
c12) United States Patent
Wood et al.

(54) ADAPTIVE CACHE COMPRESSION SYSTEM

(75) Inventors: David A. Wood, Madison, WI (US);
Alaa R. Alameldeen, Madison, WI (US)

(73) Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 257 days.

(21) Appl. No.: 11/265,975

(22) Filed:

(65)

Nov. 3, 2005

Prior Publication Data

US 2006/0101206Al May 11, 2006

Related U.S. Application Data

(60) Provisional application No. 60/625,289, filed on Nov.
5, 2004.

(51) Int. Cl.
G06F 12106 (2006.01)

(52) U.S. Cl. .. 711/118
(58) Field of Classification Search 711/122,

711/118
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,671,389 A * 9/1997 Saliba 711/111
6,324,621 B2 * 11/2001 Singh et al. 711/129
6,735,673 B2* 5/2004 Kever 711/118

10"

28 22 54
------- _____ \ --

PREDICTOR

30

I 1111111111111111 11111 111111111111111 IIIII IIIII 1111111111111111 IIII IIII IIII
US007412564B2

(10) Patent No.: US 7,412,564 B2
Aug. 12, 2008 (45) Date of Patent:

7,225,297 B2 * 5/2007 Heil 711/137
2002/0085631 Al* 7/2002 Engwer 375/240

OTHER PUBLICATIONS

Luca Benini, Davide Bruni, Alberto Macii, and Enrico Macii, Hard
ware-Assisted Data Compression for Energy Minimization in Sys
tems with Embedded Processors. In Proceedings of the IEEE 2002
Design Automation and Test in Europe, pp. 449-453, Mar. 2002.
Luca Benini, Davide Bruni, Bruno Ricco, Alberto Macii, and Enrico
Macii. An Adaptive Data Compression Scheme for Memory Traffic
Minimization in Processor-Based Systems. In Proceedings of the
IEEE International Conference on Circuits and Systems, ICCAS-02,
pp. 866-869, May 2002.
Daniel Citron and Larry Rudolph. Creating a Wider Bus Using Cach
ing Techniques. In Proceedings of the First IEEE Symposium on
High-Performance Computer Architecture, pp. 90-99, Feb. 1995.
Matthew Farrens and Arvin Park. Dynamic Base Register Caching: A
Technique for Reducing Address Bus Width. In Proceedings of the
18th Annual Internatonal Symposium on Computer Architecture, pp.
128-137, May 1991.

(Continued)

Primary Examiner-Kevin L Ellis
(74) Attorney, Agent, or Firm-Boyle Fredrickson, S.C.

(57) ABSTRACT

Data in a cache is selectively compressed based on predic
tions as to whether the benefit of compression in reducing
cache misses exceeds the cost of decompressing the com
pressed data. The prediction is based on an assessment of
actual costs and benefits for previous instruction cycles of the
same program providing dynamic and concurrent adjustment
of compression to maximize the benefits of compression in a
variety of applications.

30 Claims, 2 Drawing Sheets

12
PROCESSOR

14
L1

L2 18

16

US 7,412,564 B2
Page 2

OTHER PUBLICATIONS

Peter Franaszek, John Robinson, and Joy Thomas. Parallel Compres
sion with Cooperative Dictionary Construction. In Proceedings of the
Data Compression Conference, DCC '96, pp. 200-209, Mar. 1996.
Erik G. Hallnor and Steven K. Reinhardt. A Fully Associative Soft
ware-Managed Cache Design. In Proceedings of the 27th Annual
International Symposium on Computer Architecture, pp. 107-116,
Jun. 2000.

Erik G. Hallnor and Steven K. Reinhardt. A Compressed Memory
Hierarchy Using an Indirect Cache. Technical Report CSE-TR-488-
04, University of Michigan, Jun. 2004.

Morten Kjelso, Mark Gooch, and Simon Jones. Design and Perfor
mance of a Main Memory Hardware Data Compressor. In Proceed
ings of the 22nd EUROMICRO Conference, Sep. 1996.

* cited by examiner

U.S. Patent Aug. 12, 2008 Sheet 1 of 2

PROCESSOR

L1

PREDICTOR

L2

30 32 FIG. 1

40,44
FIG. 2

COST I
BENEFIT

LOGIC

30
46

30 38 32 36 ,
16

~

FIG. 3

US 7,412,564 B2

12

14

16

U.S. Patent Aug. 12, 2008 Sheet 2 of 2 US 7,412,564 B2

16

; 35 38
~

40a --~ A - 3 I I I I I fr r -- 34a
42 44

40b-- rn=:) B C 2 [I]

4oc-Qlcl JcJ6J I I I l<f 1

40d-- ~ID! I !41 35

¢

53

~ ------

t-
54

t-

84

FIG. 4

FIG. 5 54 t-

51

--34b

--34c

FIG. 6

t-
54 FIG. 7

86

t-

US 7,412,564 B2
1

ADAPTIVE CACHE COMPRESSION SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

2
desired cache lines and their compressed sizes (whether or
not they are compressed) allows each cache transaction to be
evaluated for the alternative cases of compression or not
compression (or different degrees of compression). An accu-

This application claims the benefit of U.S. provisional
application 60/625,289 filed Nov. 5, 2004 and hereby incor
porated by reference.

