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SYSTEMS AND METHODS FOR 
AUTOMATICALLY DETERMINING OBJECT 

INFORMATION AND SYSTEMS AND 
METHODS FOR CONTROL BASED ON 

AUTOMATICALLY DETERMINED OBJECT 
INFORMATION 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
This invention is directed to systems and methods for deter­

mining information about objects, such as their shape, size, 
orientation and the like, and for systems and methods for 
controlling one or more processes or devices based on the 
determined object information. 

2. Related Art 
Suspension crystallization processes often result in crys­

tals having a high aspect ratio. Such high-aspect-ratio crystals 
are commonly described as needle-like, rod-like or acicular. 
Such high-aspect-ratio crystals are particularly common­
place in the types of complex, high-value-added chemical 
compounds typically produced by the specialty chemical and 
pharmaceutical industries. When crystallizing such high-as­
pect-ratio, crystal-forming chemical compounds, controlling 
the particle size distribution (PSD) is typically highly impor­
tant. For example, when the particle size distribution of such 
high-aspect-ratio crystals is within a desired range, the effi­
ciency of the downstream manufacturing process may be 
optimized or maximized. Likewise, when the particle size 
distribution of such high-aspect-ratio crystals is within a 
desired range, the overall quality of the end product being 
made, whether such high-aspect-ratio crystals are an interme­
diate product or the final end product, may be optimized or 
maximized. 

Conventional techniques for determining the particle size 
distribution of a group of crystals include laser diffraction and 
laser backscattering, which are commonly-used on-line tech­
niques. It should be appreciated that the drawbacks associated 
with these techniques discussed below are characteristic of 
the drawbacks associated with other techniques. T. Allen, 
"Particle Size Measurement, Vol. 1, 5th Edition", Chapman 
and Hall, London, 1997, discusses the conventional tech­
niques in detail. 

2 
diffraction over-estimates the broadness of the spherical 
diameter distribution for high-aspect-ratio crystals due to 
such orientation effects and the spherical models used to 
interpret the diffraction data. 

In contrast to laser diffraction, which relies on light passing 
through the sample, laser backscattering relies on the par­
ticles reflecting a sufficient amount oflight back towards the 
light source. Laser backscattering provides a cord length dis­
tribution that can be related theoretically to the particle size 

10 distribution. In laser backscattering, the laser beam is rotated 
over the particle slurry such that each particle backscatters 
light as the light passes over that particle. Based on a time­
to-cross measurement and the known speed of movement of 
the laser beam, the cord length of the laser beam's path over 

15 the crystal can be determined. The cord length distribution 
can only be related back to the actual size distribution of the 
crystals by assuming some geometry for the particles, such as 
aspect ratio, orientation and/or the like. Because the aspect 
ratio, i.e., a length to thickness, of the crystals is one of the 

20 variables that appropriate control of the crystallization pro­
cess affects, assumptions about the crystals' geometry render 
the analysis less than complete. 

As a result of the shortcomings oflaser diffraction and laser 
backscattering, various imaging-based systems have been 

25 developed to size high-aspect-ratio, i.e., elongated, crystals. 
Such imaging systems and techniques offer the potential to 
extract both size and shape information. Thus, such imaging 
based systems and techniques are a promising and attractive 
approach for obtaining particle size distributions for non-

30 spherical particles. Conventional, imaging-based, on-line 
particle size and shape analyzers are available from Malvern 
and Beckman-Coulter, such as the Malvern Sysmex 
FPIA3000 and the Beckman-Coulter RapidVUE. Powder 
Sampling and Particle Size Determination, by T. Allen, 

35 Elsevier, 2003, surveys other imaging-based instruments. 
Typically, these instruments require withdrawing a sample 

of the crystal slurry from the crystallization reaction vessel. 
Drawing such samples is inconvenient, possibly hazardous, 
and raises concerns about whether the sample is truly repre-

40 sentative of the bulk slurry. One notable system that provides 
for in situ sampling is the Particle Vision and Measurement 
(PYM) system from Lasentec, Inc. The Lasentec Particle 
Vision and Measurement in situ probe is combined with auto­
matic image analysis software that is useful for some types of Laser diffraction operates by passing laser light through a 

quantity of the suspended crystal particles. The diffracted 
laser beams are diffracted onto a CCD array or the like, where 
the diffraction patterns are captured. Based on the captured 
diffraction patterns, the crystal size and particle size distribu­
tion can be determined. However, the analysis algorithms 
developed for analyzing the diffracted patterns have all been 50 

developed based on the assumption that the particles are 
spherical. Spherical particles make the analysis easy, because 
the diffraction patterns are independent of the orientation of 
the crystal particles and thus are solely dependent on the size 

45 crystals. However, this system does not give suitable results 
for high-aspect-ratio crystal particles. 

