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FAN-BEAM AND CONE-BEAM IMAGE 
RECONSTRUCTION USING FILTERED 

BACKPROJECTION OF DIFFERENTIATED 
PROJECTION DATA 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

2 
As shown in FIG. 1, the first generation utilized a single 

pencil x-ray beam and a single scintillation crystal-photo­
multiplier tube detector for each tomographic slice. After a 
single linear motion or traversal of the x-ray tube and 

5 detector, during which time 160 separate x-ray attenuation 
or detector readings are typically taken, the x-ray tube and 
detector are rotated through 1 ° and another linear scan is 
performed to acquire another view. This is repeated typically 
to acquire 180 views. 

A second generation of devices developed to shorten the 
scanning times by gathering data more quickly is shown in 
FIG. 2. In these units a modified fan beam in which 
anywhere from three to 52 individual collimated x-ray 
beams and an equal number of detectors are used. Individual 

This application is based on U.S. Provisional Patent 
Application Ser. No. 60/630,930, filed on Nov. 24, 2004 and 10 

entitled "FAN-BEAM AND CONE-BEAM IMAGE 
RECONSTRUCTION USING FILTERED BACK­
PROJECTION OF DIFFERENTIATED PROJECTION 
DATA," and U.S. Provisional Patent Application Ser. No. 
60/630,932, filed on Nov. 24, 2004 and entitled "FAN­
BEAM IMAGE RECONSTRUCTION METHOD FOR 
TRUNCATED PROJECTION DATA." 

15 beams resemble the single beam of a first generation scan­
ner. However, a collection of from three to 52 of these beams 
contiguous to one another allows multiple adjacent cores of 
tissue to be examined simultaneously. The configuration of 
these contiguous cores of tissue resembles a fan, with the STATEMENT REGARDING FEDERALLY 

SPONSORED RESEARCH 

This invention was made with govermnent support under 
Grant No. EB001683 awarded by the National Institute of 
Health. The United States Govermnent has certain rights in 
this invention. 

BACKGROUND OF THE INVENTION 

The present invention relates to computed tomography 
(CT) imaging apparatus; and more particularly, to a method 
for reconstructing images from divergent beams of acquired 
image data. 

In a current computed tomography system, an x-ray 
source projects a fan-shaped beam which is collimated to lie 
within an X-Y plane of a Cartesian coordinate system, 
termed the "imaging plane." The x-ray beam passes through 
the object being imaged, such as a medical patient, and 
impinges upon an array of radiation detectors. The intensity 

20 thickness of the fan material determined by the collimation 
of the beam and in turn determining the slice thickness. 
Because of the angular difference of each beam relative to 
the others, several different angular views through the body 
slice are being examined simultaneously. Superimposed on 

25 this is a linear translation or scan of the x-ray tube and 
detectors through the body slice. Thus, at the end of a single 
translational scan, during which time 160 readings may be 
made by each detector, the total number of readings obtained 
is equal to the number of detectors times 160. The increment 

30 of angular rotation between views can be significantly larger 
than with a first generation unit, up to as much as 36°. Thus, 
the number of distinct rotations of the scanning apparatus 
can be significantly reduced, with a coincidental reduction in 
scanning time. By gathering more data per translation, fewer 

35 translations are needed. 

of the transmitted radiation is dependent upon the attenua- 40 
tion of the x-ray beam by the object and each detector 
produces a separate electrical signal that is a measurement of 
the beam attenuation. The attenuation measurements from 

To obtain even faster scanning times it is necessary to 
eliminate the complex translational-rotational motion of the 
first two generations. As shown in FIG. 3, third generation 
scanners therefore use a much wider fan beam. In fact, the 
angle of the beam may be wide enough to encompass most 
or all of an entire patient section without the need for a linear 
translation of the x-ray tube and detectors. As in the first two 
generations, the detectors, now in the form of a large array, 
are rigidly aligned relative to the x-ray beam, and there are all the detectors are acquired separately to produce the 

transmission profile. 45 no translational motions at all. The tube and detector array 
are synchronously rotated about the patient through an angle 
of 180-360°. Thus, there is only one type of motion, allow­
ing a much faster scanning time to be achieved. After one 

The source and detector array in a conventional CT 
system are rotated on a gantry within the imaging plane and 
around the object so that the angle at which the x-ray beam 
intersects the object constantly changes. A group of x-ray 
attenuation measurements from the detector array at a given 50 

angle is referred to as a "view" and a "scan" of the object 
comprises a set of views made at different angular orienta­
tions during one revolution of the x-ray source and detector. 

rotation, a single tomographic section is obtained. 
Fourth generation scanners feature a wide fan beam 

similar to the third generation CT system as shown in FIG. 
4. As before, the x-ray tube rotates through 360° without 
having to make any translational motion. However, unlike in 
the other scanners, the detectors are not aligned rigidly 
relative to the x-ray beam. In this system only the x-ray tube 
rotates. A large ring of detectors are fixed in an outer circle 
in the scanning plane. The necessity of rotating only the 
tube, but not the detectors, allows faster scan time. 

Most of the commercially available CT systems employ 

In a 2D scan, data is processed to construct an image that 
corresponds to a two dimensional slice taken through the 55 

object. The prevailing method for reconstructing an image 
from 2D data is referred to in the art as the filtered back­
projection technique. This process converts the attenuation 
measurements from a scan into integers called "CT num­
bers" or "Hounsfield units", which are used to control the 
brightness of a corresponding pixel on a display. 

60 image reconstruction methods based on the concepts of 
Radon space and the Radon transform. For the pencil beam 
case, the data is automatically acquired in Radon space. 
Therefore a Fourier transform can directly solve the image 
reconstruction problem by employing the well-known Fou-

The term "generation" is used in CT to describe succes­
sively commercially available types of CT systems utilizing 
different modes of scanning motion and x-ray detection. 
More specifically, each generation is characterized by a 
particular geometry of scanning motion, scanning time, 
shape of the x-ray beam, and detector system. 

65 rier-slice theorem. Such an image reconstruction procedure 
is called filtered backprojection (FBP). The success of FBP 
reconstruction is due to the translational and rotational 
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symmetry of the acquired projection data. In other words, in 
a parallel beam data acquisition, the projection data are 
invariant under a translation and/or a rotation about the 
object to be imaged. For the fan beam case, one can solve the 
image reconstruction problem in a similar fashion, however, 5 

to do this an additional "rebinning" step is required to 
transform the fan beam data into parallel beam data. The 
overwhelming acceptance of the concepts of Radon space 
and the Radon transform in the two dimensional case gives 
this approach to CT image reconstruction a paramount 10 

position in tomographic image reconstruction. 
The Radon space and Radon transformation reconstruc­

tion methodology is more problematic when applied to 
three-dimensional image reconstruction. Three-dimensional 
CT, or volume CT, employs an x-ray source that projects a 15 

cone beam on a two-dimensional array of detector elements 
as shown in FIG. 5. Each view is thus a 2D array of x-ray 
attenuation measurements and a complete scan produced by 
acquiring multiple views as the x-ray source and detector 
array are revolved around the subject results in a 3D array 20 

of attenuation measurements. The reason for this difficulty is 
that the simple relation between the Radon transform and the 
x-ray projection transform for the 2D case in not valid in the 
3D cone beam case. In the three-dimensional case, the 
Radon transform is defined as an integral over a plane, not 25 

an integral along a straight line. Consequently, we have 
difficulty generalizing the success of the Radon transform as 
applied to the 2D fan beam reconstruction to the 3D cone 
beam reconstruction. In other words, we have not managed 
to derive a shift-invariant FBP method by directly rebinning 30 

the measured cone beam data into Radon space. Numerous 
solutions to this problem have been proposed as exemplified 
in U.S. Pat. Nos. 5,270,926; 6,104,775; 5,257,183; 5,625, 
660; 6,097,784; 6,219,441; and 5,400,255. 