5 mulation of costs and benefits for the executing program
steers the predictor toward a more or less aggressive com
pression policy.

Specifically, the present invention provides a cache system
for use with an electronic computer having a cache memory.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with United States government
support awarded by the following agencies: NSF 0324878.
The United States has certain rights in this invention.

10 This system has a data compressor controllably compressing
data to be stored in the cache memory and a predictor com
municating with the data compressor to control compression
of the data to be stored in the cache memory according to a
predicted effect of the compression of data on a speed of

15 execution of a program using the data.

BACKGROUND OF THE INVENTION
It is thus one object of at least one embodiment of the

invention to provide a cache compression system with supe
rior performance over alternatives of always compressing
cache data and never compressing cache data. By dynami-

The present invention relates to cache memories for elec
tronic computers and, in particular, to a cache system provid
ing for compression of cache data.

20 cally adjusting compression, the present invention provides a
system that works with a variety of different types of pro-

The speed at which computers may execute a program is
constrained by the time it takes for data and instructions to be
transferred from the computer memory to the computer pro
cessor. One method of reducing this "memory latency" is 25
through the use of cache memories which are small, high
speed memories with high bandwidth connections to the pro
cessor. Data and instructions expected to be needed by the
processor are fetched from the main computer memory into
the cache memory. When the data is required by the proces- 30
sor, it is readily and quickly available from the cache memory
without the need to access the main computer memory.

A larger cache memory increases the likelihood that nec
essary data is stored in the cache memory and that the time
penalty of accessing the main computer memory can be 35

avoided. The costs oflarger cache memories, and the need to
provide a high bandwidth connection to the processor, how
ever, practically limits the size of the cache memory.

grams.
The data compressor may be switched by the predictor

between compressing or not compressing the data to be stored
in the cache. In one case, the predictor may create a prediction
value and when the prediction value is above a predetermined
threshold, the data compressor may compress the data and
when the prediction value is below the predetermined thresh-
old, the data compressor may not compress the data.

Thus it is an object of at least one embodiment of the
invention to provide a simple method of controlling the com
pressor that can be dynamically responsive to changes in the
benefits of compression.

Alternatively, the predictor may create a prediction value
and the predictor may control the data compressor to switch
between the compressing of the data and not compressing the
data to create an average compression being a semi-continu
ous function of the prediction value.

Thus it is an object of at least one embodiment of the
invention to provide for smoother control of compression that
may allow for more precise control strategies.

One method of increasing the effective storage capacity of
the cache memory, with minimal increases in the area of the 40

cache memory, is by compressing the data in the cache
memory. Unfortunately, compressing the cache data slows
access to the cache data because the data must be decom
pressed before it can be used by the processor. This decom
pression step is typically in the critical time path when data is
being requested by the processor.

Alternatively, the data compressor may be switched by the
predictor between multiple degrees of compression having

45 different latency.
Thus it is another object of at least one embodiment of the

invention to provide a method of using a range of different
compression techniques to optimize the compression of the
cache.

The predictor may compare a cost and benefit of compres
sion over a predetermined previous time.

Whether compression increases the execution speed of a
particular program will depend on whether the time savings in
reducing cache misses (where needed data is not in the cache)
compares favorably with the overhead of cache decompres- 50

sion. Generally, this will depend on the particular program
being executed and thus can help or hurt computer perfor
mance in different situations. It is thus one object of at least one embodiment of the

invention to allow prediction values to be derived from the

55
actual execution of a given program on the processor and thus
to be sensitive to changes in the efficiency of compression
during execution of the program.

SUMMARY OF THE INVENTION

The present invention provides an adaptive cache compres
sion system which changes the degree of compression of
cache data based on a dynamically updated prediction as to
whether the compression will speed the performance of 60

execution of the program. The prediction is based on an
assessment of historical compression costs and benefits from
execution of the current program and thus provides a com
pression system that works with a wide range of applications.

The ability to evaluate the costs and benefits of compres- 65

sion for a particular program, during execution of that pro
gram, relies on the insight that preserving information about

The predictor may be a counter tallying historical time
saved and lost attributable to compressed data in the cache
memory.

It is thus another object of at least one embodiment of the
invention to provide a simple method of evaluating historical
data on costs and benefits of compression.

The predictor may tally a time saved when data accessed
would not have been held in the cache but for compression,
and may tally a time lost when the data is compressed, but
would have been held in the cache regardless of compression.

