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(57) ABSTRACT 

An image is analyzed to locate an object appearing in the 
image. A contour of that object is extracted from the image 
and normalized. Based on the normalized contour, one or 
more summation invariant values are determined and com­
pared to templates comprising one or more summation invari­
ants for each of one or more target objects. The determined 
summation invariants for the extracted object are compared to 
summation invariants for the target objects. When the sum­
mation invariants for the extracted object sufficiently match 
the summation invariants determined from an image of a 
target object, the extracted object is recognized as that target 
object. The summation invariants can be semi-local summa­
tion invariants determined for each point along the normal­
ized contour, based on a number of points neighboring that 
point on the normalized contour. The semi-local summation 
invariants are determined as a function of the x and y coordi­
nates of those points. 

20 Claims, 7 Drawing Sheets 
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SYSTEMS AND METHODS FOR 
RECOGNIZING OBJECTS IN AN IMAGE 

2 
tial invariants are particularly sensitive to noise and round-off 
error. Various techniques based on semi-differential invari­
ants, "noise-resistant" differential invariants, and others have 
been introduced to reduce this noise sensitivity. Similarly, This application claims benefit of U.S. Provisional Patent 

Application Ser. No. 60/720,883, filed Sep. 27, 2005, which is 
incorporated herein by reference in its entirety. 

The subject matter of this application was made with U.S. 

5 various techniques based on integral invariants have been 
developed to overcome the limitations of differential invari­
ants. 

Govermnent support awarded by the following agencies: 
NSF 0434355. The United States has certain rights to this 
application. 

BACKGROUND OF THE INVENTION 

1. Field oflnvention 

10 

This invention relates to recognizing objects appearing 15 

within an image. 
2. Description of Related Art 
Object recognition is important in systems performing 

object inspection, security and/or authentication functions, 
among other uses. Object recognition is complicated, in that 20 

objects typically have substantially different shapes depend­
ing on the angle they are viewed from. For example, as a circle 
is viewed from increasingly oblique angles, its shape 
becomes increasingly elliptical. Similarly, a square or rect­
angle, when viewed from increasingly oblique angles, 25 

becomes trapezoidal or rhombic, depending on whether an 
edge or vertex is closest to the observer. For more compli­
cated objects, such as faces, as the viewing angle becomes 
more oblique, it is difficult for even a human to discern the 
basic shape of such objects. For computer-based or auto- 30 

mated image inspection and/or analysis systems and meth­
ods, extracting and identifying a shape, especially a compli­
cated shape such as a face, viewed at an unknown angle is 
often impossible. 

In particular, computer based and/or automated image 35 

analysis systems and methods typically identify objects in an 
image by matching the extracted or segmented image to an 
object template, where each different template corresponds to 
a different physical object. One way to do this matching is by 
using invariant-based templates and matching techniques. An 40 

invariant of an image of an object is a parameter derived from 
some aspect of the object image whose value does not change 
as the image of the object changes, i.e., does not vary as the 
object image varies. 

There are several types of image invariants. "Projective 45 

invariants of shapes", I. Weiss, Proceedings CVPR '88, 1988, 
discloses using invariants in computer vision systems. As 
disclosed in "Invariance-a new framework for vision", D. 
Forsyth et al., Proceedings, Third International Conference 
Computer Vision, 1990, algebraic invariants, which are 50 

obtained by fitting polynomials to an image of an object and 
determining the algebraic invariant using the polynomial 
coefficients, have been applied to recognize industrial objects 
in an image. However, algebraic invariants suffer from sev­
eral shortcomings. First, most objects cannot be expressed in 55 

terms of simple polynomials. Second, algebraic invariants are 
a global method. That is, they require, for whatever shape has 
been used to define the value of the algebraic invariant, that 
entire shape be available when determining the value of the 
algebraic invariant from the image data. Thus, they will not 60 

work when even a small portion of the defined shape of the 
object is hidden from view in the image. 

Differential invariants, which are also referred to as local 
invariants in this field and which are obtained by using deriva­
tives to produce invariant features for points on a curve, also 65 

suffer from fundamental shortcomings. That is, differential 
invariants depend on high-order derivatives. Thus, differen-

SUMMARY OF THE INVENTION 

"Projective Curvature and Integral Invariants," C. E. Hann 
et al., Acta Applicandae Mathematicae, Vol. 74, No. 2, pp. 
177-193, 2002, suggests that the basic problem is in the way 
invariants are derived. In particular, Hann notes that the tra­
ditional approach is to extend transformations to derivatives, 
such that the resulting invariants nevertheless remain depen­
dent to some extent on derivatives. The approach disclosed by 
Hann is to extend these transformations to integrals. How­
ever, Hann assumes that the shape of an object can be repre­
sented as a continuous function. Based on this assumption, as 
the sampling rate increases, the accuracy of the integral 
invariant should increase. 

However, object shapes are rarely representable as con­
tinuous functions. Thus, systems and methods according to 
this invention represent the shape of an object as a set or 
collection of discrete points. By representing the shape of 
objects in this manner, the invariants used in systems and 
methods accordingly are substantially different from those 
disclosed in Hann. 

This invention provides systems and methods for deter­
mining summation invariants for objects within an image. 

This invention separately provides systems and methods 
for determining a semi-local summation invariant objects 
within an image. 

This invention separately provides systems and methods 
for determining summation invariants for an image of an 
object based on contour information of the image of the 
object. 

This invention separately provides systems and methods 
for generating semi-local invariants from a contour of an 
image of an object to be recognized. 

This invention separately provides systems and methods 
for generating semi-local invariants from a normalized con­
tour of an image of an object to be recognized. 

This invention separately provides systems and methods 
for recognizing an object in an image by matching semi-local 
sunmiation invariants for the image of the object against those 
of one or more known objects. 

In various exemplary embodiments of systems and meth­
ods according to this invention, to recognize or identify an 
object in a captured image, after the image is acquired, the 
acquired image data is analyzed to identify objects appearing 
in the captured image. In various exemplary embodiments, 
for each object to be identified, a contour of that object is 
extracted from the acquired image data. In various exemplary 
embodiments, based on the extracted contour, one or more 
sunmiation invariant values are determined. The determined 
sunmiation invariant values are then compared to templates 
comprising one or more sets of summation invariants for each 
of a plurality of objects that are to be recognized should they 
appear in the captured image. When the summation invariants 
for an extracted object sufficiently match the summation 
invariants determined from an image of a target object, the 
extracted object is recognized or identified as that target 
object. 