It is well known that the projection-slice theorem (PST) 35 

plays an important role in the image reconstruction from 
two- and three-dimensional parallel-beam projections. The 
power of the PST lies in the fact that Fourier transform of a 
single view of parallel-beam projections is mapped into a 
single line (two-dimensional case) or a single slice (three- 40 

dimensional case) in the Fourier space via the PST. In other 
words, a complete Fourier space of the image object can be 
built up from the Fourier transforms of the sequentially 
measured parallel-beam projection data. Once all the Fourier 
information of the image object is known, an inverse Fourier 45 

transform can be performed to reconstruct the image. Along 
the direction of the parallel-beam projections, there is a 
shift-invariance of the image object in a single view of the 
parallel-beam projections. This is the fundamental reason 
for the one-to-one correspondence between the Fourier 50 

transform of parallel-beam projections and a straight line or 
a slice in the Fourier space. The name of the projection-slice 
theorem follows from this one-to-one correspondence. 

In practice, divergent fan-beam and cone-beam scanning 
modes have the potential to allow fast data acquisition. But 55 

image reconstruction from divergent-beam projections 
poses a challenge. In particular, the PST is not directly 
applicable to the divergent-beam projections since the shift­
invariance in a single view of projections is lost in the 
divergent-beam cases. One way to bypass this problem is to 60 

explicitly rebin the measured divergent-beam projections 
into parallel beam projections. This is the basic method 
currently used in solving the problem of fan-beam image 
reconstruction. After the rebinning process, one can take the 
advantages of the fast Fourier transforms (FFT) to efficiently 
reconstruct images. There are some issues on the potential 
loss of image spatial resolution due to the data rebinning. 

65 

4 
But there are also some advantages in generating uniform 
distribution of image noise due to the non-local character­
istic of the Fourier transform. Alternatively, a fan-beam 
projection can also be relabeled in terms of Radon variables 
so that the two-dimensional inverse Radon transform can be 
used to reconstruct images. In this way, a convolution-based 
fan-beam image reconstruction algorithm can be readily 
developed. The advantage of this type of reconstruction 
algorithm is the explicit filtered backprojection (FBP) struc­
ture. The disadvantage of the convolution-based method is 
that the weight in the backprojection step depends on the 
individual image pixels and thus noise distribution may not 
be uniform. This may pose problems in the clinical inter­
pretation of tomographic images. In practice, different CT 
manufactures may utilize different strategies in balancing 
these advantages and disadvantages. 

In the cone-beam case, it is much more complicated to 
rebin cone-beam projections into parallel-beam projections. 
The huge cone-beam data set also poses a big challenge to 
the potential data storage during the rebinning process. The 
main stream of the developments in cone-beam reconstruc­
tion has been focused on the development of approximate or 
exact reconstruction methods. For circular-based source 
trajectories, methods disclosed by L. A. Feldkamp, L. C. 
Davis, and J. W. Kress, "Practical Cone Beam Algorithm," 
J. Opt. Soc. Am. A 1, 612-619(1984); G. Wang, T. H. Lin, 
P. Cheng, and D. M. Shinozaki, "A general cone-beam 
reconstruction algorithm," IEEE Trans. Med. Imaging 12, 
486-496 (1993); generate acceptable image quality up to 
moderate cone angles (up to 10° or so). Exact reconstruction 
algorithms have also been proposed and further developed 
for both helical source trajectory and more general source 
trajectories. Most recently, a mathematically exact and shift­
invariant FBP reconstruction formula was proposed for the 
helical/spiral source trajectory A. Katsevich, "Theoretically 
exact filtered backprojection-type inversion algorithm for 
spiral CT," SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 62, 
2012-2026 (2002). Starting with either the original Tuy's 
framework or Grangeat's framework, upon an appropriate 
choice of weighting function over the redundant data, shift­
invariant FBP reconstruction formula has been derived for a 
general source trajectory. Similar to the fan-beam FBP 
reconstruction algorithm the characteristic of the convolu­
tion-based cone-beam reconstruction algorithm is the voxel­
dependent weighting factor in the backprojection step. This 
will cause non-uniform distribution of the image noise. 
Moreover, due to the local nature of the newly developed 
convolution-based cone-beam image reconstruction algo­
rithms, different image voxels are reconstructed by using 
cone-beam projection data acquired at different pieces of the 
source trajectory. Namely, different image voxels are recon­
structed by using the data acquired under different physical 
conditions. This will potentially lead to some data inconsis­
tency in dynamic imaging. Finally, the current convolution­
based image reconstruction algorithms are only valid for 
some discrete pitch values in the case of helical/spiral source 
trajectory. This feature limits their application in a helical/ 
spiral cone-beam CT scanner. 

SUMMARY OF THE INVENTION 

The present invention is an image reconstruction method 
which can be generically defined as an integral of a product 

----;;,, ----;;,, ----;;,, ----;;,, 

of two functions, K( x , x ') and Q( x , x '). The function 
----;, ----;, 

Q( x , x ') is a weighted backprojection operation on the 
differentiated projection data acquired during a scan. The 
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----;,----;, 

function K( x , x ') is the Fourier transform of one of the 

weighting factors, w 1 (7,R), of the factorized weighting 
----;, 

function w( x ,R;t). An efficient reconstruction method 5 
----;, 

results when the second weighting factor wi x ,t) of the 

weighting function ( 7,R; t) is chosen to be a piecewise 
constant, or in other words, a function consisting of several 

----;, ----;, 

constant pieces. In this case, the filtering kernel K( x , x ') is 
reduced to a Hilbert kernel or a linear combination of Hilbert 

10 

6 

(2.2) 

The letter D labels the dimensions of a Euclidean space. 
Thus, D=2 corresponds to the fan-beam case, and D=3 
corresponds to the cone-beam case. 

The convention of decomposing a vector into its magni-

tude and a unit direction vector will be used, i.e. 7 =rr and 
kernels along different filtering lines. 