US 7,412,564 B2
3

Thus it is another object of at least one embodiment of the
invention to provide an actual assessment of the effects of
compression on memory latency.

The predictor may tally a time saved when data was not in
the cache but could have been in the cache with more com
pression.

Thus it is another object of at least one embodiment of the
invention to provide a prediction that is sensitive to potential
as well as actual benefits from compression.

The cache may include a tag indicating a compressed size
of the data regardless of whether the data is compressed.

Thus it is another object of at least one embodiment of the
invention to preserve data necessary to assess the potential
effect of compression that was not performed.

The data compressor may identify common data patterns
and replace them with abbreviated patterns to compress the
data. For example, low magnitude numbers, zero values, and
repeatable data blocks may be replaced with shortened pat
terns.

It is thus an object of at least one embodiment of the
invention to provide a system that works with a variety of
different compression systems.

The system may include a second cache memory reading
from the cache memory where the cache memory. The system
may further include a victim cache holding data expelled
from the second cache.

Thus it is another object of at least one embodiment of the
invention to provide a compression system that may be
readily implemented in existing architectures and may make
use of a second cache and victim cache to decrease the
decompression burden by holding decompressed information
in a decompressed form.

These particular objects and advantages may apply to only
some embodiments falling within the claims and thus do not
define the scope of the invention.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a block diagram of a standard computer architec
ture having an Ll and L2 cache and further including a
predictor circuit, compressor, and decompressor for imple
menting adaptive cache compression per the present inven
tion;

FIG. 2 is a block diagram of the predictor circuit providing
control of the compressor and decompressor of FIG. 1 based
on information from the LRU stack and additional tag data
associated with the L2 cache;

FIG. 3 is a schematic block diagram ofa single cache set for
the L2 cache ofFIG.1 showing the additional tag data and the
expanded lines of tag memory;

FIG. 4 is a block diagram similar to FIG. 3 showing an
example cache structure used to describe operation of the
present invention;

FIG. 5 is a graph of prediction value as a function of time
which may be compared to a threshold value to provide two
levels of compression control;

FIG. 6 is a figure similar to that of FIG. 5 showing semi
continuous control of compression as a function of the mag
nitude of the predictor value; and

FIG. 7 is a figure similar to that of FIGS. 5 and 6 showing
output of the predictor when multiple different compression
algorithms are available

4
DETAILED DESCRIPTION OF THE PREFERRED

EMBODIMENT

Referring now to FIG. 1, a computer system 10 may
5 include a processor 12 operating on stored program instruc

tions and data.
The instructions and data may be provided to the processor

12 from an Ll cache 14 which may have separate sections for
instructions and data according to methods well known in the

10 art. For clarity, instructions and data will henceforth be
referred to collectively as data.

The L 1 cache may in turn receive data from the L2 cache 16
or directly from a main memory 18. The Ll cache may expel
data to a victim cache 20. The victim cache 20, in tum, may

15 expel data to the L2 cache 16 or to main memory 18.
Normally, the communication between the processor 12

and main memory 18 takes longer than the communication
between the processor 12 and the L2 cache 16. Accordingly,
the cache L2 will be loaded from main memory 18 to try and

20 reduce access time for requests by processor 12 of data from
main memory 18.

The L2 cache may include a last read unit "LRU" 30 of a
type known in the art and indicating the cache lines of cache
L2 that have been most recently requested. The LRU 30

25 provides bits associated with each cache line of the L2 cache
16 indicating the order in which they were last read. Generally
cache lines lower in order in the LRU 30 will be expelled
when new data is brought in favor of cache lines higher in that
order. The L2 cache may also include another cache replace-

30 ment algorithm of a type known in the art that is not neces
sarily LRU, yet that maintains order of replaced cache lines,
for example, an approximate LRU replacement policy or
other similar replacement algorithms known in the art.

Each of the above described processors, Ll cache 14, L2
35 cache 16 with LRU 30, victim cache 20, and main memory

18, and their operation will be understood to those of ordinary
skill in the art.

Referring still to FIG. 1, the present invention adds a cache
compression system 22 to the above-described architecture.

40 The cache compression system includes: a compressor 24, a
decompressor 26, a predictor 28 and additional compression
information data 32 in the L2 cache 16. The compressor 24 is
placed between the victim cache 20 and both of the L2 cache
16 and main memory 18, and the decompressor 26 is placed

45 between both of the main memory 18 andL2 cache and the L1
cache.