In various exemplary embodiments, the contour of the 
object to be extracted is defined by a first number of points 
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along the contour. In various exemplary embodiments, if the 
first number of points does not equal a determined number of 
points, the first number of points along the contour are nor­
malized to generate a second number of points along the 
contour that is equal to the determined number of points. In 5 

various exemplary embodiments, a summation invariant is 
determined for each normalized point along the contour of the 
object to be identified. In various exemplary embodiments, 
for each normalized point, the summation invariant is a semi­
local summation invariant that is determined from a second 10 

predetermined number of normalized points adjacent to, 
neighboring, surrounding or at least near that point on the 
contour of the object to be identified. In various exemplary 
embodiments, the semi-local surmnation invariant for each 
point along the contour of the object to be identified is deter- 15 

mined as a function of the x and y coordinates, respectively, of 
that point and of the second number of neighboring points. 

In various exemplary embodiments, the semi-local sum­
mation invariants for the points on the contour of the object to 
be identified are compared with semi-local summation invari- 20 

ants determined for points on the contour of the predeter­
mined image of the object. In various exemplary embodi­
ments, the semi-local surmnation invariants for the points on 
the two contours are compared using a cross-correlation func­
tion to identify a best match between the semi-local summa- 25 

tion invariant values for the points on the contour of the image 
of the object to be identified and those for the points on the 
contour of the image of the known object. 

These and other features and advantages of various exem­
plary embodiments of systems and methods according to this 30 

invention are described in, or are apparent from, the following 
detailed description of various exemplary embodiments of 
systems and methods according to this invention. 

4 
DETAILED DESCRIPTION OF EXEMPLARY 

EMBODIMENTS 

As indicated above, Harm discloses an integral invariant. 
Prior to Hann, "Affine integral invariants and matching of 
curves", J. Sato et al, Proceedings of 13th International Con­
ference on Patent Recognition, Vienna, Austria, Aug. 25-29, 
1996, disclosed methods for formulating semi-local integral 
invariants by integrating with respect to affine quasi-invariant 
arc-length. In contrast to Sato and Harm, systems and meth­
ods according to this invention are directed to an invariant 
function that is based on summation of discrete data. In par­
ticular, these summation invariants are particularly useful for 
curves in the image plane. It should be appreciated that such 
curves are not necessarily differentiable. Thus, unlike differ­
ential invariants, surmnation invariants can be used with such 
curves without regard to their differentiability. 

The following detailed description provides one exemplary 
surmnation invariant, a semi-local summation invariant, and 
discloses one or more exemplary embodiments of methods 
for using that summation invariant to recognize or identify an 
object in an image. "The summation invariant and its appli­
cations to shape recognition", Wei-Yang Lin et al, Proceed­
ings of 2005 IEEE International Conference on Acoustics, 
Speech, and Signal Processing, Philadelphia, Pa., USA, Mar. 
18-23, 2005, which is incorporated by reference herein in its 
entirety, discloses novel schemes to obtain invariants that can 
be described using the summation operation. In particular, 
Lin discloses a framework for constructing invariants that 
rely on the surmnation of discrete data. Accordingly, methods 
for deriving summation invariants, including the particular 
invariants discussed below with respect to the disclosed 
exemplary embodiments of the invariants, and methods and 
systems for using summation invariants is disclosed in the 

BRIEF DESCRIPTION OF THE DRAWINGS 35 incorporated Lin reference and thus is omitted herein. 

Various exemplary embodiments of systems and methods 
according to this invention will be described in detail, with 
reference to the following figures, wherein: 

As outlined in Lin, invariants are defined as a real-valued 
function whose values are unaffected by group transforma­
tion. In various exemplary embodiments of systems and 
methods according to this invention, the groups of interest are 

FIG. 1 is a flowchart outlining one exemplary embodiment 
of a method for recognizing an object in an image according 
to this invention; 

FIG. 2 is a flowchart outlining in greater detail one exem­
plary embodiment of a method for extracting an image con­
taining the object to be identified; 

40 the Euclidean and affine groups. In particular, affine transfor­
mations can be used to approximate the projection of 3-di­
mensional objects onto a 2-dimensional image plane, i.e., 
onto the image capture plane of an image capture device, such 
as a CCD array, a digital still camera, a digital video camera 

FIG. 3 is a flowchart outlining in greater detail one exem­
plary embodiment of a method for normalizing the points on 
a contour of the object to be identified; 

45 or the like. Therefore, invariants of affine transformations 
have significant importance in computer vision. One exem­
plary embodiment of a summation invariant derived for affine 
transformations is 

FIG. 4 is a flowchart outlining in greater detail one exem-
50 

plary embodiment of a method for determining a surmnation 
invariant according to this invention from the extracted con­
tour; 

FIG. 5 is a flowchart outlining in greater detail one exem­
plary embodiment of a method for identifying an object using 55 
the determined summation invariant; 

FIG. 6 is a flowchart outlining in greater detail one exem­
plary embodiment of a method for determining normalized 
coordinate values; 

FIG. 7 is a flowchart outlining in greater detail one exem- 60 

plary embodiment of a method for determining cross-corre­
lation values for the current summation invariant values for an 
image of an object appearing in the acquired image and those 
obtained from a target image of an object; and 

FIG. 8 illustrates one exemplary embodiment of a summa- 65 

tion invariant object recognition system according to this 
invention. 

p1-.o(Nyo - pi.1) + pi.2(Nxo - pl.OJ2 _ (1) 

2Pl.l (Nxo - P1·0)(Ny0 - pi.I) - N(P1·0 Yo - pi.I xoi2 
K2,0 _ ------~---------,c---

- ( Nx1yo - Nxoy1 + )2 

P1•0(y1 - Yo) - pO.l (x1 - Xo) 

The summation invariants of the affine transformations 
were obtained from an affine transformation group G acting 
on the real plane R2

. Accordingly, the invariant outlined 
above in Eq. (1) is a map from the set of real 2N-tuples (R2N) 
to the real numbers (R). Consequently, the dimension of the 
feature factor is 1. 

In some applications, such as recognition of similar 
objects, such a summation invariant may not provide accurate 
recognition results. Therefore, in various exemplary embodi­
ments of systems and methods according to this invention, 
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instead of using a global summation to determine the values 
of the summation invariant, the summation can be performed 
locally to extract local features of the contour. This also tends 
to increase the dimension of the feature vector. The summa-
tion invariants obtained from such local summation are 5 

referred to herein as "semi-local summation invariants". 

6 
niques for locating or extracting the contour are not limited to 
edge-finding techniques. Thus, any other appropriate tech­
nique can be used. 