More specifically, the invention is a method for producing k =kR. Using the above two definitions, the following 

15 
properties of the projections and intermediate functions can 
be readily demonstrated: 

an image from a plurality of projection views of a subject 
acquired at different view angles which includes: differen­
tiating the acquired projection views; producing image val­
ues along filter lines in image space by backprojecting 
differentiated projection views; and filtering image values 
along each filter line. The invention may be employed with 20 
many different imagining modalities that use either sym­
metric or asymmetric diverging beams and either 2D fan 
beams or 3D cone beams. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIGS. 1-4 are schematic representations of different CT 
system geometries; 

25 

g[r, y(rJJ = ~g[r, y(rJJ, 
r 

,,: - l 1 
- [' - l GDLK, y(t) = DTGD k, y(t), 

K -

lmGD[-k, y(t)] = -lmGD[k, y(t)], 

----;, ----;, 

(2.3) 

(2.4) 

(2.5) 

where Im GD[ k, y (t)] is the imaginary part of the interme-

diate function GD[-k,;(t)]. In addition, g[r,;(t)] and FIG. 5 is a pictorial representation of a 3D, or volume, CT 
system; 30 ----;, 

GD[R, y (t)] are the angular components of the projection g 
FIG. 6 is a pictorial view of a CT system which employs 

the present invention; 

FIG. 7 is a block diagram of the CT system of FIG. 6; 

FIGS. Sa, Sb, 9, 10 and 11 are pictorial representations of 35 
the source trajectory and the field of view of the recon­
structed image which are used to illustrate the underlying 
theory of the present invention; 

FIG. 12 is a flow chart of the steps performed by the 
imaging system of FIGS. 6 and 7 to practice a preferred 40 

embodiment of the present invention; and 

FIG. 13 is a pictorial representation of an asymmetric 
detector used in an alternative embodiment of the invention. 

GENERAL DESCRIPTION OF THE INVENTION 

----;, 

45 

A compactly supported function f( x ) is the image func­
tion to be reconstructed. A general source trajectory is 
parameterized by a single parameter t, tEA=[t,, 1t]. Here t, 50 

and trare assumed to be the view angles corresponding to the 
starting and ending points of an open source trajectory. A 
point on the source trajectory is measured in a laboratory 

----;;,, ----;;,, ----;;,, ----;;,, 

[ r, y (t)] and the intermediate function GD[ k, y (t)] 
respectively. 

With the above definitions and mathematical convention 
----;, 

in hand, the image function f( x ) may be reconstructed using 
the modified Tuy-like formula: 

l 'L w(x, k; rJ) a [' ] I f(x) = dk ~ 8 ImGD k, y(q) . 
sD-i . mk-y (tj) q 

K J F~ 

(2.6) 

Here (7,R; 1:J) is a weighting function used in order to take 
into account the multiple solutions of the following equa­
tion: 

- -l?-[x-y (t)]~0 (2.7) 

In the cone-beam case, the unit vector R is the normal vector 
of a plane that contains the line connecting a given image 

----;, ----;, ----;, 

system and denoted as y (t). The divergent fan-beam and point ( x ), and a source point ( y (1:J)). While, in the fan-
-;, 55 beam case the unit vector R is the normal vector to the line 

cone-beam projections from a source point y (t) are defined ----;, 
as: connecting a given image point ( x ), and a source point 

I
+oo 

g[;,y(t)]= 
0 

dsf[y(t)+s;]. 
(2.1) 60 

----;, 

( y (1:J)). This equation dictates the well-known Tuy data 
sufficiency condition: Any plane ( cone-beam case) or 
straight line (fan-beam case) that passes through the region 
of interest (ROI) should intersect the source trajectory at 

----;, 

least once. In Eq. 2.6 and Eq. 2.7, y (1:J) labels the j-th 
----;, ----;, intersection point between the plane containing the image 

An intermediate function GD[ k, y (t)] is defined as the ----;, ----;, 
Fourier transform of the above divergent beam projections 65 point ( x) and the source trajectory y (1:J). The set which is 

----;, ----;, ----;, 

g[ r , y (t)] with respect to the variable r , viz., the union of all these solutions is labeled as T(7,R), viz., 
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(2.8) 

The weighting function w(7,R; t) satisfies the following 
normalization condition: 

I w(x, k; tJ) = 1. 

,1c(x.k) 

(2.9) 

10 

8 
By changing the variables k--k and R--R in the second 
term and using Eqs. (2.10) and (2.5), we obtain: 

f(x) = _1_ ( dt (+
00 

dk ( dkw(x, k; t) 
;,r JA Jo JsD-1 

(2.15) 

sgn[k. y' (t)] ~ ImGD [k, y(q)] lq~, e•2Hkk [x-,1,1] 

In this equation, the dummy variable k takes only non­
negative values. Thus, the unit vector Rand the non-negative -

In addition, using property (2.5) and the inversion formula 
(2.6), the weighting function possesses the following sym­
metry: 15 value k can be combined as a complete vector, i.e., k =kR. 

w( 7,-k;t)~w( 7,k;t) (2.10) 

In order to proceed, we use the following well-known 
20 

formula 

L b(t-t1) {' - } 
~=bk· [x- y(t)] 
lk-y (t JI 

fj J 

(2.11) 

25 

Multiplying and dividing the angular component Im G n[R, 

-; (t)] by a factor ~-1 and using property (2.4), we obtain: 

1 1 l - (- -) [- -' ] a [- - l I f(x) = - dt dkw x, k; t sgn k · y (t) 8 ImGD k, y(q) 
7r A Rf q q=t 

(2.16) 

where we have used the volume element d k =d~-1dR in a 
to turn the summation over ~ into an integral over the D-dimensional Euclidean space. 
continuous variable t in Eq. (2.6). Consequently, we obtain: 30 

Jex)= (2.12) 

_!__ r dt r dkw(x,k;t)sgn[k-y(t)]~ImGD[k,y(q)] I 
Dr JA Jsp-1 aq q=t 

35 

o[k. ex -y(tJJ]. 

40 

Starting with the above equation, one can derive a shift­
invariant FBP reconstruction formula for the fan-beam and 
cone-beam projections respectively. However, in order to 
derive the desired FBPD formula, it is insightful to use the 45 

following integration representation of the delta function: 

In the following, we use the definition of the intermediate --function Gn[ k, y (t)] to calculate the derivative with 
respect to the source parameter: 

a [' - l I l • a • - ., ,--ImGD k, y(q) = Im dr-g[r, y(q)]q~,e-•' ., = 
aq q~, RD aq 

(2.17) 

1 l • a • - • - I ·2rr,--2 _ dr-
8 

{g[r, y(q)]-g[-r, y(q)]) e-• '. 
URD q q=t 

-Note that the variable r is defined in a local coordinate 
(2-13) 50 system, i.e., 

- - -r ~ X '- y (t), (2.18) 

to rewrite Eq. (2.12) as follows -
55 

where x ' is a point in the backprojection image space. 
Therefore, for the fan-beam and cone-beam projections at a 

1 l l+oo f(x) = - dt dk 
2.Jr A 0 

r dkw(x, k; t)sgn[k -1 (t)] aa ImGD[k, y(q)] I 
JsD-1 q q=t 

(2.14) -given source position y (t), the substitution of Eq. (2.18) 
into Eq. (2.17), and the application of property (2.3) yields: 

60 

ei2rrkk [x-yit)] + _!__ r dt (
0 

dk r dkw(x, k; t)sgn 
Dr JA J_oo JsD-1 

a - [' - l I -
8 

lmGD k, y(q) = 
q q=t 

(2.19) 

65 
_l_l dx' __ l_~-A[" -c J] I e-i2''-[7-71tl] 
2 . -' - a g Px• Y q , 

' RD Ix - y(t)I q q~, 
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where the unit vector ~--;, is defined as: 

' --;' -y(t) 
J3• , =-,--. 