SUMMARY OF THE DISCLOSED 
EMBODIMENTS 

Conventionally, in situ video microscopy has thus far been 
limited to quality monitoring. This has primarily been due to 
the nature of the in situ images, which contain blurred, out of 
focus and overlapping crystal particles. Thus, the nature of 
the in situ images and the available analytical tools have thus 
far precluded successfully applying image analysis to auto­
matically quantify particle size and/or shape. More broadly, 
automatically analyzing images, such as for machine vision, 
intelligence gathering, and the like, has required well con­
trolled environmental parameters, such as lighting, focus, 
depth of field, contrast, brightness and/or the like. For 
example, conventional machine vision systems and methods 
typically require that the illumination level be known or mea­
sured, that the direction and angle of the illumination 
source(s) relative to the object being imaged be known, that 
the distance from the surface being imaged be known or 
controlled, and the like. In general, most conventional auto-

of crystal particles. Such orientation independence is obvi- 55 

ously an appropriate assumption only for spherical particles, 
or near spherical particles, such as tetrahedrons, cubes and 
other near spherical particles. 

Because the measured size of high-aspect-ratio crystals is 
highly dependent on the orientation of the particles, such laser 60 

diffraction methods are inappropriate for high-aspect-ratio 
crystals. Additionally, because the diffraction patterns are 
formed by passing light through a sample, such diffraction 
patterns are typically inappropriate for in situ measurements 
or measurements of crystal solutions having high solids con- 65 

centrations, where an insufficient amount oflight would actu­
ally pass through the sample and be recorded. Thus, laser 
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matic image analysis systems and methods require very well 
behaved images with little noise and that the general location 
of the portion of the object to be imaged be known, in com­
bination with the well-controlled lighting parameters dis­
cussed above. 

4 
This invention separately provides systems and methods 

for segmenting objects having edge features having defined 
angular relationships from other image portions. 

This invention separately provides systems and methods 
5 for segmenting objects, appearing in low quality images, that 

are generally insensitive to lighting conditions. In contrast, at least some embodiments of systems and 
methods according to this invention are able to acquire and 
analyze information from images of objects having relatively 
long, relatively closely-spaced linear features having a 
defined spatial relationship, where the images are at best of 10 

very low quality. Such images will typically have poor con­
trast and/or brightness, poor focus, objects incompletely in 
the field of view and/or overlapping, objects at poorly 
defined, or even at random and/or arbitrary, locations, varying 
lighting conditions and/or the like. 

This invention separately provides systems and methods 
for reliably locating objects in an image generally indepen­
dently of brightness and/or contrast levels in the image. 

This invention separately provides systems and methods 
for analyzing in situ images of high-aspect-ratio objects. 

This invention separately provides systems and methods 
for segmenting an in situ image of high-aspect-ratio objects. 

This invention separately provides systems and methods 
15 for identifying areas, within an in situ image ofhigh-aspect­

ratio objects, that represent the objects. 
The inventors have determined that appropriately segment­

ing such images, especially poor quality images, is desirable 
to successfully automatically analyze such images, such as, 
for example, in situ images of a crystallization process used to 
attempt to determine a particle size distribution of particles 
appearing in the image. 

In this context, segmentation refers to separating objects of 
interest in the image, such as, for example, high-aspect-ratio 
crystals, from the background, such as, for example, the 
slurry of the crystals being formed during a crystallization 
reaction. Of course, segmentation is always easier if the 
objects are imaged using transmitted light, because the out­
lines of the particle are easily distinguished. However, in in 
situ imaging, reflected light often must be used due to the high 
solids concentrations that typically occur during crystalliza­
tion. Accordingly, segmenting such images is substantially 
more difficult. 