Typically, the contour will comprise a plurality of pixels 
which form a connected component and which have image 
values that can be distinguished from the surrounding pixels. 
It should be appreciated that the number of pixels in the 
extracted contour can be less than or greater than the number 
of determined points N on the normalized contour. It should 

In particular, in various exemplary embodiments, one 
exemplary semi-local summation invariant of the affine trans­
formation is given by: 

l)[m] = ((M(X1Yo -XoY1) + Px(Y1 -yo)-Py(x1 -xo)J2, 

where: 

(2) 

10 be appreciated that the points on the extracted contour can 
comprise all of the pixels, can be a sampled sub-set of the 
pixels, or the like. It should be appreciated that any known or 
later developed method for selecting or identifying the pixels 
on the contour can be used. 

m+M-1 

Px = I x[modN(n)] 

(3) 15 FIG. 2 is a flowchart outlining one exemplary embodiment 

m+M-1 

Py = I y[modN(n)] 

(4) 

xo =x[m] 

Yo= y[m] 

(5) 

(6) 

of a method for extracting the contour of each of the one or 
more objects in the acquired image that are to be identified 
according to this invention. As shown in FIG. 2, operation of 
the method begins in step S3000 and continues to step S3100, 

20 where the contour of an object to the identified is located 
within the acquired image. Then, in step S3200, a determina­
tion is made whether the located object contour forms a 
closed curve. If so, operation continues to step S3300. Oth-

x1 = x[modN(m + M - l)] 

YI = y[modN(m + M - l)] 

(?) 25 

(8) 

In particular, it should be appreciated that, in various exem­
plary embodiments, only the denominator ofEq. (1) is used in 30 

the semi-local summation invariant shown in Eq. (2). It 
should further be appreciated that either the numerator or the 
denominator ofEq. (1) can be used as the semi-local summa­
tion invariant, as the numerator and denominator are relative 

35 
invariants. 

erwise, operation jumps directly to step S3400. In step S3300, 
a flag is set or some other indication is associated with the 
located object contour to indicate that it is a closed curve. 
Operation then continues to step S3400, where operation of 
the method returns to step S4000. 

As outlined above, in various exemplary embodiments of 
systems and methods according to this invention, the located 
object contour, after normalizing and determining the semi­
local summation invariants for each of the normalized points 
along the contour, is compared to a template contour for each 
different object that can be recognized. If the object contour is 
not a closed curve, such that it has distinct beginning and 
ending points for the curve, matching the semi-local summa­
tion invariants for the extracted or located contour to the 
semi-local summation invariants for the template contour is 

40 
fairly straight-forward. 

FIG.1 outlines one exemplary embodiment of a method for 
identifying or recognizing an object based on semi-local sum­
mation invariants according to this invention. In particular, as 
shown in FIG. 1, beginning in step SlOOO, operation of the 
method continues to step S2000, where an image containing 
one or more objects to be identified is acquired. Then, in step 
S3000, for any object in the acquired image to be identified, a 
contour for that object is extracted from the acquired image. 
Next, in step S4000, the extracted contour is normalized to 45 

form a normalized contour having a defined or determined 
number of points. Normalizing the extracted contour allows 
the normalized contour to be easily compared to template 
contours, regardless of the length of the contours, as each 
contour will have the same determined number of points. 50 

Operation then continues to step SSOOO. 

In particular, since each of the open-curve contours has 
distinct beginning and ending points and each has the same 
number of determined normalized points, performing a one­
to-one comparison of the summation invariants for each of the 
normalized points, and then determining the comparison 
value, as the sum or product of the individual point-to-point 
comparisons, is fairly straightforward. Then, as discussed in 
greater detail below, determining if the extracted open-curve 
contour matches an open-curve contour for a particular target 
object includes comparing the comparison value to a thresh­
old value and determining if the overall comparison value has 
an appropriate relationship to the threshold value, depending 
on how the cross-correlation value is determined, or not, such 
that a determination is made whether the extracted contour 

In step SSOOO, the semi-local summation invariants for the 
normalized contour for that object to be identified are deter­
mined. Next, in step S6000, the object is identified using the 
determined semi-local summation invariants and one or more 
determined semi-local summation invariants determined 
from target or template contours of target objects. Operation 
then continues to step S7000, where operation of the method 
ends. 

55 matches the template contour. 
In contrast, as discussed in greater detail below, if both the 

extracted contour and the corresponding template contours 
are closed curves, there is no distinct beginning or ending 
point for either contour. Thus, lining up the normalized points 

60 distributed around the closed curve of the extracted contour to 
It should be appreciated that, in various exemplary embodi­

ments, the extracted contour can be extracted using any 
appropriate known or later-developed technique. Various 
appropriate techniques include edge-finding methods, such 
as gradient magnitude edge-finding techniques, gradient 65 

direction edge-finding techniques, Hough-based line finding 
techniques, and the like. It should be appreciated that tech-

the normalized points distributed around the closed contour 
of the template objects is completely arbitrary, depending on 
which points on each of the extracted contour and the tem­
plate contour were selected as the "beginning" points. 
Accordingly, when the extracted contour is a closed curve, it 
is typically desirable to compare the closed-curve extracted 
contour against a given closed-curve template contour over 
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all relative starting positions between the extracted closed­
curve contour and the closed-curve template contour. 

8 

Thus, rather than there being a single comparison value, 
there will be one comparison value for each of the determined 
number of normalized points along the contour. Accordingly, 5 

not only must the best-fit relative position for aligning the 
extracted normalized contour to a particular template contour 

xn =[x'r/J]·ffN/1- N/)+ 
[ l x'r/1]-(N/-lN/j) 

(9) 

be identified, but only after this best-fit relationship is found 
can the comparison of the best-fit cross-correlation value to 

10 
the threshold value be performed. 

where lJ rounds the number to the nearest smaller integer and 
rl rounds the number to the nearest large integer. 

Similarly, they coordinate for the nth normalized point on 
the normalized contour, i.e., y[n], is: FIG. 3 outlines one exemplary embodiment of a method for 

normalizing the extracted contour of the object to be identi­
fied. As outlined above, it should be appreciated that the 
extracted contour may have any number of points having 15 

particular coordinate values. In particular, these points and 
coordinate values will often be the pixels and the coordinate 
values of the pixels that define the edge or contour of the 
object to be identified. Alternately, these coordinates may be 
the coordinates of a representative pixel selected to represent 20 

the location of the contour when the edge or contour of the 
object to be identified is spread out over a plurality of pixels 

n -[y'r/J]·ff N/1- N/)+ 
y[ ]- y'r/1Jr/-lN/D 

(10) 

FIG. 4 outlines one exemplary embodiment of a method for 
determining semi-local surnniation invariants from the nor­
malized contour according to this invention. As shown in FIG. 
4, operation of the method begins in step SSOOO, and contin-in a direction perpendicular to the direction that the contour 

extends in. 