In the simplest embodiment of the invention, the decom
pressor 26 and compressor 24 use a single method of com
pression and corresponding decompression. As will be dis-

50 cussed below, however, the decompressor 26 and compressor
24 may alternatively select from multiple compression and
decompression algorithms providing for different amounts of
compression and offering different latency, being a measure
of the time or instruction cycles required for the compression

55 or decompression operation.
Referring still to FIG. 1, the compressor 24 is controlled by

the predictor 28 which may switch compressor 24 from a
compression mode to a bypass mode in which data passes
through the compressor 24 without modification. In this way,

60 data from the L2 cache may pass through the compressor 24
without modification or with compression. Likewise, data
passing from the victim cache 20 may pass through the com
pressor 24 either without modification or with compression.
Note, that the predictor 28 doesn't need to determine whether

65 to bypass the decompressor 26. Data is always decompressed
if and only if it was stored in compressed form. Thus, the
predictor 28 need only determine whether or not to compress

US 7,412,564 B2
5

data before storing it in the cache. When decompression is not
required, the decompressor 26 provides a bypass mode where
no decompression is provided and data is rapidly pass by the
decompressor 26 without modification or significant delay.

The predictor 28 receives information from the LRU 30 of
the L2 cache 16 and from the compression information data
32 added to the L2 cache 16. The compression information
data 32, as will be described below, provides an indication of
whether a cache line is compressed and the length of that
cache line if were compressed.

Generally, the predictor 28 monitors access to data of L2
cache 16 to predict whether the process of compressing and
decompressing data in the L2 cache 16, using compressors 24
and decompressor 26, will improve the execution speed of a
currently executing program. The predictor 28 switches
between storing and not storing output of the compressor 24
(that is, between compression and bypass mode) based on that
prediction to gain the benefits of compression when the pre
diction suggests that compression will not be offset by a
slowing execution speed of the program through the extra
costs of decompression.

Referring now to FIG. 3, the L2 cache may provide a data
section 36 arranged as cache lines 34a and 34b. Generally, a
cache line 34 will be loaded in a single operation from the
main memory 18. Each cache line 34 is composed of a num
ber of data segments 35 (in this case, eight data segments 35)
representing an arbitrary division of the cache line 34 into
compressible increments.

Each cache line 34 is associated with one of tags 40a-d in
the L2 cache 16. As will be understood in the art, the tags 40
hold information about the address in main memory 18 of
their corresponding cache line 34 in an address block 38.
Accordingly, when a request for data arrives from the proces
sor 12 at the L2 cache 16, the address of that data is reviewed
against the addresses stored in the address block 38 to see if
the relevant data is in cache lines 34 of the L2 cache 16. If the
requested data is not in the L2 cache 16, a miss occurs and the
data must be obtained at a greater time penalty from memory
18.

6
pgs. 184-191, October 1999; Jan-Soo Lee, Won-Kee Hong,
and Shin-Dug Kim, An On-chip Cache Compression Tech
nique to Reduce Decompression Overhead and Design Com
plexity, Journal of Systems Architecture: the EURO MICRO

5 Journal, 46(15):1365-1382, December 2000; David Chen,
Enoch Peserico, and Larry Rudolph. A Dynamically Parti
tionable Compressed Cache. In Proceedings of the Sin
gapore-MIT Alliance Symposium, January 2003; and R. E.
Kessler, The Alpha 21264 Microprocessor, IEEE Micro,

10 19(2):24-36, March/April 1999, all hereby incorporated by
reference.

Referring still to FIG. 3 as mentioned above, the present
invention adds to each tag 40a through 40d compression
information data 32. This compression information data 32

15 includes a compression state bit 42 indicating whether the
data associated with the tag 40 is compressed or uncom
pressed, and compression size bits 44 indicating the size of
the data in segments 35 if the data associated with the tag 40
were to be compressed. The compression size bits 44 provide

20 this information whether or not the data is actually com
pressed, information which may be determined only by the
compression state bit 42.

Referring now to FIGS. 1 and 2 as mentioned, the opera
tions of compression and de-compression of decompressor

25 26 and compressor 24 will take time, and thus impose a time
penalty on the access of data by processor 12 from L2 cache
16. On the other hand, compression of cache lines 34, that
allows additional lines of data to be stored in the L2 cache 16,
can decrease the number of cache misses which also carries a

30 time penalty. Whether compressing the data of the L2 cache
16, makes sense, on a line-by-line basis, is determined by a
cost-benefit logic circuitry 46 forming part of the predictor
28. This cost-benefit logic circuitry 46 receives the compres
sion state bit 42 and compression size bits 44 and the ordering

35 of cache lines 34 of the bits from the LRU 30 to evaluate the
costs and benefits of compressing the data of the L2 cache.