X 1; -y (tJI 
(2.20) 

10 
It is important to elaborate on the meaning of the modified 

fan-beam and cone-beam projections g"4[~--;.,-; (t)]. As 

shown in FIG. 8, the modified projections g"4[~--;.,-;(t)] 
5 generally non-zero in the whole Euclidean space. Therefore, 

one potential problem in the derived image reconstruction 
method is that we have to numerically compute an integral 
over an infinite space. In addition, without an explicit choice 

The modified fan-beam and cone-beam data g"4[~--;.,-; (t)] is 
defined as: 

10 of the weighting function, it is not yet clear whether the 
kernel function may posses an explicit and simple form. 

g"[~-;-,-; CtJJ~gf~-;-,-; CtJJ-gr-k 7 CtJJ. (2.21) 

The meaning ofg"4[~--;.,-; (t)] will be elaborated upon later. 
After Eq. (2.16) and switching the order of integrations, we 
obtain: 

Therefore, up to this point, it is not certain whether Eq. 
(2.24)-Eq. (2.26) provide a computationally efficient and 
practical image reconstruction method. Although we require 

15 the weighting function to satisfy the factorization property 
(2.23), fortunately we still have sufficient degrees of free­
dom to choose an appropriate weighting function that will 
turn Eqs. (2.24)-(2.26) into a practical and efficient method. 

•) 

1 l • 'l f (x =----: d/x 
(2.22) 20 Namely, it is possible to obtain a one-dimensional filtering 

2ml RD Rf 

JA d/t ' -g f3• ,, y (q) . 

---;,---;, 

kernel. In this case, although the function Q( x , x ') is not 
band-limited along the filtering lines, one can still use the 
data from a finite range to reconstruct the image. In the 

r w(;,k;t)sgn[k·y'(t)] a_A[' • ii 
A 1; -Y (tJI aq x q~, 

25 
following paragraphs, we will show how to choose the 

In the above equation, the integration over the variables t 
---;, ---;, 

and k are coupled to one another through the factor w( x , 

weighting function to make this kernel function simple and 
easy to implement in practice. Before we discuss specific 
examples of cone-beam and fan-beam image reconstruction 
via the FBPD, further clarification upon the properties of the 

R;t)sgn[R--;'(t)]. Akey observation is to impose the follow­
ing constraint, i.e., a factorization property, on the choice of 
the weighting functions: 

30 weighting function is beneficial. Since the weighting func­
tion satisfies the normalization condition (2.9), the compo-

(2.23) 

nents w/;,R) and w/;,t) in Eq. (2.23) are not completely 
independent of one another. In fact, given a choice of the 

35 
component wi;,t), the component w/;,R) is determined 

In other words, we require that the weighting function is by the following equation: 
---;, 

factorable so that the integrations over the variables t and k 
can be decoupled. This factorized weighting function is an 
important aspect of the present invention. Under this fac- 40 
torization condition, the reconstruction formula (2.22) can 
be further simplified as: 

(2.24) 45 

where 

(
• •') 1 l • (• ') K x, x = ----: d/kw 1 x, k 

'2.Jru Rf 

(2.25) 

(2.26) 

In Eq. (2.24), the image reconstruction consists of two 
major steps. In the first step, the fan-beam or cone-beam 

---;, 

projections are weighted by a weighting function wi x ,t), 
and then processed by backprojecting the differentiated 

---;,---;, 

projection data to obtain the function Q( x , x '). In the 
---;,---;, 

second step, the function Q( x , x ') is multiplied by a kernel 
---;,---;, 

function K( x , x '), and then integration is performed over 

50 

55 

60 

---;, 65 
the entire Euclidean space spanned by the variable x ', to 

---;, 

obtain the reconstructed image value at the point x . 

I w1(;,k)w2(;,tJ)sgn[k·y'(t1J]=l. 
fjET(1J) 

---;, 

(2.27) 

Since the function w1( x ,R) does not depend on t, the 
summation over~ for the last two terms on left-hand-side of 
the above equation can be calculated by converting the 
summation into an integral: 

I w2(;,tJ)sgn[k·y'(tj)]= 

fjET(1J) 

1 l l+00

dl a i2rrti.[7-71,1] (• ) - dt - -e w2 x t = mi A _ 00 1 at ' 

r d/tw2(;, /!-h (;, k, t), where JA at 

(2.28) 

(2.29) 



US 7,251,307 B2 
11 

The function w1(7,R) is the inverse of the above integral 
----;, 

value in Eq. (2.28). Namely, the factor w1 ( x ,R) is given by 
the following equation: 

-1(• ') ll W1 x, k = -
2 A 

t)~sgn [k · (l, y (tJ)] a1 
(2.30) 

----;, 

10 

12 
----;, 

Since t,,a and t,,b are the endpoints of the pi-line I( x ), we 
have 

- - - -sgnfkJ. x - y <:!:))]-sgn[k·( x - y (t,,b))]~2sgn[k·( 

y (t,,b)- y (t,,))J. (3.32) 

Therefore, the function w1(7,R) can be determined using 
Eq. (2.27): 

- - -w 1(x ,k)~sgn[k·(y (t,,b)-y (t,,))]. (3.33) 

Therefore, for a given image point x , as long as one ----;, 
----;, Using the explicit form of the component w1 ( x ,R) in Eq. 

piece-wise constant function wi x ,t) is chosen for a seg- ----;, ----;, 
----;, (3.33), the kernel function K( x, x ') can be calculated from 

ment of sufficient source trajectory, the factor wi( x ,R) is 15 Eq. (2.25) as: 
determined by the above equation. Consequently, the whole 

weighting function w(7,R; t) is determined by equation 

(2.23). After the factors wi(7,R) and wi(7,t) are specified, 
an image reconstruction algorithm is given by equations 20 

(2.24)-(2.26). 

We now develop an exact method for reconstructing an 
image from acquired cone beam data. For the conventional 
helical source trajectory with 1-pi data acquisition, there is 
one and only one pi-line for each point in the region-of- 25 

interest (ROI) defined by the cylindrical volume contained 
within the helix. However, in the case of an N-pi data 
acquisition scheme, there are multiple different lines that 
pass through each image point in the ROI and intersect the 
helical trajectory at two different points. Recently, the pi-line 30 

• •• 1 L • , • • ,2rr7:.(--;_--;•i 
K (x, x) = 2.Jr dk sgn[k · err(x)]e , 

If Rf 

(3.34) 

----;;,, ----;;,, ----;;,, ----;;,, 

where e ,,( x )= y (t,,)- y (t,,) has been introduced along the 
pi-line, we obtain: 

(
• •') 1 1 , , 

K x, x = - 2 --b(xrr -xrr)b(yrr -yrr), 
27r ZJr =z~ 

(3.35) 

concept has also been generalized to the case of a helical ----;, ----;, ----;, 
trajectory with dynamical helical pitch and the case of a wher_: x and x' are now along pi-lines, viz. x =(x,,,y,,,z,,J 

helical trajectory with a variable radius. For these general- and x '=(x',,,y',,,z',,). Therefore, we obtain an explicit one-
ized helical trajectories, under certain conditions, there is dimensional filtering kernel. Here we show that the same 
one and only one pi-line for each point in the ROI inside a 35 kernel can be used in any source trajectory provided that the 
helix. In addition, the pi-line concept has been generalized concept of a pi-line is meaningful. Therefore, the filtering 
to the saddle trajectory. An important feature of the saddle kernel is a shift-invariant Hilbert kernel along the pi-line. In 
trajectory is that the pi-lines are not unique for a point within ----;, 
the ROI. However, a common feature of the aforementioned fact, the same form of the function wi x ,t) as given in Eq. 
trajectories is the existence of at least one pi-line or one 40 (3.30) may be chosen to reconstruct the points on an 
generalized pi-line. The pi-line provides a natural geometric arbitrary straight line that passes one point and intersects the 
guideline in choosing the weighting function. If we denote source trajectory at two different points ta and t6 . As long as 

the corresponding arc of a pi-line associated with an object the form of wi7,t) is chosen as given in Eq. (3.30), the 

point 7 as I(7)=[t,,a(7), t,,b(7)L we have a convenient 
45 

filtering kernel given in Eq. (3.34) is applicable. 
----;, ----;, 

The backprojection function Q( x , x ') is given by: 
----;, 

choice for the component wi x ,t) in the weighting function: 

(
• ) { 1, if t E / (l), 

W2 X, t = 
0, otherwise. 