Accordingly, beginning in step S4000, operation of the 
method continues to step S4100, where a relationship 
between the number ofinitial sample points along the contour 
of the image to be identified or located is compared to the 
determined number of contour points there will be after nor­
malization. It should be appreciated that, in various exem­
plary embodiments, the extracted contour for the object to be 
recognized or identified is represented by ordered pairs of x-y 
coordinates. The contour is then the set or group of these 
ordered pairs ofx-y coordinates, beginning with the ordered 
pair (x'[l], y'[l]) and ending with the ordered pair (x'[N], 
y'[N]), where N is the total number of points on the extracted 
contour. Similarly, the normalized contour is represented by a 
set or group of ordered pairs ofx-y coordinates. It should be 
appreciated that these x-y coordinates for the normalized set 
of points will generally be distinct from the pairs of x-y 
coordinates of the non-normalized set, but do not need to be. 
Thus, like the extracted contour, the normalized contour 
begins with a first pair of x-y coordinates (x[l], y[l]) and 
continues to a last pair of x-y coordinates, (x[N], y[N]). It 
should be appreciated that, in various exemplary embodi­
ments, the number N of normalized points is 512. In various 
other exemplary embodiments, N can be as low as 128 or even 
lower. Likewise, in still other exemplary embodiments, N can 
be as high as 2048 or even higher. However, it should be 
appreciated that N is not limited to these values, and that N 
can be any appropriate number. 

Thus, in step S4100, thex andy coordinate values for the N 
points on the non-normalized contour are determined. Then, 
in step S4200, for each of the N normalized coordinate points 
on the normalized contour of the object to be identified, the x 
and y coordinates are determined from the coordinate values 
of the nearest contour points on either side of that normalized 
coordinate point. Operation then continues to step S4300, 
where operation of the method returns to step SSOOO. 

It should be appreciated that, in various exemplary embodi­
ments, the normalization is done using linear interpolation. In 
particular, the "0"th point on the extracted contour is treated 
as the "0"th point on the normalized contour, i.e., (x[0], 
y[0])=(x'[0], y'[0]). For each other point non the normalized 
contour, the x coordinate for that point(, i.e., (x[n]), is 

25 ues to step S5050, where an arbitrary one of the N normalized 
points along the normalized contour is selected as a start point 
[m]=0 for the summation invariant determining operation. 
Then, in step S5100, the start point for the local summation 
operation is selected as the current point for which a semi-

30 local summation invariant is to be determined. That is, the 
start point (x0 , y0 ) for the semi-local surnniation invariant 
operation is set to the current point (x[m], y[m]) of the set of 
normalized coordinate points. Next, in step S5150, the local 
surnniation value P x for the x coordinates and the local sum-

35 mation value PY for they coordinates are each set to 0. Opera­
tion then continues to step S5200. 

In step S5200, the endpoint for the local summation, i.e., 
the last point to be used in the semi-local surnniation invariant 
operation for the current point, is selected. This sets the length 

40 of the semi-local summation. That is, the end point is the 
(M-1 )th point past the start point [ m], or the point [ m + M-1]. 
It should be appreciated that M, which defines the neighbor­
hood of adjacent or neighboring points, can have any appro­
priate value. In various exemplary embodiments, the value of 

45 Mis about 10% of the value ofN. In various other exemplary 
embodiments, the value ofM can be 5% or less of the value of 
N. In still other various exemplary embodiments, the value of 
M can be 25%, 50% or even more of the value ofN. In yet 
other exemplary embodiments, the value ofM can be a fixed 

50 value that does not depend on the value of N. It should be 
appreciated that any appropriate value, and any appropriate 
method for determining the value, ofN can be used. It should 
also be appreciated that the neighboring points can be located 
on both sides of the start point [m]. For example, the semi-

55 local surnniation can range from [n-(M-1)/2] to [n+(M-1)/ 
2]. Next, in step S5250, the first or next point [n], beginning 
with the start point [ml, is selected for the semi-local sum­
mation invariant operation for the current point. Then, in step 
S5300, for the normalized point [n], having the coordinates 

60 (x[n], y[n]), the x coordinate value (x[n]) for that point [n] is 
added to the local x-coordinate summation P x· Operation then 
continues to step S5350. 

In step S5350, for that same normalized coordinate point 
[n], they coordinate value (y[n]) for that point [n] is added to 

65 the local y-coordinate summation Py, Then, in step S5400, a 
determination is made whether the end point [m+M-1] has 
been selected. If so, operation continues to step S5450. 0th-
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erwise, operation returns to step S5250, where the next nor­
malized point [n+l] is selected. It should be appreciated that, 
as outlined above, the x-coordinate and y-coordinate summa­
tions Px and PY are given by Eqs. (3) and (4): 

m+M-1 

Px = I x[modN(n)] 

(3) 

N 

I1)1[m]1)2[m] 

10 

m=l 
C1.2 = ---;======= 

(11) 

m+M-1 

I 
(4) 10 The cross-correlation defined in Eq. (11) will produce a 

value having a range that extends from -1 to+ 1. If two shapes 
are exactly the same, such as two images of the same object, 
their contours will have exactly the same sequence of semi­
local invariants. However, the two shapes may be rotated 
relative to one another. For the values of min the summations 

Py= y[modN(n)] 

In step S5450, the semi-local surmnation invariant ri [ m] for 15 
the normalized coordinate point [ m] is determined based on 

in Eq. (11) that correspond to those two identical shapes being 
properly aligned, the value of the cross-correlation C1 2 will 
be 1. In particular, it should be appreciated that, while a 

the local x-coordinate and y-coordinate summations Px and 
Py- That is, as outlined above, the semi-local summation 
invariant, for the current point [m], is ri(m), where: 

(2) 

Then, in step S5500, a determination is made whether all of 
the N normalized coordinates have been selected in step 
S5100. If not, operation returns to step S5100, where the next 
point [m+l] is selected as the current point [m]. Otherwise, 
because semi-local summation invariants ri(m) have been 
determined for all of the N normalized points, operation 
continues to step S5550, which returns operation of the 
method to step S6000. 

It should be appreciated that, when the extracted contour is 
a closed curve, the operation circles back around toward the 
original start point [m]=0. In this case, the end point [m+M-
1], rather than having a value greater than N, needs to wrap 
around the beginning points. It should be appreciated that this 
is easily accomplished by using the modulus operation, as 
indicated in Eqs. (3) and ( 4). 

FIG. 5 outlines one exemplary embodiment of a method for 
identifying an object to be recognized using the determined 
semi-local summation invariant ri when the extracted contour 
is a closed curve. The typical contour of interest, such as, for 
example, a face, will be a closed curve. However, it should be 
appreciated that determining the matching target contour for 
open curves is similar to the exemplary embodiment of the 
method disclosed herein, and thus will not be discussed. 