This evaluation, by the cost-benefit logic circuitry 46,

In the present invention, there are more tags 40 than cache 40

lines 34, accommodating the fact that the present invention
may compress multiple lines of data into fewer cache lines 34.

which will be described in detail below, can be performed
upon every request of data by the processor 12. Upon each
request, the cost-benefit logic circuitry 46 will determine
whether there was a benefit from compression of data of the
L2 cache 16, for example, if the data is only in the cache
because of compression or if the data could have been in the
cache with more compression. Likewise the cost-benefit logic

In the example structure ofL2 cache 16, four cache lines of
data can be compressed into the two cache lines 34a and 34b
as recorded by the information of four tags 40a-d. 45 circuitry 46 will determine whether there was a cost from

compression of data of the L2 cache 16 because the data
would have been in the L2 cache 16 regardless of compres
sion and yet was compressed invoking a decompression pen-

This compression will require that the L2 cache 16 incor
porates a decoupling between the tags 40a-d and the cache
lines 34 so that data associated with a given tag 40 may be
arbitrarily distributed between the cache lines 34. Techniques
for such decoupling are described generally in: Andre Seznec, 50

Decoupled Sectored Caches, IEEE Transactions on Comput
ers, 46(2): 210-215 February 1997; Andre Seznec,
Decoupled Sectored Caches, IEEE Transactions on Comput
ers, 46(2):210-215, February 1997; Erik G. Hallnor and
Steven K. Reinhardt, A Fully Associative Software-Managed 55

Cache Design, Proceedings of the 27th Annual International
Symposium on Computer Architecture, pages 107-116, June
2000; Erik G. Hallnor and Steven K. Reinhardt, A Com
pressed Memory Hierarchy using an Indirect Index Cache,
Technical Report CSE-TR-488-04, University of Michigan, 60

2004; Jang-Sao Lee, Won-Kee Hong, and Shin-Dug Kim,
Adaptive Methods to Minimize Decompression Overhead for
Compressed On-chip Cache, International Journal of Com
puters and Application, 25(2), January 2003; Jang-Sao Lee,
Won-Kee Hong, and Shin-Dug Kim, Design and Evaluation 65

of a Selective Compressed Memory System, Proceedings of
International Conference on Computer Design (ICCD•99),

alty. The cost-benefit logic circuitry 46 also assesses cases
where there is neither cost nor benefit.

The cost-benefit logic circuitry 46, based on this evalua
tion, provides a cost value or benefit value to a saturating
counter 50 which effectively keeps a running total of costs
and benefits (if any) to the limits of the counter 50.

The output 51 of the counter 50 is provided to a compres
sion controller 52 which may operate in a variety of different
modes, to be described, to produce a compression control
output 54. The compression control output 54 is provided to
the compressor 24 controlling whether it is in bypass mode or
compression mode and thus whether a given cache line 34
(shown in FIG. 3) is stored in a compressed or uncompressed
mode.

Referring now to FIG. 4, the calculation of the costs or
benefits provided by the cost-benefit logic circuitry 46 of FIG.
2 may classify a given data request into one of five categories
according to the tag address block 38, compression state bit
42 and compression size bits 44, and the ordering of cache

US 7,412,564 B2
7

lines 34 of the bits from the LRU 30 per the following
examples. In these examples, it will be assumed that the L2
cache 16 may store data associated with three addresses A, B
and C in tags 40a, 40b and 40c, respectively. Furthermore, it
will be assumed that the processor has accessed address A 5

most recently, address B next most recently, and address C
more recently than address D.

The data of address A may be uncompressed and stored in
eight segments 35 of cache line 34a. The tag 40a will indicate
at compression state bit 42 that the data is uncompressed and 10

compression size bits 44 that the data, if compressed, would
comprise three segments 35.

The data of address B may be compressed and stored in two
segments 35 of cache line 34b. The tag 40b will indicate at
compression state bit 42 that the data is compressed and 15

compression size bits 44 that the data, when compressed,
comprises two segments 35.

The data of address C may be compressed and stored in six
segments 35 of cache line 34c. The tag 40c will indicate at
compression state bit 42 that the data is compressed and 20

compression size bits 44 that the data, when compressed,
comprises six segments 35.

The data of address D may not be stored in the L2 cache 16,
but recorded in the tag 40d (per its address) and at compres
sion state bit 42 that the data is compressed and at compres- 25

sion size bits 44 that the data, if compressed, would comprise
four segments 35.

An Unpenalized Hit

8
A Penalized Hit

The next case of a penalized hit per the second row ofTable
1 may occur with a request for the data of address B. Here
again, the LRU order of the data of address B (two) is within
the Physical Cache Limit, and thus the data of address B
would have been in the L2 cache 16 regardless of the com
pression of other data. Yet because the data of address B is
compressed as indicated by compression state bit 42, a de
compression penalty is incurred and there is a compression
cost as indicated by C1 . Generally this compression cost will
be a number of instruction cycles or other time value or
proportional to the same.

An Avoided Miss

An avoided miss is shown in the third line of Table 1 and is
illustrated by a request for the data of address C. Here, the
data of address C is in the L2 cache 16 although the order of
the data of address C is three in the LRU 30 and thus beyond
the Physical Cache Limit of 2 described above. Accordingly,
the data could only have been in the L2 cache because of
compression, resulting in a compression benefit B1 .

