ala Cys Gln Pro Leu
Ala Val Val Asp Leu Ile Val Asp Ile Met Phe Ile Val Asp Ile Leu $115-120 \quad 125$
Ile Asn Phe Arg Thr Thr Tyr Val Asn Ala Asn Glu Glu Val Val Ser
130
135

His Pro Gly Arg Ile Ala Val His Tyr Phe Lys Gly Trp Phe Leu Ile	
145	150
155	160

Asp Met Val Ala Ala Ile Pro Phe Asp Leu Leu Ile Phe Gly Ser Gly
165
Ser Glu Glu Leu Ile Gly Leu Leu Lys Thr Ala Arg Leu Leu Arg Leu

Ala Ile Ile Gln Arg Leu Tyr Ser Gly Thr Ala Arg Tyr His Thr Gln | 330 |
| ---: |
| 325 |

Met Leu Arg Val Arg Glu Phe Ile Arg Phe His Gln Ile Pro Asn Pro
340
345

-continued

We claim:

1. A cultured mammalian cell line characterized in that cells in the line express an HERG1b subunit component comprising SEQ ID NO:4, wherein the cell line does not natively express the HERG1b subunit.
2. A cultured cell line as claimed in claim 1 further comprising an HERG1a subunit component comprising SEQ ID NO:2.
3. A cultured cell line as claimed in claim 1 wherein cells in the line comprise SEQ ID NO:3 from nucleotide 325 to nucleotide 2784.
4. A cultured cell line as claimed in claim $\mathbf{3}$ wherein the cell line further comprises SEQ ID NO:1 from nucleotide 14 to nucleotide 3493.
5. A cultured mammalian cell line that produces a membrane current, wherein cells in the line comprising a first
heterologous polynucleotide that encodes HERG1a and a second heterologous polynucleotide that encodes HERG1b, the current being characterized as exhibiting rapid inactivation, slow deactivation under a step voltage protocol and sensitivity to a methanesulfonanilide drug, wherein the first polynucleotide comprises SEQ ID NO:1 from nucleotide 14 20 to nucleotide 3493, and wherein the second polynucleotide comprises SEQ ID NO:3 from nucleotide 325 to nucleotide 2784, and wherein the cell line does not natively express the first and second heterologous polynucleotides.
6. A cultured cell line as claimed in claim 5 wherein the cell 25 line is a human cell line.
7. A cultured cell line as claimed in claim 6 wherein the human cell line is HEK-293 stably transformed with the first and second polynucleotides.

[^0]: ${ }^{1}$ Ja: Japanese, Ir: Irish, Cz: Czech, Eng: English., Ge: German, Fr: French, Fil: Filipino, Fi: Finnish, Na: Native american,
 Me. Mexican, Da: Danish, It: Italian, Du: Dutch, Sp: Spanish. Be: Belgian. Tw: Taiwanese.
 ${ }^{2}$ Region distal to $S 6$.