20 
cross-correlation based on the sum of the differences may not 
work, there are a number of other appropriate "similarity 
measures" which can work. 

In step S6300, a determination is made whether the current 
cross-correlation value is greater than the current global 

25 cross-correlation value. If not, operation jumps to step S6400. 
Otherwise, operation continues to step S6350, where the cur­
rent global cross-correlation value is set to the determined 
cross-correlation value for the current target contour. That is, 
the determined cross-correlation value indicates that the cor-

30 relation between the contour of the object to be recognized 
and the contour of the target objects is the current best fit. 
Operation then continues to step S6400. 

In step S6400, a determination is made whether the target 
contours for all of the available target objects have been 

35 compared to the extracted, normalized contour. If not, opera­
tion returns to step S6100. Otherwise, operation continues to 
step S6450. In step S6450, a determination is made whether 
the current global cross-correlation value has the appropriate 
relationship to a threshold cross-correlation value, such that it 

40 is appropriate to identify the object in the acquired image to 
be identified as the target object that generated the current 
global cross-correlation value. If so, operation continues to 
step S6400. In step S6400, the object to be identified or 
recognized is identified as the target object. Operation then 

45 jumps to step S6500. If not, operation jumps to step S6550, 
where the failure of the system to identify the object to be 
identified is reported. Operation then continues to step S6600, 
where operation of the method returns to step S7000. 

FIG. 6 is a flowchart outlining one exemplary embodiment 
50 of a method for determining normalized coordinate values of 

step S4200 according to this invention. As shown in FIG. 6, 
beginning in step S4200, operation continues to step S4205, 
where an arbitrary point [n'] on the extracted contour is 
selected as the first point [0'] of the extracted contour, i.e., 

55 [n']=0. That is, because the contour will typically be a closed 
curve, the point that is treated as the "zeroth" point can be any 
point on the extracted contour. Of course, if the extracted 
contour does not form a closed curve, the "zeroth" point will 
typically be one of the two end points. 

As shown in FIG. 5, beginning in step S6000, operation 
continues to step S6050, where the current global cross­
correlation value is set to an appropriate starting value, such 
as a value outside the normal range of the particular cross­
correlation equation, such as, for the cross-correlation 
defined in Eq. (11), -2. Then, in step S6100, a first or next 
target object, and its corresponding target contour to which 
the current extracted normalized contour is to be compared, 
are selected. Then, in step S6200, a cross-correlation value is 
determined for the current normalized contour relative to the 
selected target contour. As outlined above, the cross correla­
tion value is determined by making pixel-to-pixel compari-

60 
sons of semi-local summation invariants ri determined for 

Then, in step S4210, a corresponding point [n] on the 
normalized contour is set as the start point or "zeroth" point 
[OJ on the normalized contour. That is, when developing the 
coordinate points for the normalized contour from the 
extracted contour, a point on the normalized contour corre-

those points. The cross-correlation value can be determined 
in any appropriate manner. Operation then continues to step 
S6300. 

It should be appreciated that, in various exemplary embodi­
ments, the cross correlation C1 _2 between the sets of semi­
local summation invariants for two contours 1 and 2 is: 

65 sponding to the "zeroth" point on the extracted contour is 
treated as the "zeroth" point. Next, in step S4215, the x and y 
coordinate values of the "zeroth" point on the extracted con-
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tour are copied over and used as the x and y coordinates of the 
start or "zeroth" point [n]=0 on the normalized contour. 
Operation then continues to step S4220. 

12 
step S4220, where the next point, e.g. [ n+ 1] on the normalized 
contour is selected as the current point [ n]. Otherwise, if all N 
points have been selected and their x-coordinate and y-coor-

In step S4220, a next point, e.g. [ n+ 1] on the normalized 
contour is selected as the current point [n], i.e., [n]=[n+l]. 5 

Typically, the next point will be the immediately succeeding 
point, although it need not be. Thus, the first time step S4220 

dinate values determined, operation continues to step S4255, 
where operation of the method returns to step S4300. 

FIG. 7 is a flowchart outlining one exemplary embodiment 
of a method for determining the cross-correlation values 
between the normalized and current target contours of step 
S6200 according to this invention. As shown in FIG. 7, begin­
ning in step S6200, operation continues to step S6210, where 
the current cross-correlation value is set to 0. Then, in step 

is performed, the next point will be the first point. However, 
this is not necessary and any point on the normalized contour 
can be selected as the next point. Next, in step S4225, a linear 10 

interpolation value i for the current point [ n] is determined. In 
particular, the linear interpolation value i is: S6220, a first or next relative position between the normalized 

and current target contours is selected. Next, in step S6230, a 
cross-correlation value is determined between the semi-local 

i=N'*n/N, (12) 

where: 
N' is the total number of points on the extracted contour; 
N is the determined number of points that will lie on the 

normalized contour; and 
n is the number or index value of the current point. Opera­

tion then continues to step S4230. 
In step S4230, the determined linear interpolation value i is 

rounded down to the nearest integer to identify the next lower 
integer value i- and is rounded up to the nearest integer to 
determine the next higher integer value i+. Then, in step 
S4235, the adjacent points on the extracted contour having 
index values [ n'] equal to the rounded interpolation values i + 
and i- are selected. Then, in step S4240, the x-coordinate 
value for the current point [n] on the normalized contour is 
determined based on the determined interpolation i value and 
the x coordinates of the selected adjacent points [i-] and [i+] 
on the extracted contour. In particular, the x coordinate x[n] 
for the current point [n] is determined as: 

15 surmnation invariants for the normalized and current target 
contours based on the current relative position. Operation 
then continues to step S6240. 