For example, "Multi-scale Segmentation Image Analysis 
for the In-Process Monitoring of Particle Shape with Batch 
Crystallizers", J. Calderon De And a et al, Chem. Eng. Sci., 

In various exemplary embodiments of systems and meth­
ods according to this invention, an image of high-aspect-ratio 
objects, such as an in situ image of needle-like crystals, are 

20 first analyzed to locate linear features within the image. In 
various exemplary embodiments, Burns direction analysis is 
used to locate these linear features. Connected pixels having 
the same general gradient direction are grouped into line 
support regions and a linear feature is determined for each 

25 line support region. 
In various exemplary embodiments, the linear features are 

analyzed to identify two or more linear features that are 
effectively co-linear. One or more virtual lines that represent 
the combination of these two or more co-linear lines are 

30 determined based on the two or more co-linear lines. The 
linear features and virtual lines are then analyzed to find 
groups of two or more linear features and/or virtual lines that 
have the defined angular relationship, such as being parallel, 
and that, based on the nature of the object, overlap an appro-

35 priate amount and/or are spaced an appropriate distance apart. 
In various exemplary embodiments, any additional sets of 
two or more linear features and/or virtual lines that have 
members in common with the identified group are combined 
into that group. In various exemplary embodiments, the line 

40 support regions associated with the linear features of the 
group are combined and analyzed to determine representative 
orientation and/or dimensional information. 

60: 1053-1065, 2005, discloses a technique for automatically 
segmenting in-process suspension crystallizer images. This 
technique was only demonstrated on images that appeared to 
have been acquired at low solids concentrations where there 
are no overlapping particles and the particles edges are fairly 
well defined. Similarly, "In Situ Visualization of Coal Particle 
Distribution in a Liquid Fluidized Bed Using Florescent 
Microscopy", E. Kaufman et al, Powder Tech., 78: 239-246, 
1994, discloses an in situ florescence imaging method, where 
the liquid phase of a fluidized bed was made to fluoresce 
while leaving the coal particles opaque. This enabled a gray­
level threshold method to be used to detect the particle edges. 
However, for more dense particle volume fractions, the inven­
tors had to manually determine which of these segmented 50 

particles could be used for sizing. 

In various other exemplary embodiments, each pair of 
linear features is analyzed to determine if that pair of linear 

45 features is co-linear or overlapping. Clusters of the located 
linear features are then clustered based on the determined 
classifications. A representative shape is generated for each 
cluster. One or more parameters such as orientation, shape, 
size and/or the like, are then determined for each representa­
tive shape. 

In various exemplary embodiments, the orientation and/or 
dimensional information for a plurality of objects is analyzed 
to determine statistical information about the plurality of 
objects. In various exemplary embodiments, the orientation, 

This invention provides systems and methods for analyz­
ing even low quality images of objects having edge features 
having known spatial relationships. 

This invention separately provides systems and methods 
for analyzing images of objects having relatively long, rela­
tively closely-spaced edge features. 

55 dimensional and/or statistical information is used to monitor 
one or more processes associated with the objects, to control 
one or more processes associated with the objects, to reject 
the objects or a structure or device comprising the objects, or 

This invention separately provides systems and methods 
for analyzing images of objects having edge features having 

60 
defined angular relationships. 

the like. 
One or more statistical measures can then be determined 

for the determined parameters' dimensional information, ori­
entation and/or the like for the representative shapes, such as 
distribution, mean, median and/or the like of, size, length, 
width, area, orientation or the like. Based on these statistical 

This invention separately provides systems and methods 
for segmenting objects having edge features having known 
spatial relationships from other portions of the image. 

This invention separately provides systems and methods 
for segmenting objects having relatively long, relatively 
closely-spaced edge features from other image portions. 

65 measures, one or more process control variables can be modi­
fied. Alternatively, a determination can be made whether the 
process has reached a sufficient completion stage such that 
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the objects can be passed on to a downstream process, if the 
objects are appropriate for further processing or sale, or the 
like. 

In various exemplary embodiments, an image analysis sys­
tem according to this invention includes an image segmenta­
tion circuit, routine or application, a linear feature clustering 
circuit, routine or application, a parameter determining cir­
cuit, routine or application, a statistical value determining 
circuit, routine or application, and a control signal determin­
ing circuit, routine or application. In various exemplary 
embodiments, these control signals are output to a process 
control device, a material handling system, an attention indi­
cating system, or the like. 

6 
FIG. 17 illustrates one exemplary embodiment of math­

ematical represents for the connected components shown in 
FIG. 16; 

FIG. 18 illustrates one exemplary embodiment of linear 
5 features extracted from the mathematical representations 

shown in FIG. 17; 
FIG. 19 shows the image shown in FIG. 15 with the linear 

features shown in FIG. 18 superimposed on it; 
FIG. 20 illustrates the virtual lines generated after analyz-

10 ing the linear features shown in FIG. 19 based on the co­
linearity requirements; 

These and other features and advantages or various exem­
plary embodiments of systems and methods according to this 15 

invention will be described in greater detail below with 
respect to the exemplary embodiments shown in the attached 
figures. 