An Avoidable Miss

An avoidable miss is shown in the fourth line ofTable 1 and
is illustrated by a request for the data of address D. Here, the

Referring to the first row of Table 1 below and FIG. 4, the
first case of an unpenalized hit occurs upon a request for the
data of address A. In this case, the LRU 30 indicates that the
data of address A would be in the L2 cache 16 regardless of
compression because its order in the LRU 30 (ofl) is less than
the Physical Cache Limit value of 2, being the number oflines
of data that could be stored if no date were compressed.
Because the data is in cache line 34a in uncompressed form,
it may be provided directly to the processor 12 without
decompression, invoking no decompression penalty. The
cost-benefit logic circuitry 46 provides a zero value to the
saturating counter 50 causing it neither to increment nor
decrement.

30 data of address Dis not the L2 cache 16 although it could have
been if all data of the L2 cache 16 had been compressed
because the sum of all compressed data (indicated by the sum
of the compression size bits 44 for all data in the L2 cache 16)
and the compression size bits 44 of the data of address D

Line less
than or
equal to

Line in Physical
L2? Cache

(address Limit?
Case block 38) (LRU 30)

Unpenalized Yes Yes
Hit
Penalized Yes Yes
Hit
Avoided Yes No
Miss
An No
Avoidable
Miss
An No
Unavoidable
Miss

TABLE 1

Line
order Line less than

greater Compressed
than Cache Limit?
Tag (compression

Limit? size bits 44)

Yes

Yes

Data

35 (equal to fifteen segments 35) is less than or equal to the
Compressed Cache Limit of 16 segments 35. Accordingly,
the data could only have been in the L2 cache because of
compression, resulting in a compression benefit B2 . Gener
ally benefit B2 may not be the same as benefit B1 . Note, the

40 caption: "Line Less than Compressed Cache Limit?" in the
fifth colunm of Table 1 refers to a determination of whether,
for a block at LRU stack distance D, the sum of the com
pressed sizes of all blocks from 1 to D is less than or equal to

Compressed?
(compression Cost or
state bit 42) Benefit

No 0

Yes C1

B1

B2

0

US 7,412,564 B2
9

the number of segments. Only sum those blocks with LRU
stack depth less than or equal to the block in question are
considered

An Unavoidable Miss

An unavoidable miss is shown in the fifth line of Table 1
and is illustrated by a request for the data of address E. Here,
the data ofaddress Eis not the L2 cache 16 and could not have
been even if all data of the L2 cache 16 had been compressed
because there are no remaining tags 40. Again the cost-benefit
logic circuitry 46 provides a zero value to the saturating
counter 50 causing it neither to increment nor decrement. A
second type of unavoidable miss (not shown) is when the
address ofE is in the L2 cache but the data would not have fit
in the L2 cache even with proper compression, that is, for the
stack distance E, the sum of the compressed sizes of all blocks
from 1 to E was greater than the number of segments

10
stood to those of ordinary skill in the art, from this descrip
tion, that different granularities of prediction and/or multiple
predictors also may be used, for example, predictors associ
ated not simply with a single cache but multiple caches or

5 portions of caches, or associated with processors, sets of
processors or portions of processors.

As the benefits of compression increase, more aggressive
compression algorithms are used providing increased com
pression possibly with increased decompression times,

10 whereas when the costs of compression increase, no compres
sion or less aggressive compression algorithms are used with
lower compression or less de-compression overhead.

The size of the counter 50 with respect to the cost and
benefit increments, can be adjusted to control the time win-

15 dow considered for the prediction. A large counter prevents
short bursts of costs or benefits from degrading the long run
behavior of the device. The absolute size of the counter 50
may be controlled by normalizing the cost and benefit values,

Referring to FIG. 5, as described, the output from the
cost-benefit logic circuitry 46 is provided to a counter 50 20

whose output 51 provides a running total of the historical
costs and benefits of compression prepared by the cost-ben
efit logic circuitry 46.

for example, by dividing them all by a common value.
The decompressors 26 and compressor 24 may use any of

a number of different compression methods all sharing the
common feature of loss-lessly compressing data. A simple
compression system may, for example, recognize data values
of zero and simply compress these values from eight seg-A threshold 53 may be established within the range of the

output 51 of the saturating counter 50 and provided to the
compression controller 52 operating as a comparator. When
the output 51 rises about the threshold 53 indicating net
benefits to compression, the compression control output 54 of
the compression controller 52 may provide a signal (shown
here as high state) to the compressor 24 to compress incoming
cache lines. Conversely, when the output 51 falls below the
threshold 53 indicating net costs to compression, the com
pression control output 54 of the compression controller 52
may provide a signal (shown here as low state) to the com
pressor 24 to cease compressing incoming cache lines.

When the general trend is that the benefits of compression
exceed the cost of compression, compression will continue
until the cost tend to exceed the benefits. The historical win
dow over which the costs and benefits are compared may be
controlled by controlling the numberofbits of the counter 50.