It should be appreciated that, in various exemplary embodi­
ments, when the object to be identified has an open curve as its 

20 contour, it generally will be only one, or at most only a few, 
potential relative positions between the normalized contour 
for the current target object and the extracted normalized 
contour for the object to be identified. In contrast, if the 
normalized contour and the target contour are both closed 

25 curves, the initial relative position between the points on the 
normalized contour and the points on the normalized target 
contour is somewhat arbitrary. That is, because both the nor­
malized contour and the target contour have the same number 
N of sample points around their contours, the relative spatial 

30 orientation of the two contours is somewhat arbitrary. It is 
generally desirable to compare the semi-local invariants for 
the N normalized points on the two contours to each other 
over N different relative positions, so that each point on the 

xn =[x'r/J]·ffN/1- N/)+ 
[ l x'r/1]-(N/-lN/j) 

(9) 35 

normalized contour is lined up in turn with each point on the 
target contour. This reason, so that an equal number of points 
are on both the target contour and the normalized contour, is 

Then, in step S4245, they-coordinate value for the current 
point [n] on the normalized contour is determined based on 
the interpolation value i and they-coordinates of the selected 
adjacent points [i-] and [i+] on the extracted contour. That is, 
they coordinate y[ n] for the current point [ n] is determined as: 

n -[y'[l N/J]·ff N/1- N/)+ 
y[ ]- y'r/1l·(N/-lN/D 

(10) 

In particular, as outlined above, it should be appreciated 
that, in Eqs. (9) and (10), the value [N'*n/N] is the interpola­
tion value i, while the values [lN'·n/NJ] is the rounded-down 
interpolation value i- and the value [fN' ·n/Nl] is the rounded­
up interpolation value i+. Furthermore, it should be appreci­
ated that x[ l N' ·n/N J] is the x-coordinate value for the point on 
the extracted contour having the rounded-down interpolation 
value i- as its index value, while x[[N'·n/Nl] is the x-coordi­
nate value for the point on the extracted contour having the 
rounded-up interpolation value i+ as its index value. Opera­
tion then continues to step S4250. 

In step S4250, a determination is made whether all of the N 
points on the normalized contour have been selected and their 
x and y coordinates determined. If not, operation returns to 

why normalizing the extracted contour is desirable. 
In step S6240, a determination is made whether the cross­

correlation value determined for the current relative position 
40 between the normalized and current target contours is greater 

than the current cross-correlation value. Of course, because, 
in step S6210, the current cross-correlation value is set to a 
value outside the normal range for the cross-correlation, such 
as -2 for the cross-correlation defined in Eq. (11 ), the first 

45 time step S6240 is encountered, i.e., the first time step S6240 
is performed, the determined cross-correlation value will be 
greater than ( or less than, depending on the type of cross­
correlation being performed) the current cross-correlation 
value. If so, operation continues to step S6250. However, if 

50 the determined cross-correlation value is not greater than ( or, 
alternatively, less than) the current cross-correlation value, 
operation jumps directly to step S6260. 

In step S6250, the current cross-correlation value is set to 
the determined cross-correlation value. Then, in step S6260, 

55 a determination is made whether all of the relative positions 
have been selected in step S6220. If not, operation jumps back 
to step S6220 for selection of another relative position 
between the normalized and current target contours. Other­
wise, if all of the relative positions have been selected, opera-

60 tion continues to step S6270, which returns operation of the 
method to step S6300. 

FIG. 8 is a block diagram outlining one exemplary embodi­
ment of a summation invariant object recognition system 500 
according to this invention. As shown in FIG. 8, the summa-

65 tion invariant object recognition system 500 can be variously 
connected to one or more of an image capture device 100 over 
a signal line 110, an input device 200 over a signal line 210, a 



US 7,646,918 B2 
13 

display device 300 over a signal line 310, and/or a data sink 
400 over a signal line 410. It should be appreciated that the 
image capture device 100 can be any known or later-devel­
oped image input device, scanner, copier or any other known 
or later-developed device that is usable to output digital image 5 

data to the summation invariant object recognition system 
500 as an acquired image. 

Similarly, it should be appreciated that any acquired image, 
whether acquired in real time or acquired at some point in the 
past, can be provided to the summation invariant object rec- 10 

ognition system 500 using the image capture device 100, the 
input device 200, or the data sink 400. For example, if the 
image capture device 100 has a memory, it is possible that the 
image to be analyzed was captured at some point earlier in 
time. Similarly, if the image data is stored on a portable 15 

memory device, such as a floppy disk, a CD-Rom, a DVD­
Rom, a flash memory or the like, it can be provided to the 
surmnation invariant object recognition system 500 using the 
input device 200. Finally, the image data to be analyzed could 
be stored on a local area network, a wide area network, a local 20 

server, or a remote server that is accessed using any known or 
later-developed networking technology, such as an Ethernet 
or other network, wireless networks, wired networks, the 
Internet, and/or the like. Thus, it should be appreciated that 
the acquired image can be any image data that may contain an 25 

object and that is appropriately analyzed using the surmnation 
and variant object recognition system 500 and/or the methods 
for recognizing an object outlined above with respect to 
FIGS. 1-7. 

14 
generates normalized contours from the extracted contours 
and stores the normalized contours in the memory 530. 

The summation invariant determination circuit routine or 
application 560 determines at least semi-local summation 
invariants from the normalized contours stored in the memory 
530. It should be appreciated that the memory 530 can store 
predetermined invariants for any target objects to be used 
with the summation invariant object recognition system 500, 
or the summation invariant determination circuit routine or 
application 560 determines surmnation invariants from 
appropriate images of those objects on the fly, storing them in 
the memory 530. Similarly, the cross-correlation determina­
tion circuit, routine or application 570 inputs, for example, 
semi-local summation invariants for the normalized contour 
and the target contours and determines cross-correlation val­
ues that represent the best fit position of the extracted and 
normalized contour against the various target contours, based 
on the cross-correlation between the surmnation invariants 
for those contours and the current relative position between 
the contours. 

In various exemplary embodiments, the object identifica­
tion circuit, routine or application 580 determines whether or 
not an object can be identified and if so, the identified object 
based on the results output by the cross-correlation determi­
nation circuit routine or application 570. 

In operation, after an acquired image is input to the sum­
mation invariant object recognition system 500 through the 
input/output interface 510 and is stored in the memory 530, or 
is read from memory 530, under control of the controller 520, 

As shown in FIG. 8, in various exemplary embodiments, 
the surmnation invariant object recognition system 500 
includes an input/output interface 510 that is connected to the 
signal lines 110,210,310 and/or 410, a controller 520, and a 
memory 530. It should be appreciated that the input/output 
interface 510 can be any known or later-developed set of 
circuitry, firmware, software, or a combination thereof that 
allows control signals, data signals and/or information to be 
input to or output from the summation invariant object rec­
ognition system 500. 

30 the acquired image is output to the contour extraction circuit, 
routine or application 540, where a contour is extracted for at 
least one object in the acquired image. Each extracted contour 
is output either directly to the contour normalization circuit, 
routine or application 550 and/or is output to and stored in the 

35 memory 530, under control of the controller 520. Under the 
control of the controller 520, the contour normalization cir­
cuit, routine or application 550 inputs an extracted contour, 
either from the memory 530 or directly from the contour 
extraction circuit routine or application 540, and generates a 

Likewise, it should be appreciated that the controller 520 
includes any set of circuitry elements, firmware and/or soft­
ware structures that allow the summation invariant object 
recognition system 500 to operate as outlined above with 
respect to FIGS. 1-7 or otherwise according to this invention. 