FIG. 21 illustrates the sets of virtual lines and/or linear 
features identified after analyzing the linear features and vir­
tual lines based on the parallelism requirements; 

FIG. 22 illustrates the set of virtual lines and/or linear 
features having the greatest significance; 

FIG. 23 illustrates the sets ofadditional virtual lines and/or 
linear features that intersect the set of virtual features having 
the greatest significance; 

BRIEF DESCRIPTION OF DRAWINGS 

Various exemplary embodiments of the systems and meth­
ods according to this invention will be described in detail, 
with reference to the following figures, wherein: 

FIG. 1 illustrates various types of crystals; 
FIG. 2 illustrates a representative image to be analyzed; 
FIG. 3 illustrates one exemplary embodiment of a process 

control system that incorporates one or more exemplary 
embodiments of systems and methods according to this 
invention; 

FIG. 4 is a flowchart outlining one exemplary embodiment 
of a method for identifying objects in an image and of a 
method for controlling process parameters based on the iden­
tified objects according to this invention; 

20 FIG. 24 illustrates the linear features associated with the 
identified sets of linear features and/or virtual lines shown in 
FIG. 23; 

FIG. 25 illustrates the combined connected component 
associated with the identified linear features shown in FIG. 24 

25 and the representative shape and line for that combined con­
nected component; 

FIG. 26 shows the representative line superimposed on the 
image shown in FIG. 15; 

FIG. 27 is a flowchart outlining a second exemplary 
30 embodiment of a method for analyzing the located linear 

features according to this invention; 
FIG. 28 is a flowchart outlining a second exemplary 

embodiment of a method for clustering the located linear 
features according to this invention; 

FIG. 5 is a flowchart outlining one exemplary embodiment 35 

of a method for locating linear features within an image 
according to this invention; 

FIG. 29 illustrates pair wise relationships between the lin­
ear features of another set of connected components devel­
oped from the image shown in FIG. 15; 

FIG. 6 illustrates one exemplary embodiment of how vari­
ous line parameters are defined; 

FIG. 7 is a flowchart outlining a first exemplary embodi- 40 

ment of a method for analyzing the located linear features 
according to this invention; 

FIG. 8 is a flowchart outlining a first exemplary embodi­
ment of a method for clustering the located linear features 
according to this invention; 

FIG. 9 is a flowchart outlining one exemplary embodiment 
of a method for determining co-linearity requirement param­
eters for sets oflinear features; 

45 

FIG. 10 is a flowchart outlining one exemplary embodi­
ment of a method for determining if the co-linearity require- 50 

ments are met; 
FIG. 11 is a flowchart outlining one exemplary embodi­

ment of a method for determining parallelism requirement 
parameters for sets of linear features and/or virtual lines; 

FIG. 12 is a flowchart outlining one exemplary embodi- 55 

ment of a method for determining if the parallelism require-
ments are met; 

FIG. 13 illustrates one exemplary image containing an 
object edge to be segmented according to this invention; 

FIG. 14 is a graph illustrating gradient directions obtained 60 

by analyzing the image shown in FIG. 13; 

FIG. 30 illustrates one exemplary network of overlapping 
parallel and co-linear linear features; 

FIG. 31 shows the representative lines and combined con­
nected components identified after clustering and grouping 
the linear features shown in FIG. 29; 

FIG. 32 shows the image shown in FIG. 15 with the linear 
features shown in FIG. 31 superimposed on it; 

FIG. 33 shows a second image obtained by in situ sampling 
a suspension crystallization process; 

FIG. 34 shows the image shown in FIG. 33 with linear 
features determined by analyzing the image shown in FIG. 33 
using systems and methods according to this invention; 

FIG. 35 shows the image of FIG. 34 after analyzing the 
linear features to determine co-linear linear features and 
determine associated virtual lines, according to the first 
embodiment of systems and methods according to this inven­
tion, with the identified virtual lines superimposed on the 
image of FIG. 34 and; 

FIG. 36 shows the image of FIG. 33 with the determined 
object representative lines superimposed on the objects 
located in the image. 