Referring now to FIG. 6, semi-continuous control over
compression may be obtained by use of a compression con
troller 52 which does not simply compare the value of counter
50 against a threshold 53 in a binary fashion, but considers a
difference 82 between threshold 53 and the current value of
output 51 of counter 50. This analog difference 82 may be
impressed on compression control output 54, for example, by
changing the duty cycle of the wave form produced by com
pression control output 54 controlling compression so that the
ratio of the duration in time during which compression con
trol output 54 indicates compression, the duration in time
during which compression control output 54 indicates no
compression is a function of the difference 82 at that time.
Alternatively or similarly, the difference 82 may affect a
weighting of a random number generator used to determine
the on-times of the compression control output 54.

Referring now to FIG. 7 in an alternative embodiment the
compression, controller 52 may invoke several different com
pression systems having a range of compression ratios and
compression time costs or latencies. Here a series of zones 84
may be created and when the output of counter 50 lies within
a given zone, a different output 86 may be provided selecting
a different compression algorithm. The compression control
output 54 is shown here as an analog signal but alternatively
could be provided by multiple parallel bits.

The above embodiment uses a predictor that evaluates the
benefits of compression of the entire cache. It will be under-

25 ments 35 to a single segment suitable for holding this value.
Ambiguity between a compressed data value of zero and a
longer data word having zero as its least significant bit is
resolved by the tag information which provides a demarcation
between compressed data lines through the tags and the com-

30 pression state bit 42 compression size bits 44.
Similarly any data value that does not require high order

bits that would use more significant segments 35 may be
correspondingly truncated. Two's compliment numbers may
be readily handled by preserving the sign bit and truncating

35 the converted. Generally loss-less compression may be real
ized by recognizing repeating patterns in the segments 35 and
provide an indication of that repetition without actually stor
ing each of the repetitions. A number of different compres
sion techniques are described in the art including: Alaa R.

40 Alameldeen and David A. Wood, Frequent Pattern Compres
sion: A Significance-Based Compression Scheme for L2
Caches, Technical Report 1500, Computer Sciences Depart
ment, University of Wisconsin-Madison, April 2004; R. B.
Tremaine, P.A. Franaszek, J. T. Robinson, C. 0. Schulz, T. B.

45 Smith, M. E. Wazlowski, and P. M. Bland, IBM Memory
Expansion Technology (MXT). IBM Journal of Research and
Development, 45(2):271-285, March 2001; Peter Franaszek,
John Robinson, and Joy Thomas. Parallel Compression with
Cooperative Dictionary Construction. In Proceedings of the

50 Data Compression Conference, DCC•96, pgs. 200-209,
March 1996; Morten Kjelso, Mark Gooch, and Simon Jones.
Design and Performance of a Main Memory Hardware Data
Compressor. In Proceedings of the 2rd EURO MICRO Con
ference, 1996; Daniel Citron and Larry Rudolph. Creating a

55 Wider Bus Using Caching Techniques. In Proceedings of the
First IEEE Symposium on High-Performance Computer
Architecture, pgs 90-99, February 1995; Luca Benini, Davide
Bruni, Bruno Ricco, Alberto Macii, and Enrico Macii. An
Adaptive Data Compression Scheme for Memory Traffic

60 Minimization in Processor-Based Systems. In Proceedings of
the IEEE International Conference on Circuits and Systems,
ICCAS-02, pgs. 866-869, May 2002; Matthew Farrens and
Arvin Park. Dynamic Base Register Caching: A Technique
for Reducing Address Bus Width. In Proceedings of the l 8th

65 Annual International Symposium on Computer Architecture,
pgs. 128-13 7, May 1991; Luca Benini, Davide Bruni, Alberto
Macii and Enrico Macii. Hardware-Assisted Data Compres-

US 7,412,564 B2
11

sion for Energy Minimization in Systems with Embedded
Processors. In Proceedings of the IEEE Design Automation
and Test in Europe, pgs. 449-453, 2002; Paul Wilson, Scott
Kaplan, and Yannis Smaragdakis. The Case for Compressed
Caching in Virtual Memory Systems, Proceedings of the 5

USENIX Annual Technical Conference, pgs. 101-116, 1999;
all hereby incorporated by reference.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained
herein, but include modified forms of those embodiments 10

including portions of the embodiments and combinations of
elements of different embodiments as come within the scope
of the following claims.

12
11. The cache recited in claim 1 wherein the cache includes

tag data indicating compressed lengths of associated line
data.

12. The cache recited in claim 11 wherein the tag data
indicates a compressed size of associated line data regardless
of whether the line data is compressed.

13. The cache recited in claim 1 wherein the cache includes
tag data indicating whether associated cache data is com-
pressed.