40 normalized contour. The normalized contour is then output 
either directly to the surmnation invariant determination cir­
cuit, routine or application 560 and/or is output to and is 
stored in the memory 530, under the control of the controller 
520. 

It should be appreciated that, in various exemplary embodi- 45 

ments, the controller 520 is any known or later-developed set 
of circuitry, firmware, software, or a combination thereof that 
allows the various elements of the summation invariant object 
recognition system 500 to operate according to this invention. 
It should be appreciated that the memory 530 can include both 50 

volatile and non-volatile memory and that the memory 530 
may be divided into various functional subdivisions. 

As shown in FIG. 8, in various exemplary embodiments, 
the surmnation invariant object recognition system 500 
includes a contour extraction circuit, routine or application 55 

540, a contour normalization circuit, routine or application 
550, a surmnation invariant determination circuit, routine or 
application 560, a cross-correlation determination circuit, 
routine or application 570, and/or an object identification 
circuit, routine or application 580, each interconnected 60 

among themselves and/or to the memory 530, the input/out­
put interface 510, and the controller 520 by one or more signal 
and/or data busses or the like 590. In various exemplary 
embodiments, the contour extraction circuit, routine or appli­
cation 540 extracts the contours from the acquired images and 65 

stores the extracted contours in the memory 530. Similarly, 
the contour normalization circuit, routine or application 550 

The summation invariant determination circuit, routine or 
application 560, under control of the controller 520, then 
inputs the normalized contour, either directly from the con­
tour normalization circuit, routine or application 550 and/or 
from the memory 530, and determines at least semi-local 
surmnation invariants for at least some of the normalized 
points on the normalized contour. The summation invariant 
determination circuit, routine or application 560 then outputs, 
under control of the controller 520, at least the semi-local 
surmnation invariants for the normalized contour to the cross-
correlation determination circuit routine or application 570 
and/or to the memory 530, where that information is stored in 
the memory 530. 

The cross-correlation determination circuit, routine or 
application 570 then, under control of the controller 520, 
determines one or more cross-correlation values for each of at 
least one target object from the at least semi-local summation 
invariants output from the surmnation invariant determination 
circuit, routine or application 560, and/or the memory 530, 
and identifies a particular target object based on cross-corre­
lation values determined from target normalized contours for 
the target objects. The cross-correlation value corresponding 
to the best-fit object is output by the cross-correlation deter-
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mination circuit, routine or application 570, under the control 
of controller 520, directly to the object identification circuit 
routine or application 580, and/or to the memory 530, where 
it is stored in the memory 530. 

The object identification circuit routine or application 580 5 

then determines, under control of the controller 520 and based 
on the best-fit cross-correlation value, if one of the target 
objects was appropriately identified and if so, outputs an 
indication of the identified object that appears to correspond 
to the object appearing in the acquired image. This indication 10 

can be output to the display device 300, output to the data sink 
400 over the signal line 410, and/or stored in the memory 530. 

It should be appreciated that the summation invariant 
object recognition system 500 can be implemented using any 
known or later-developed device or system of devices, includ- 15 

ing an application-specific integrated circuit (ASIC) or other 
integrated circuit structure, a hardwired electronic or logic 
circuit such as a discrete element circuit, a programmable 
logic device such as a PLD, PLA, FPGA or PAL, a suitably­
programmed digital signal processor (DSP), a suitably-pro- 20 

grammed micro-controller, a suitably-programmed micro­
processor, a suitably-programmed special-purpose or 
general-purpose computerorthe like, possibly along with one 
or more related peripheral integrated circuit elements. 

When implemented using hardware elements, various 25 

exemplary embodiments of the sunmiation invariant object 
recognition system 500 will typically include circuit or other 
hardware structures corresponding to one or more of a con­
tour extraction circuit, a contour normalization circuit, a sum­
mation invariant determination circuit, a cross-correlation 30 

determination circuit, and/or a object identification circuit. 
When implemented using firmware and/or software ele­
ments, various exemplary embodiments of the sunmiation 
invariant object recognition system 500 will typically include 
one or more sets of one or more instructions, including one or 35 

more of: instructions for extracting a contour of an object in 
an image, instructions for normalizing the extracted contour, 
instructions for generating sunmiation invariants for points 
along the normalized contour, instructions for generating 
cross-correlation values, and/or instructions for identifying 40 

the object corresponding to the extracted contour. 
It should be appreciated that these instructions can be orga­

nized in any known or later-developed form, such as, for 
example, routines and/or subroutines, objects, applications, 
procedures, managers and/or the like. The instructions can be 45 

compiled, and thus suitable for direct execution by a proces­
sor, or can be interpreted by an intermediate program execut­
ing on a processor. 

16 
capable of implementing various ones of the flowcharts 
showninFIGS.1-7 and/or the circuit elements outlined above 
with respect to FIG. 8, as described above, can be used to 
implement the summation invariant object recognition sys­
tem 500. It should be appreciated that methods according to 
this invention can be performed by a computer executing one 
or more appropriate programs, by special purpose hardware 
designed to perform such methods, or any combination of 
such hardware, firmware and software elements. It should 
further be appreciated that the summation invariant object 
recognition system 500 can be combined with the image 
capture device 100. 

While this invention has been described in conjunction 
with the exemplary embodiments outlined above, various 
alternatives, modifications, variations, improvements, and/or 
substantial equivalents, whether known or that are or may be 
presently unforeseen, may become apparent to those having 
at least ordinary skill in the art. Accordingly, the exemplary 
embodiments of the invention, as set forth above, are intended 
to be illustrative, not limiting. Various changes may be made 
without departing from the spirit and scope of the invention. 
Therefore, the invention is intended to embrace all known or 
later-developed alternatives, modifications variations, 
improvements, and/or substantial equivalents. 

What is claimed is: 
1. A method for analyzing, using a data processing device, 

image data of an image that includes at least one object, to 
determine if at least one target object appears in the image, 
comprising: 

locating an object in the image data using the data process­
ing device; 

extracting a contourofthe object from the image data using 
the data processing device, the extracted contour having 
a plurality of points distributed along the contour, each 
point having relative location values associated with that 
point; 

generating a normalized contour from the extracted con­
tour using the data processing device, the normalized 
contour having a determined number of normalized 
points distributed along the normalized contour, each 
normalized point having relative location values associ­
ated with that normalized point; 

determining, for each normalized point along the normal­
ized contour, a value of a selected summation invariant 
for that normalized point using the data processing 
device; 

comparing, using the data processing device, for at least 
one target object, each target object having a corre­
sponding target contour, each target contour having the 
determined number of points distributed along that tar-
get contour, each determined point having a value of the 
selected summation invariant associated with that deter­
mined point, the determined sunmiation invariant values 
for the determined number of normalized points along 
the normalized contour to the determined summation 
invariant values for the determined number of points 
along the target contour corresponding to that target 
object; and 

determining, using the data processing device, based on the 
comparison to the at least one target object, if the located 
object sufficiently matches at least one of the at least one 
target object. 