(3.30) 
50 (

• •') L 1 a A[' • ] I Q x, x = • &1~ a g /3• •. y (qJ 
ilxl Ix -y(t)I q x q~t 

(3.36) 

----;, ----;, ----;, 

With this choice of wi x ,t), the function wi( x ,t) can be 
55 

calculated as follows. Using Eq. (2.28), we have 

The image point, x , dependence of this function shows up 

through the pi-line. The function g4[~-;.,;(t)] is defined in 
Eq. (2.21). 

I w2(l, tJ) sgn [k · y' (tj)] = 
fjET(7J) 

l(--;tfrh (l, k, t) = h (l, k, lrra)- h(l, k, lrrb) = 

~{sgn [k · (l- y (/rral)] - sgn[k · (l- y(trrb))]}. 

(3.31) 
In summary, a mathematically exact image reconstruction 

method has been derived for any source trajectory provided 
60 that the concept of a pi-line or a generalized pi-line is 

meaningful and the source trajectory satisfies the Tuy data 
sufficiency condition. In this method, an image is recon­
structed by filtering the backprojection image of differenti­
ated projection data using a one-dimensional Hilbert kernel 

65 as given by Eq. (3.36) and Eq. (3.35). 
Equation (3.30) gives one example of many possible 

selections of weighting functions. A specific choice of the 
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----;, 

weighting function wi x ,t) gives a specific image recon­
struction formula. Namely, the filtering directions that are 

specified by the Fourier transforms of the factors w1 ( 7,R) as 
indicated in equation (2.25) may be different. In the above 5 

example, the filtering direction is along a line that passes 
through the image point and intersects with the source 
trajectory at two different points (a pi-line or a generalized 

----;, 

14 
----;, 

wi x ,t), an image reconstruction method may be developed 
using a one-dimensional Hilbert filtering of the backprojec­
tion image of differentiated projection data. This reconstruc-
tion method is applicable to any source trajectory that fulfills 
the Tuy data sufficiency condition and a pi-line or a gener­
alized pi-line is meaningful. The filtering direction may be 
along any straight line that connects the image point and a 
preselected source point. 

pi-line). The weighting factor wi x ,t) may also be chosen 
in such a way that the filtering direction is not along a 
pi-line. An example is given as below: 

10 
In this section, we consider image reconstruction from 

fan-beam projections on an arc source trajectory with radius 
r. The source trajectory is parameterized as: 

{ 

1, t E [ta, to] 

w2(l, t) = -1, t E [to, th] 

0, otherwise 

(3.37) 15 

where t0 is any point on the source trajectory. Using this 20 

weighting factor wi7,t), the weighting factor wi(7,R) is 
calculated as: 

• , [' (• • )] , (• • ) l - y (toJ w 1(x,k)=sgn k-e x,y(to), e x,y(to) =---
ll-y (toll 

(3.38) 25 

----;, 

If we align the z-axis of the vector k along the line 30 

labeled by the unit vector 

• • ) l-y (toJ e (x, y (to) = ---, 
ll-y (toll 

we obtain: 

(
• •') 1 1 , , 

K x,x =------,---,b(x,-x,)b(y,-y,) 
2lr Ze -ze 

----;, ----;, ----;, 

(3.39) 

where x and x' are now along pi-lines, x =(xe,Ye,ze) and 
----;, 

x '=(x'e,Y'e,z'e) backprojection image is given by: 

• •') (fo fb ) 1 a [" ] I Q(x, X = d/t- d/t -:::;---:::;---gA /3--;, (q) 
ta to Ix - y (tJI aq q~t 

(3.40) 

Note that the filtering direction is along a straight line that 
----;, 

connects image point x and pre-selected source point 
----;, 

y (t0). This filtering line only intersects the source trajectory 
----;, 

at one point y (t0 ). It is also important to note that the 
----;, 

35 

40 

45 

50 

55 

60 

-y (t)~r(cos t, sin t),tE[t;, t,J, (4.37) 

where t, and tr are view angles corresponding to the starting 
and ending points on the scanning path. For this scanning 
path, there are infinitely many lines that pass through an 

----;, 

object point x and intersect the source trajectory at two 
points. In order to derive an explicit FBPD reconstruction 
method, we discuss two possible choices of the component 

wi7,t) of the weighting function w(7,R; t). 
Case 1: Weighting function chosen for filtering along 

parallel lines 
The intersection points of this horizontal line with the 

----;, ----;, 

source trajectory are labeled by y (taC x )) and 
----;, ----;, ----;, 

y (t6 ( x )). The first choice of the function wi x ,t) is: 

• ) { 1, if t E [ta, th], 
w2( x, t = 0, otherwise. 

(4.38) 

Using Eqs. (2.27) and (2.28), we obtain: 

- - -w 1(x ,k)~sgn[k·(y (tb)-y (ta))]. (4.39) 

Substituting the above equation into Eq. (2.25), we obtain: 

• •') 1 1 
K(x,x =-2Jr2 x-x'b(y-y'). 

(4.40) 

----;, 

Here we have aligned the vector k along the horizontal 
x-direction. Thus, the filtering is a Hilbert transform con­
ducted along the horizontal direction. In the case of an 
equi-angular detector, the derivative filtering backprojection 

----;,----;, 

function Q( x , x ') is given by: 

(4.41) 

[gm(y,t) 

selection of point y (t0 ) is arbitrary, therefore, we conclude 
that the filtering direction may be selected along any direc-

----;, 

tion that passes through the image point x . 

where gm(y,t) is the measured fan-beam projection data at 
view angle t and fan angle y. The values ofy--;, and~--;, are 

65 
determined by: In summary, using the factorized weighting function in 

Eq. (2.23) and a piece-wise constant weighting factor (4.42) 
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as demonstrated in FIG. 10. 

The final reconstruction formula is given by: 

(
•) 1 [

00 

'[

00 

1 ' (• •') f x = - 2n2 -oo d/x -oo d/y x - x' b (y - y) Q x, x . 
(4.43) 

----;, 

For a given reconstruction point x =(x,y), the backprojec-
----;,----;, 

tion function Q( x , x ') should be calculated over an infinite 
----;, ----;, 

10 

16 
----;, 

Using the above function wi x ,t), the integral in the Eq. 
(2.28) can be directly calculated to yield: 

I w2(;,tJ)sgn[k·y'(t1)]= 

fjET(1,k) 

l t)!!_h (;, k, t) = -a sgn [k · (.Y (tb) - y (t;J)] + ar 

----;, 

(4.47) 

horizontal line which passes through x. Namely, x '=(x',y') 
in Eq. (4.41) extends along an infinite one-dimensional line. 
If the image function is compactly supported, a modified 
Hilbert transform may be used to perform the filtering 
process which only requires data over a finite range. 