DETAILED DESCRIPTION OF DISCLOSED 
EMBODIMENTS 

FIG. 15 shows an enlarged portion of the image shown in 
FIG. 2; 

FIG. 16 illustrates one exemplary embodiment of a set of 
connected components generated from the image shown in 
FIG. 15 obtained by applying steps S1210-S1250 to that 
image; 

The various systems and methods according to this inven­
tion are applicable to locating high-aspect-ratio objects in any 

65 image. Various exemplary embodiments of systems and 
methods according to this invention are also useable to locate 
objects having known dimensions and/or dimensional rela-
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tionships in very noisy and/or low quality images. In general, 
"low quality" images are those images where the foreground 
objects are difficult to distinguish from the background of the 
image and/or various foreground images are difficult to dis­
tinguish from each other. Such "low quality" images typically 5 

have inappropriate contrast and/or brightness levels, are out 
of focus, and/or are full of non-image artifacts, such as moire 
patterns, noise, various image distortions and the like. In 
general, in various exemplary embodiments of systems and 
methods according to this invention, objects within the image 10 

can be identified and segmented without regard to the contrast 
and/or brightness levels of the image. Thus, various exem­
plary embodiments of systems and methods according to this 
invention can locate objects from images that have less than 
ideal contrast, brightness, focus and/or other lighting param- 15 

eter values and/or that were acquired with less than optimal 
focus and/or lighting parameter values for the particular 
objects of interest and/or for the background or foreground 
objects appearing within the image. 

8 
having known shapes, dimensions, spatial relationships and/ 
or dimensional relationships, and objects that do not neces­
sarily have high aspect ratios. 

FIG. 1 shows three different crystals having different 
aspect ratios. In particular, FIG. l(a) shows a very low aspect 
ratio crystal. In particular, this crystal has a central body that 
is wider than it is tall, in that it has a thickness T 1 that is greater 
than its body length L1 . In fact, the overall shape of the 
crystals shown in FIG. 1 can best be described as near or 
effectively circular. Thus, the laser diffraction method for 
determining the particle size distribution of a crystal slurry 
comprising crystals such as that shown in FIG. l(a) would be 
appropriate and useful. However, as shown in FIG. l(a), an 
image of such low aspect ratio objects can still be quite noisy 
and of sufficiently poor quality such that it is difficult to 
discern the object. 

For ease of understanding and explanation, the following 
detailed description of specific exemplary embodiments of 
systems and methods according to this invention will be 
described with respect to locating and segmenting high-as­
pect-ratio crystal particles appearing within an image 
obtained by in situ sampling of the crystallization process 
occurring within a reaction vessel. Likewise, for ease of 
understanding and explanation, the shape information 
obtained from such located and segmented crystals within the 
image and the statistical information obtained from a plural-

FIG. l(b) shows an intermediate aspect ratio crystal whose 
body length L2 is approximately 1 ½ times its thickness T 2 . 

Because the cord length over the range of possible orienta-
20 tions of the crystals shown in FIG. l(b) is within a fairly 

narrow range, when laser backscattering is used to measure a 
crystal slurry comprising the crystals shown in FIG. l(b), a 
reasonable particle sized distribution can be developed. How­
ever, as shown in FIG. l(b), an image of such intermediate 

25 aspect ratio objects can still be quite noisy and of sufficiently 
poor quality such that it is difficult to discern the object. 

ity of such crystals segmented from the image are used to 30 

control and/or monitor various aspects of the crystallization 
process. 

FIG. l(c) shows a high aspect ratio, or rod-like, needle-like 
or acicular crystal. In particular, the crystal shown in FIG. 
l(c) has a length L that is approximately six times its thick­
ness T. Accordingly, laser diffraction is inappropriate for 
these high aspect ratio crystals, for the reasons outlined 
above. Additionally, laser backscattering is inappropriate, 
because the cord length is highly sensitive to the angle at However, it should be appreciated that the systems and 

methods according to his invention are not limited to in situ 
images of high-aspect-ratio crystal particles nor to control­
ling and/or monitoring such crystallization processes. Rather, 
it should be appreciated that systems and methods according 

35 
which the laser beam crosses the crystal. Moreover, the image 
quality makes it difficult to locate the object in the image. Due 
to such difficulties, even hand analysis of such images is time 
consuming and very subjective. 

to this invention can be applied to locate and segment other 
high-aspect-ratio objects from an image containing such 

40 
objects and/or can be used to analyze one or more of those 
objects for individual shape information or the like and/or for 
statistical information about the group of objects. This indi­
vidual and/or statistical information can be used in various 
exemplary embodiments of systems and methods according 

45 
to this invention to inform various actions that can be taken 
with respect to the objects, such as monitoring, process con­
trol, material handling, inspection and the like. 