It should be appreciated that a routine, application, man­
ager, procedure, object or the like can be a self-consistent 50 

sequence of computerized steps that lead to a desired result. 
These steps can be defined by and/or in one or more computer 
instructions stored in a computer-readable medium, which 
encompasses using a carrier wave or the like to provide the 
software instructions to a processor. These steps can be per- 55 

formed by a processor executing the instructions that define 
the steps. Thus, the terms "routine", "application", "man­
ager", "procedure", and "object" can refer to, for example, a 
sequence ofinstructions, a sequence ofinstructions organized 
within a programmed-procedure or progranmied-function, 60 

and/or a sequence of instructions organized within pro­
grammed processes executing in one or more computers. 
Such routines, applications, managers, procedures, objects or 
the like can also be implemented directly in circuitry that 
performs the procedure. 

2. The method of claim 1, wherein determining a value of 
65 a selected sunmiation invariant for that normalized point 

comprises determining a value of a semi-local summation 
invariant for that normalized point. 

In general, any device, system or structure, which is 
capable of implementing a finite state machine that is in turn 
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correlation value, that the located object sufficiently 
matches the target object associated with the best-fit 
cross-correlation value. 

3. The method of claim 2, wherein determining a value of 
a semi-local summation invariant for that normalized point 
comprises determining, for a point m along the contour, the 
value 17[m] of the semi-local summation invariant 17 for that 
pointm as: 

ri[m]~((M(XiYo-XoY1)+P(y1-Yo)-P/x1-Xo)J2, 

12. A method for generating, using a data processing 
5 device, a summation invariant for an object appearing in an 

image from image data of the image, the image including at 
least one object, comprising: 

where: 
M is a number of points around the point mused in deter­

mining the value of the semi-local summation invariant 10 
17; 

x0 , Yo are the relative location values of the point m; 
x1 , y1 are the relative location values of the point (m+M-1); 
P xis the summation of the x-coordinate values of the points 

fromm to (m+M-1) along the normalized contour; and 15 
PY is the summation of they-coordinate values of the points 

from m to (m+M-1) along the normalized contour. 
4. The method of claim 3, wherein the number of normal­

ized points along the normalized contour is N and Mis about 
N/10. 

5. The method of claim 3, wherein the number of normal­
ized points along the normalized contour is N and Mis equal 
to or less than about N/2. 

20 

locating an object in the image data using the data process­
ing device; 

extracting a contourofthe object from the image data using 
the data processing device, the extracted contour having 
a plurality of points distributed along the contour, each 
point having relative location coordinate values associ­
ated with that point; 

generating a normalized contour from the extracted con­
tour using the data processing device, the normalized 
contour having a determined number of normalized 
points distributed along the normalized contour, each 
normalized point having relative location coordinate 
values associated with that normalized point; 

determining, for each normalized point along the normal-
ized contour, a value of a summation invariant for that 
normalized point. 

13. The method of claim 12, wherein determining, for each 6. The method of claim 3, the number of normalized points 
along the normalized contour is about 512. 

7. The method of claim 3, the number of normalized points 
along the normalized contour is at least about 128. 

8. The method of claim 3, the number of normalized points 
along the normalized contour is at most about 2048. 

25 normalized point along the normalized contour, a value of a 
summation invariant for that normalized point comprises 
determining a value of a semi-local summation invariant for 
that normalized point. 

14. The method of claim 13, wherein determining a value 
9. The method of claim 1, wherein comparing the deter­

mined summation invariant values for the determined number 
30 ofa semi-local summation invariant for that normalized point 

comprises determining, for a point m along the contour, the 
value 17[m] of the semi-local summation invariant 17 for that 
point mas: 

of normalized points along the normalized contour to the 
summation invariant values for the determined number of 
points along the target contour comprises determining, for at 
least one relative position of the normalized contour relative 35 
to the target contour, a cross-correlation value of the summa­
tion invariant values of the determined number of points of 
the normalized and target contours. 

10. The method of claim 9, wherein: 
determining, for at least one relative position of the nor- 40 

malized contour relative to the target contour, a cross­
correlation value of the summation invariant values of 
the determined number of points of the normalized and 
target contours comprises determining a cross-correla­
tion value for at least a plurality of the relative positions 45 
between the normalized and target contour; and 

comparing the determined summation invariant values for 
the determined number of normalized points along the 
normalized contour to the summation invariant values 
for the determined number of points along the target 50 
contour further comprises: 
selecting, for each target object, an extreme one of the 

plurality of cross-correlation values as a best-fit cross­
correlation value for that target object, and 

selecting an extreme best-fit cross-correlation value 55 
from the best-fit cross-correlation values for the at 
least one target object as the best-fit cross-correlation 
value for the at least one target object. 

11. The method of claim 10, wherein determining, based 
on the comparison to the at least one target object, if the 60 
located object sufficiently matches any of the at least one 
target object comprises: 

comparing the selected best-fit cross-correlation value for 
the at least one target object to a threshold cross-corre­
lation value; and 

determining, if the selected best-fit cross-correlation value 
has a predetermined relationship to the threshold cross-

65 

TJ[m]~((M(xiY0-XoY1)+Px(y1-y0)-Py(x1-x0))2, 

where: 
M is a number of points around the point m used in deter­

mining the value of the semi-local summation invariant 
17; 

x0 , y Oare the relative location coordinate values of the point 
m; 

x 1 , y 1 are the relative location coordinate values of the point 
(m+M-1); 

P xis the summation of the x-coordinate values of the points 
from m to (m+M-1) along the normalized contour; and 

PY is the summation of they-coordinate values of the points 
from m to (m+M-1) along the normalized contour. 

15. The method of claim 14, wherein the number of nor­
malized points along the normalized contour is N and M is 
aboutN/10. 

16. The method of claim 14, wherein the number of nor­
malized points along the normalized contour is N and M is 
equal to or less than about N/2. 

17. The method of claim 14, the number of normalized 
points along the normalized contour is about 512. 

18. The method of claim 14, the number of normalized 
points along the normalized contour is at least about 128. 

19. The method of claim 14, the number of normalized 
points along the normalized contour is at most about 2048. 

20. The method of claim 1, further comprising: 
if the located object is determined to sufficiently match at 

least one of the at least one target object, outputting a 
notification using the data processing device, the notifi­
cation indicating at least one of the at least one target 
object that the located object sufficiently matches. 

* * * * * 
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