15 where in the last step, the fact that the point x lies at the 
----;, ----;, 

intersection between the line passing through ( y (t,), y (t6)) 
----;, ----;, 

and the line passing through ( y (1:r), y (ta)) has been used. 

The implementation steps are summarized below: 
The inverse of the above equation provides the factor 

20 w/;,R) in the weighting function. The result is: 
Calculate the backprojection image values of differenti­

ated fan-beam data on a Cartesian grid. 

Filter the backprojection image with the Hilbert kernel 
along horizontal lines as shown in FIG. 9. 25 

The advantage of this method is that the image recon­
struction can be conducted directly on a Cartesian grid. 
However, the disadvantage is that, for different filtering 
lines, varying amounts of the projection data are used in the 

30 
derivative backprojection step. Therefore, this choice of 
weighting function potentially leads to nonuniform noise 
distribution. 

Case 2: Weighting function chosen for filtering along 
intersecting lines 

In this case, the objective is to use the same amount of 
projection data to reconstruct all the points within an 

----;, 

35 

w1(;,k) = (4.48) 

a ~bsgn [k ·(y (tb)-y (t;J)] + b: asgn [k ·(.Y (t0 )-y (ti))]. 

For simplicity, we introduce the following notation: 

(4.49) 

Substituting Eq. (4.48) into Eq. (2/25), we obtain, 

ROI. For a given image point x, two lines are used to 
----;, 

connect the image point x with the two ending points 
40 • •') 1 a [ • •') l K(x, x = - 2--( • •, b (x-x -e~ + 

2n(b-a) (x-x)·e; 
(4.50) 

at the view angles t, and 1r As shown in FIG. 11 these 
two straight lines intersect with the scanning path at the 

----;, ----;, 

b • •, 

• •' b [(x-x )-e;], 
(x-x)·e1 

view angles taC x ) and t6( x ) respectively. Conse- 45 
quently, the scanning path is divided into three arcs: 

----;, 

The function wi x ,t) is chosen to be: 

j 
a, if t E T1 (;), 

w2(;, t) = 1, if t E T2(;), 

b, if t ET,(;), 

where constants a and be satisfy the condition: 

50 

where {e,-1-·C,} and {e/,eA are two sets of orthonormal 
bases, 

e/•l\=O, (4.51) 

Therefore, the filtering kernel is still the Hilbert kernel. 
(4.44) However, the filtering lines are along the two directions e, 

(4.45) 

and el' respectively. In this case, the backprojection opera-
55 tion is given by: 

Q(;, ;') = [af + l +bl ld/t~ 
T T (•) T (•) Ix = y (t)I 

60 1(7) 2 X 3 X 

(4.52) 

J 
65 

where y--;, is determined by Eq. (4.42) and the weighting 
(4.46) factors a and b satisfy Eq. ( 4.46). 
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The final reconstruction formula is given by: 

(4.53) 

---;, 

For a given reconstruction point x =(x,y), the backprojec-
---;,---;, 

tion function Q( x , x ') should be calculated over two infi-
---;, ---;, 

nite lines which pass through x . Namely, x '=(x',y') in Eq. 
( 4.52) extends along two infinite one-dimensional lines, as 
shown in FIG. 11. 

The implementation steps are summarized below: 

18 

-continued 
1 1+00 1 

-"-2 dxi--, Q(xJ,YJ,Zf; 
LIi _ 00 Xj-XJ 

where the subscript "f" means the Hilbert transform is 
one-dimensional and is along the filtering direction. 

10 Note that the backprojection image of differentiated pro-
jection data is not compactly supported. Thus, a direct 
implementation of Hilbert filtering in Equation (4.54) will 
introduce numerical errors. Fortunately, for a compactly 
supported image object, it is known that samples in a finite 

15 range may be utilized to accurately reconstruct the object. 
Namely, the integral range in Equation (4.54) may be finite. 
To be more specific, the following modified formula can be 
utilized in a numerical implementation: 

Calculate the backprojection image values of differenti- 20 
ated fan-beam data on a Cartesian grid. 

Filter the backprojection image with the Hilbert kernel 
along the lines labeled bye, and efshown in FIG. 11. 

Sum the weighted and filtered contributions from the two 

(4.55) 

filtering lines. 25 

The advantage of this method is that the same amount of 
projection data is used for all the reconstructed points within 
an ROI. However, the disadvantage is that, for a single point 
a filtering process has to be performed along two filtering 
lines. 30 Where the constants A and B are integral limits which should 

be selected outside of the image support. The constant C is 
given by the projection data along the filtering direction 
from the following relation: 

The weighting factors in Eqs. (3.37) and (3.38) may also 
be utilized in the fan-beam case to develop fan-beam image 
reconstruction procedures. In this case, the filtering line is 

---;, 

along the line connecting the image point x and a prese- 35 C~-2ngm(~flt)I (4.56) 

---;, 

lected source point y (t0 ). 

Any other selections of a piece-wise constant weighting 
---;, 

factor wi x ,t) will give a one-dimensional filtering kernel 
and thus, a new image reconstruction procedure by follow­
ing the above examples. Namely, from a given piece-wise 

---;, 

constant weighting factor wi x ,t), we calculated the 
---;, 

where ~fis along the filtering direction. 

When a flat-panel detector is utilized to detect the attenu­
ated X-rays, the derivative may be calculated in terms of 

40 detector coordinates u, v, and source parameter t. Namely, 
the differentiated projection data is given by: 

weighting factor w 1 ( x ,R) using equation (2.20) and the 
backprojection image using equation (2.26). The filtering 45 

kernel is calculated according to Eq. (2.25) using the cal-
(

D
2 + u2 a uv a a) 

gd(u, v, t) = -D- fu, + D a";; - 8t gm(u, v, t). 
(4.57) 

culated weighting factor wi(7,R). 
The steps for numerical implementation of the above 

image reconstruction methods are as follows: 

Step 1: For a given direction~-;., calculate the differentiation 

of the projection data g"4[~-;.,-; (t)] with respect to the source 
parameter t. 

---;,---;, 

Step 2: Calculate the backprojection image values Q( x , x ') 
for the points along the filtering direction using Equation 
(2.26). 

If a colinear detector is utilized to detect the attenuated 
50 x-rays in fan-beam case, then the index v is suppressed in 

equation ( 4.57). 

When a curved CT-detector is utilized to detect the 
attenuated x-rays, the above derivative may also be calcu­
lated in terms of detector coordinates y, a, and source 

55 parameter t. Where parameter y is the parameter along the 
transverse direction (fan angle) and the parameter a is the 
cone angle. 