Accordingly, the inventors have developed novel image­
based systems and methods that are usable to extract or seg­
ment such high-aspect-ratio objects from the surrounding 
background and/or foreground portions of the image and/or 
that are usable to analyze low-quality images to extract or 
segment objects from the surrounding background and/or 
foreground portions of the image. Once the objects are seg­
mented from the image, shape, size, orientation and/or other 
relevant information can be determined for individual 
objects, and statistical information about the objects, such as 
numbers, orientations, shapes, dimensions and/or other rel-Likewise, it should be appreciated, that in various exem­

plary embodiments of systems and methods according to this 
invention, objects of any known dimension or limited range of 
dimensions and/or any known shape or limited range of 
shapes can be identified and segmented from an acquired 
image, even if that image is of rather low quality at best and/or 

50 evant parameters about the objects can be developed. For 
example, for high-aspect-ratio objects, such as high-aspect­
ratio crystals, such images can be analyzed to determine 
lengths and other shape and dimension information, which 
can be used to develop particle size distributions and the like. 

FIG. 2 shows one exemplary embodiment of an image 100 
that is typically obtained using the system 200 shown in FIG. 
3. In particular, the image shown in FIG. 2 is an in situ image 
of a plurality of crystals that are growing within a reaction 
vessel at the time the image 100 was captured. In particular, 

is relatively noisy at best. It should further be appreciated that 55 
any other image of one or more objects, beyond in situ 
images, where the brightness, the contrast, the lighting con­
ditions, the focus, and/or any other parameter that affects the 
quality of the image, can vary in unknown and/or uncon­
trolled ways, can also be analyzed using systems and methods 
according to this invention. 

60 the in situ image 100 includes a portion 110 that includes a 
sample crystal. In particular, the image shown in FIG. 2 is of 
very low quality, in that the objects in this image are generally 
out of focus. Additionally the contrast and brightness are 
generally inappropriate, making it difficult to distinguish 

Thus, while the following detailed description focuses pri­
marily on high-aspect-ratio crystal particles having parallel 
sides, it should be appreciated that the subject matter of this 
invention is not limited to such exemplary embodiments. 
Therefore, various exemplary embodiments of systems and 
methods according to this invention can be directed to objects 

65 individual crystals in the foreground of the image from each 
other and from the background of the image. Because the 
image is out of focus, the contrast is too low, and the bright-
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ness is too high, the edges of the crystals are diffuse and 
difficult to identify, even by hand. 

FIG. 3, as outlined above, illustrates one exemplary 
embodiment of a system 200 that is useable to perform a 
suspension crystallization process, as well as to capture an in 
situ image of that process and to analyze that image to ulti­
mately obtain information on the crystallization process, 
including particle size distribution and the like. As shown in 
FIG. 3, the system 200 includes a reaction vessel 210 having 
a reaction space or interior 212. The reaction vessel 210 is 
surrounded by a temperature control jacket 220. In a crystal­
lization process, a solution from which at least one compo­
nent is to be crystallized is placed into the reaction space 212. 
A digital camera or other digital image capture device 230 is 
arranged adjacent to an optical flat 214 of the reaction vessel 
210 so that it can capture an image of the interior 212 of the 
reaction vessel 210. The image capture device 230 outputs a 
captured digital image as an array of pixels over a signal line 
232 to an image analysis system 300. The image analysis 
system 300, which will be described in greater detail below, 
analyzes the digital image provided by the image capture 
device 230 and generates one or more process and/or device 
control signals and/or one or more sets of statistical informa­
tion about the crystallization process occurring within the 
reaction vessel 210. This information can either be output 
over a signal line 247 to the controller 240 and/or can be 
output over a signal line 410 to a data sink 400. 

As indicated above, the reaction vessel 210 includes a 
reaction space 212 in which a solution containing a chemical 

10 
connected to temperature probes 241 and 244, respectively. 
The controller 240 inputs the sensed temperature information 
from the temperature sensors 242 and 245, along with the 
process control signals and/or the statistical information from 

5 the image analysis system 300 over the signal line 247, and 
outputs various process and/or device control signals, includ­
ing control signals over the signal lines 248 and 249 to the 
mixing valve 222 and/or to the impeller motor 216. Based on 
the control signals output on the signal lines 248 and 249 from 

10 the controller 240, the controller 240 can, among other 
actions, turn on the impeller motor 216 and/or can adjust the 
temperature of the temperature control fluid flowing through 
the jacket 220. 