14. The cache recited in claim 1 wherein the data compres
sor identifies small magnitude data values and compresses
them by truncating unused more significant data storage ele
ments.

We claim: 15
15. The cache recited in claim 1 wherein the data compres-

sor identifies common data patterns and replaces them with
abbreviated patterns to compress the data.

1. A cache system for use with an electronic computer
comprising:

16. The cache recited in claim 15 wherein the common data a cache memory;
a data compressor controllably compressing data to be

stored in the cache memory;

patterns include low magnitude numbers, zero, and repeated

20 data blocks.

a data decompressor decompressing compressed data
stored in the cache memory; and

a predictor communicating with the data compressor to
control compression of data to be stored in the cache
memory according to a predicted effect of the compres- 25

sion of data on a speed of execution of a program using
the data, based on a current utilization of the cache
memory by the program.

2. The cache recited in claim 1 wherein the data compressor
can be switched by the predictor between compressing or not 30

compressing the data to be stored in the cache.
3. The cache recited in claim 1 wherein the data decom

pressor includes a bypass allowing uncompressed data to
bypass the data decompressor reducing latency for uncom
pressed data stored in the cache memory. 35

4. The cache recited in claim 2 wherein the predictor cre
ates a prediction value indicating a predicted effect of com
pression on the speed of execution, and wherein the predictor
controls the data compressor to compress the data when the
prediction value is above a predetermined amount and to not 40

compress the data when the prediction value is below the
predetermined amount.

5. The cache recited in claim 2 wherein the predictor cre
ates a prediction value indicating a predicted effect of com-

45
pression of the speed of execution, and wherein the predictor
controls the data compressor to switch between compressing
the data and not compressing the data so as to create an
average compression being a semi-continuous function of the
prediction value.

50
6. The cache recited in claim 1 wherein the data compressor

can be switched by the predictor between multiple degrees of
compression having different latency.

7. The cache recited in claim 1 wherein the predictor com
pares a cost and benefit of compression over a predetermined 55
previous time.

8. The cache recited in claim 7 wherein the predictor is a
counter tallying historical time saved and lost attributable to
compressed data in the cache memory.

9. The cache recited in claim 8 wherein the predictor tallies 60

a time saved when data accessed would not have been held in

17. The cache recited in claim 1 also includes a second
cache memory reading from the cache memory.

18. The cache recited in claim 17 further including a victim
cache holding data expelled from the second cache memory.

19. A method of operating a cache memory in an electronic
computer comprising the steps of:

(a) monitoring access of the cache memory;
(b) based on the monitoring of step (a) predicting an effect

of compressing data in the cache on a speed of execution
of a program using the data of the cache memory, based
on a current utilization of the cache memory by the
program; and

(c) compressing selected data stored in the cache memory
based on a prediction of step (b); and

(d) repeating steps (a)-(c) to update the prediction during
operation of the electronic computer in executing the
program.

20. The method recited in claim 19 wherein the step (c) of
compressing the data selects between compressing or not
compressing the data to be stored in the cache according to the
prediction.

21. The method recited in claim 20 wherein the step (c) of
compressing the data compresses the data when the predic
tion is above a predetermined threshold and does not com
press the data when the prediction is below the predetermined
threshold.

22. The method recited in claim 20 wherein the step (c) of
compressing the data switches between compressing the data
and not compressing the data so as to create an average
compression being a semi-continuous function of the predic
tion.

23. The method recited in claim 19 wherein the step (c) of
compressing the data selects between multiple degrees of
compression having different latency.

24. The method recited in claim 19 wherein the step (b) of
predicting compares an historical cost and benefit of com
pression over a predetermined previous time.

25. The method recited in claim 24 wherein the step (b) of
predicting tallies historical time saved and lost attributable to
compressed data in the cache memory. the cache but for compression, and tallies a time lost when the

data is compressed, but would have been held in the cache
regardless of compression.

10. The cache recited in claim 8 wherein the predictor
tallies a time saved when data was not in the cache, but could
have been in the cache with more compression.

26. The method recited in claim 25 wherein the step (b) of
predicting tallies a time saved when data accessed would not

65 have been held in the cache but for compression, and tallies a
time lost when the data is compressed but would have been
held in the cache regardless of compression.

US 7,412,564 B2
13

27. The method recited in claim 25 wherein the step (b) of
predicting tallies a time saved when data was not in the cache
but could have been in the cache with more compression.

28. The method recited in claim 19 wherein step (c) of
compressing identifies small magnitude data values and com
presses them by truncating unused more significant data stor
age elements.

14
29. The method recited in claim 19 wherein step (c) of

compressing identifies common data patterns and replaces
them with abbreviated patterns to compress the data.

30. The method recited in claim 29 wherein the common
5 data patterns include low magnitude numbers, zero, repeated

data blocks.

* * * * *

	Bibliography
	Abstract
	Drawings
	Description
	Claims