Step 3: Numerically calculate the Hilbert transform of the 60 

backprojection image along the filtering line to obtain image gd(Y, CY, t) = (:y -fr)gm(Y, CY, t) 
(4.58) 

values f ( 7) using the following equation: 

(4.54) 65 If the detector row is one, this is just the conventional fan 
beam case. In this case, the cone angle index a is sup­
pressed. 
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DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

With initial reference to FIGS. 6 and 7, a computed 
tomography (CT) imaging system 10 includes a gantry 12 5 

representative of a "third generation" CT scanner. Gantry 12 
has an x-ray source 13 that projects a cone beam of x-rays 
14 toward a detector array 16 on the opposite side of the 
gantry. The detector array 16 is formed by a number of 
detector elements 18 which together sense the projected 10 

x-rays that pass through a medical patient 15. Each detector 
element 18 produces an electrical signal that represents the 
intensity of an impinging x-ray beam and hence the attenu­
ation of the beam as it passes through the patient. During a 
scan to acquire x-ray projection data, the gantry 12 and the 15 

components mounted thereon rotate about a center of rota­
tion 19 located within the patient 15. 

20 
This reconstruction method is implemented in the image 

reconstructor 25. Referring particularly to FIG. 12, the cone 
beam projection data is received from the DAS 24 as a 
two-dimensional array of values which are preprocessed in 
the standard manner at process block 40. Such preprocessing 
includes correcting for known errors and offsets and calcu-
lating the minus log of the data to convert it to x-ray 
attenuation values. 

As indicated at process block 42, the next step is to 
differentiate the preprocessed attenuation profiles gm (u,v,t) 
by calculating the weighted derivatives. With the flat detec­
tor shown in FIG. 5 this is done according to the above Eq. 
4.57, whereas Eq. 4.58 is employed when the attenuation 
data is acquired with a curved detector. 

A loop is then entered in which each image pixel value 
f(xf) is calculated by a filtered backprojection process. As 
described above, this is done one filter line at a time, and the 
choice of the number and direction of filter lines to be used 

The rotation of the gantry and the operation of the x-ray 
source 13 are governed by a control mechanism 20 of the CT 
system. The control mechanism 20 includes an x-ray con­
troller 22 that provides power and timing signals to the x-ray 
source 13 and a gantry motor controller 23 that controls the 
rotational speed and position of the gantry 12. A data 
acquisition system (DAS) 24 in the control mechanism 20 
samples analog data from detector elements 18 and converts 
the data to digital signals for subsequent processing. An 
image reconstructor 25, receives sampled and digitized 
x-ray data from the DAS 24 and performs high speed image 
reconstruction according to the method of the present inven­
tion. The reconstructed image is applied as an input to a 
computer 26 which stores the image in a mass storage device 
29. 

20 in the image reconstruction will depend on the particular 
scan performed and image prescribed. More specifically, the 
weighted backprojection Q(xflx'r) at each image pixel along 
a filtering line is calculated as indicated at process block 42. 
This is done according to Eq. (2.26) using projection views 

25 that were acquired over a segment of the source trajectory 
indicated by Eq. (??). The backprojected values are 

weighted by the product of weighting factor w/~\,t) and 
the inverse of the distance between the backprojection image 

----;, ----;, 
30 point and the x-ray source point (1/1 x 'r y (t)I) as indicated 

in Eq. (2.26). 

As indicated at process block 46, the backprojected values 
along the filter line are filtered using a finite range Hilbert 

35 
transform as set forth above in Eq. ( 4.55). This produces the 
final image values at points along the filter line and a test is 
then made at decision block 48 to determine if additional 
image points need to be calculated. If so, the next filter line 

The computer 26 also receives commands and scanning 
parameters from an operator via console 30 that has a 
keyboard. An associated cathode ray tube display 32 allows 
the operator to observe the reconstructed image and other 
data from the computer 26. The operator supplied com­
mands and parameters are used by the computer 26 to 
provide control signals and information to the DAS 24, the 

40 
x-ray controller 22 and the gantry motor controller 23. In 
addition, computer 26 operates a table motor controller 34 
which controls a motorized table 36 to position the patient 
15 in the gantry 12. 

is selected as indicated at process block 50 and the process 
repeats. As will be explained in more detail below with the 
specific case studies, the nature of this test and the manner 
in which the next filter line is selected will depend on the 
particular strategy used to reconstruct an image from the 
acquired data set. Suffice to say that the process repeats until 

45 
the image values at locations throughout image space are 
calculated with sufficient density that an image of prescribed 
resolution can be produced. 

As shown best in FIG. 5, in a preferred embodiment of the 
present invention the detector array 16 is a flat array of 
detector elements 18, having Nr (e.g., 1000) elements 18 
disposed along the in-plane (x,y) direction, and Nz (e.g., 16) 
elements 18 disposed along the z axis. The x-ray beam 
emanates from the x-ray source 13 and fans out as it passes 50 
through the patient 15 and intercepts the detection array 16. 
Each acquired view is a Nr by Nz array of attenuation 
measurements as seen when the gantry is oriented in one of 
its positions during the scan. The object of the present 
invention is to reconstruct a set of 2D image slices from the 55 
3D array of acquired data produced by the x-ray cone beam 
during the scan. 

Depending on the particular reconstruction strategy cho­
sen, the calculated image values may or may not lie on a 
Cartesian grid. If not, as determined at decision block 52, a 
regridding process is used at process block 54 to calculate 
the image values at points on a Cartesian grid. This is a 
well-known step used in medical imaging and it may be an 
interpolation of the calculated image values or a convolution 
based distribution. The resulting Cartesian image may then 
be displayed and stored in Hounsfield units in the usual 
fashion as indicated at process block 56. 

Referring still to FIG. 12, in one preferred embodiment of 
the present invention the image reconstruction process is 

60 directed by a table 58 which stores a set of filter line 

Because the cone beam diverges as it passes through the 
patient 15, the reconstruction of the parallel image slices is 
not possible with a straight forward fan beam filtering and 
backprojecting process. The present invention enables an 
accurate reconstruction of the image slices from this 
acquired cone beam data. In addition, the present invention 
enables the accurate reconstruction of image slices even 
when the path of the x-ray source 13 is less than an a 65 

complete circle or is a spiral path or is a circle and a straight 
line path, or is two concentric circles. 

locations and associated weighting factors wi-;,t). These 
have been predetermined for the prescribed scan as a list of 

filter lines and weighting functions wi-;,t) which are 
properly supported by the acquired data set. The process 
described above repeats for each of the filter lines listed in 
table 58 until all of the listed filter lines have been used. This 
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ing factors w 1(7,R). By choosing the second weighting 
----;, 

is determined at decision block 48. The direction as well as 
the location will be different for each filter line in the general 
case. 

There is a special case in which a series of filter lines can 
be defined which reconstruct the image as image points on 

factor wi x, R) to be piecewise constant, practical recon­
struction methods result in which a filtering kernel is 

5 reduced to a Hilbert kernel or a linear combination of Hilbert 
kernels applied along different filtering lines. In order to a Cartesian grid. That is, the filter lines are all in the same 

direction, but are spaced apart from each other the same 
distance. This special case is for a fan beam acquisition as 
described above in case 1. In this embodiment the parallel 
filter lines are reconstructed one at a time until all of the lines 10 

needed to cover the prescribed image region of interest as 
determined at decision block 48. 