In operation, after a solution to be crystallized is introduced 
15 in to the reaction space 212 of the reaction vessel 210, the 

solution is typically slowly cooled by controlling the tem­
perature of the temperature control fluid flowing through the 
inlet 227 into the interior of the temperature control jacket 
220. As the temperature of the solution is reduced gradually, 

20 at least one of the chemicals or components in the solution 
begins crystallizing. As the crystallization process continues, 
various images of the state of the crystallization process are 
captured using the image capture device 230. The images are 
transmitted from the image capture device 230 over the signal 

25 line 232 to the image analysis system 300, which analyzes the 
images and generates various process information signals, 
which are output over the signal line 247 to the controller 240. 
As the crystallization process continues, temperature signals 
over the signal lines 243 and 246 and the process information 

30 signals over the signal line 247 are combined by the controller 
240 to generate control signals, for example, to adjust the 
temperature of the fluid flowing from the mixing valve 220 
into the inlet 227 or to tum on the impeller 216. In many 
crystallization processes, the controller 240 at least in part 

to be precipitated out as crystals is placed. The optical flat or 
optical device or other viewing structure 214 provides a gen­
erally transparent and generally distortion-free view into the 
reaction space 212 of the reaction vessel 210 and is formed in 
the side of the reaction vessel 210. For large, production-size 
reaction vessels 210, the reaction vessel will have a transpar­
ent window adjacent to the optical flat to allow a view into the 
interior 212. Of course, the window and the optical flat can be 
combined into a single structure. However, if the reaction 
vessel is clear, as is common with small, research-oriented 
reaction vessels, no window into the interior 212 of the reac- 40 

tion vessel 210 is needed. An impeller 217, driven by an 
external motor 216, is positioned in the reaction space 212 of 
the reaction vessel 210. The impeller217 is useable to stir the 
solution placed inside the interior 212 of the reaction vessel 
210. 

35 operates the mixing valve 222 and/or the impeller 216 to 
maintain the aspect ratio of the crystals within the desired 
range. 

As outlined above, the image capture device 230 captures 
in situ images of the state of the crystallization process. These 
images are digital images comprising a 2-dimensional array 
of pixels, where each pixel has a grayscale or intensity value, 
which is typically a value between O and 255 (2 8 values). This 
image data is output to the image analysis system 300, over 
the signal line 232. The image analysis system 300 analyzes 

45 the digital image to locate probable crystals within the image, 
to extract shape information about those crystals from the 
image, and possibly to generate statistical values based on the 
various shape parameters. 

The temperature control jacket 220 typically extends 
around the entire exterior of the reaction vessel 210, possibly 
except in the location of the optical flat or other optical device 
214. The temperature control jacket 220 typically has a hol­
low interior having an inlet 227 and an outlet 229. A tempera­
ture control fluid, such as water or the like, can be introduced 
through the inlet 227 to raise, maintain, or cool the tempera­
ture of the solution placed in the reaction space 212 of the 
reaction vessel 210. As shown in FIG. 3, a mixing valve 222 
is connected to the inlet 227. A cold fluid supply line 224 and 
a warm fluid supply line 226 are each connected to the mixing 
valve 222 and supply, respectively, cold and warm tempera­
ture control fluid to the mixing valve 222. Depending on the 
position of the mixing valve 222, various proportions of the 
hot and cold temperature control fluids are mixed together to 
provide a desired flow, at a desired temperature, of the tem­
perature control fluid from the mixing valve 222 through the 
inlet 227 into the interior of the temperature control jacket 
220 and out through the outlet 229. 

The controller 240 is also connected to a pair of tempera­
ture sensors 242 and 245 over a pair of signal lines 243 and 
246, respectively. The temperature sensors 242 and 245 are 

It should be appreciated that, in various exemplary embodi-
50 ments, the image analysis system 300 can generate other 

types of signals that can be used in addition to, or in place of, 
the process information signals output on the signal line 247 
to the controller 240. For example, the image analysis system 
300 can be designed to output, after analyzing the captured in 

55 situ images, extracting the shape information from the images 
and generating and analyzing statistical values signals that 
trigger alarms to personnel monitoring the crystallization 
process. Such alarms can indicate that more interactive con­
trol of the process by the monitoring personnel is required, 

60 that the crystallization process can no longer be automatically 
monitored and controlled, or that the crystallization process 
has failed in some marmer. Such signals can also be used to 
indicate that the crystallization process has completed. Such 
signal can either alert the monitoring personnel, who transfer 

65 the contents of the reaction space 210 to a downstream pro­
cess and replenish the contents of the reaction space 212 with 
additional solution to be crystallized. These signals can also 
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be output to the controller 240 or another controller, either of 
which can automatically cause the content of the reaction 
space 212 to be transferred to a downstream process and the 
reaction space 212 prepared to receive, and/or provided with, 
another charge of solution to be crystallized. 