----;, ----;, 

calculate the backprojection image Q( x fi x 'r), only one 
x-ray projection from one view angle is required. Therefore, 
the detector size is not required to be large enough to cover 
the whole image object or the whole transverse cross section 
and both transverse data truncation and longitudinal data 
truncations are allowed using this reconstruction method. A 
detector that is not large enough to cover the transverse cross 

Another preferred embodiment of the invention employs 
the present invention to reconstruct an image acquired with 
a fan beam configuration with data truncation at every 
acquired projection view. This continuous view truncation 
(CVT) application is illustrated in FIG. 13 where an asym­
metric detector 70 covers only one-half of the field of view 

15 
section of the image object or the longitudinal cross section 
may be dynamically or adaptively translated or moved 
during data acquisition to acquire attenuated projection data 

of the fan beam produced by x-ray source 72. The detector 
70 is asymmetric in that the detector elements are located to 20 

one side of the iso-ray 76. As the x-ray source 72 and 
detector 70 revolve around the subject 74 in a circular path, 
only one-half the projection data is acquired at each view 
angle. 

Using the above-described image reconstruction method 25 

it proved possible to accurately reconstruct an image of the 
entire subject 74 if the source 72 and detector 70 performed 
a complete 27 revolution around the subject 74. A series of 
radial filter lines were used that passed from one boundary 
of the field of view and through the isocenter to the opposite 30 

boundary. In computing the backprojection image of differ­
entiated projection data, the derivatives were calculated by 
a three point formula. A Hann window was used to used to 
suppress the high frequency fluctuations in the reconstructed 
images. The constant C in Eq. 4.55 was determined by using 35 

Eq. 4.56. A bilinear interpolation scheme was used to find 
the projection values for a given filtering line. Namely, when 
the intersection of the filtering line and the circular source 
trajectory is not right on a discrete focal spot, we need to 
draw two parallel lines from two nearby focal spots and use 40 

the projection values of these two parallel lines to interpolate 
the projection value at the filtering line. However, these two 
parallel lines may not hit on the detector cells. In order to 
obtain the projection values at these two parallel lines, linear 
interpolation may also have to be introduced in the detector 45 

plane. Thus, we may have interpolation in view angles and 
in detector cells. 

----;, ----;, 

profiles for a complete backprojection image Q( x fi x 'r)­
A number of implementation variations are possible with 

the present method. The differentiated projection data giu, 
v;t) or giy,a;t) may be approximately calculated using the 
numerical difference between two nearby data points. The 
differentiated projection data giu,v;t) or giy,a;t) may also 
be approximately calculated using fast Fourier transforms 
(FFT) in the Fourier domain. The Hilbert transform may be 
calculated in the real space domain using a shifted and 
addition method, or the Finite Hilbert transform may be 
calculated in the Fourier domain using FFT. 

This image reconstruction method may be utilized in 
other tomographic imaging modalities such as MRI, PET, 
SPECT, thermalacoustic CT (TCT), and photoacoustic CT 
(PCT). The detectors may be flat panel CT detectors, curved 
CT detectors, gamma cameras (SPECT) or a transducer 
(TCT and PCT), or read-out coils (MRI). The constant C in 
the finite range Hilbert transform may also be determined 
using the physical information that the image values should 
be zero outside the image support. Namely, when an image 
point is selected outside the image support, the constant C is 
given by the negative value of the integral in the square 
bracket of Eq. (4.55). Also, the integral limit in the finite 
Hilbert transform Equation (4.55) may be selected to be 
symmetric (A=-B). 

It should be apparent that the selection of filtering line 
location and orientation is flexible. For a given targeted 
reconstruction region of interest or volume, one may select 
different filtering lines to fill that entire image volume or 
region. The filtering line direction may be selected along a 
pi-line, a generalized pi-line, or an arbitrary line that con­
nects the image points and a preselected source position 

It has also been discovered that images of selected sub­
regions of the subject 74 can be accurately reconstructed 
from data sets acquired with CVT even when the scan covers 
less than a complete Zit revolution. In this case the filter lines 
are not radial, but a series of parallel filter lines through the 
subregion at an angle that is supported by projection views 
in the acquired data set. For example, if the subregion of 
interest is the heart which is a small part of the entire field 
of view, the scan can be shortened to less than the short-scan 
requirement of 180° plus fan angle. 

50 ( open chord). For any image point inside a volume or region 
of interest, there should exist at least one straight line that 
passes through the image point and intersects the source 
trajectory at two points in its scan trajectory. Otherwise, the 
method is not limited to particular scan trajectories or 

55 detector geometries. 

By imposing a factorization property on the weighting 

function w( 7,R;t) of a cone-beam inversion formula and its 60 

fan-beam counterpart, an image reconstruction method can 
be defined as an integral of a product of two functions: 

----;;,, ----;;,, ----;;,, ----;;,, ----;;,, ----;;,, 

K( x , x ') and Q( x , x '). The function Q( x, x ') is the 
weighted backprojection of differentiated projection data 
acquired over a suitable range of view angles. The function 65 

----;,----;, 

K( x , x ') is the Fourier transform of one of the two weight-

The invention claimed is: 
1. A method for producing an image with a tomographic 

imaging system, the steps comprising: 
a) performing a scan in which a plurality of beams are 

produced by a source and corresponding projection 
views of a subject are acquired at different view angles; 

b) differentiating the acquired projection views; 
c) producing image values by backprojecting a differen­

tiated projection view along a filter line that passes 
through image space and weighting the backprojected 
value by the product of a weighting factor and the 
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inverse of the distance between the projection view 
source and the image value location; 

d) filtering the image values along the filter line; and 
e) repeating steps c) and d) to produce additional filtered 

image values along different filter lines throughout a 5 

region of interest in image space. 
2. The method as recited in claim 1 which step d) employs 

a Hilbert transformation over a finite range. 
3. The method as recited in claim 1 in which the filter lines 

are substantially parallel to each other. 
4. The method as recited in claim 3 in which the filtered 

image values along the filter lines are substantially uni­
formly distributed throughout the region of interest. 

5. The method as recited in claim 1 which includes: 

10 

f) regridding the filtered image values such that they are 15 

substantially uniformly distributed throughout the 
region of interest. 

6. The method as recited in claim 1 in which the filter lines 
are radially directed and pass through the center of image 
space at different angles. 

7. The method as recited in claim 6 which includes: 
f) regridding the filtered image values such that they lie on 

the Cartesian grid in image space. 

20 

24 
10. The method as recited m claim 8 in which the 

divergent beam is a cone beam. 
11. The method as recited in clam 8 in which the divergent 

beam is detected symmetrically about an iso-ray. 
12. The method as recited in claim 8 in which the 

divergent beam is detected asymmetrically about an iso-ray. 
13. The method as recited in claim 8 in which the 

divergent beam is produced by an x-ray source moving in a 
path around the subject. 

14. A method for producing an image with a tomographic 
imaging system, the steps comprising: 

a) performing a scan in which a plurality of divergent 
beam projection views of a subject are acquired at 
different view angles; 

b) differentiating the acquired projection views; and 
c) producing an image from the acquired projection views 

which is an integral of a product of two functions, K 
and Q, where the function Q is a weighted backprojec­
tion operation on the differentiated projection view 
data, where the function K is a Fourier transform of a 
first weighting factor co 1 , that is one of two weighting 
factors co 1 and co2 that result from factorizing a weight­
ing function co. 

15. The method as recited in claim 14 in which the 8. The method as recited in claim 1 in which step a) is 
performed by detecting a divergent beam. 25 weighting function co2 is piecewise constant. 

9. The method as recited in claim 8 in which the divergent 
beam is a fan beam. * * * * * 
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