The image analysis system 300 can also output the param­
eter information and/or the statistical information to a data 
sink 400 over a signal line 410. This data sink 400 can be a 
memory or other device usable to indefinitely store that infor­
mation, some other device designed to analyze that informa­
tion and generate one or more control signals or the like, 
similarly to the controller 240. In general, the data sink 400 
can be any known or later device that is able to use informa­
tion that can be output by the image analysis system 300. 

It should be appreciated that the image analysis system 300 
can be implemented using any known or later developed 
device or system of devices, including an application-specific 
integrated circuit (ASIC) or other integrated circuit structure, 
a hardwired electronic or logic circuit such as a discrete 
element circuit, a programmable logic device such as a PLD, 
PLA, FPGA or PAL, a suitably-programmed digital signal 
processor (DSP), a suitably-programmed micro-controller, a 
suitably-programmed microprocessor, a suitably-pro­
grammed special-purpose or general-purpose computer or 
the like, possibly along with one or more related peripheral 
integrated circuit elements. 

When implemented using hardware elements, various 
exemplary embodiments of the image analysis system 300 
will typically include circuit or other hardware structures 
corresponding to one or more of an image segmenting circuit, 
a linear feature analyzing circuit, a linear feature clustering 
circuit, a parameter determining circuit, a statistical measure 
determining circuit, and/or a control and/or information sig­
nal output circuit. When implemented using firmware and/or 
software elements, various exemplary embodiments of the 
image analysis system 300 will typically include one or more 
sets of one or more instructions, including one or more of: 
instructions for segmenting the acquired image, instructions 
for analyzing linear features, instructions for clustering linear 
features, instructions for determining parameters for the seg­
mented or clustered areas of the image, and/or instructions for 
generating and/or outputting control and/or information sig­
nals. 

It should be appreciated that these instructions can be orga­
nized in any known or later developed form, such as, for 
example, routines and/or subroutines, objects, applications, 
procedures, managers and/or the like. The instructions can be 
compiled, and thus suitable for direct execution by a proces­
sor, or can be interpreted by an intermediate program execut­
ing on a processor. 

It should be appreciated that a routine, application, man­
ager, procedure, object or the like can be a self-consistent 
sequence of computerized steps that lead to a desired result. 
These steps can be defined by and/or in one or more computer 
instructions stored in a computer readable medium, which 
encompasses using a carrier wave or the like to provide the 
software instructions to a processor. These steps can be per­
formed by a processor executing the instructions that define 
the steps. Thus, the terms "routine", "application", "man­
ager", "procedure", and "object" can refer to, for example, a 
sequence ofinstructions, a sequence ofinstructions organized 
within a programmed-procedure or progrannned-function, 
and/or a sequence of instructions organized within pro­
grammed processes executing in one or more computers. 
Such routines, applications, managers, procedures, objects or 
the like can also be implemented directly in circuitry that 
performs the procedure. 

12 
In general, any device, system or structure, which is 

capable of implementing a finite state machine that is in tum 
capable of implementing various ones of the flowcharts 
shown in FIGS. 4, 5, 7-12 and/or 27 and 28 and described 

5 below, can be used to implement the image analysis system 
300. It should be appreciated that methods according to this 
invention can be performed by a computer executing one or 
more appropriate programs, by special purpose hardware 
designed to perform such methods, or any combination of 

10 such hardware, firmware and software elements. 
It should further be appreciated that the image analysis 

system 300 can be combined with eitheror both of the camera 
230 and/or the controller 240. For example, the image analy­
sis system 300 and the controller 240 could both be imple-

15 mented using a single programmed processor and related 
peripheral integrated circuit elements, such as in a desktop or 
laptop computer, a server, a network of computers, the Lasen­
tec Particle Vision and Measurement (PYM) system or simi­
lar systems, the Malvern Sysmex FPLA3000 system or simi-

20 lar systems and the Beckman-Coulter RapidVUE system or 
similar systems and the like, which could also incorporate the 
camera hardware. 

It should also be appreciated that, in various other exem­
plary embodiments of systems and methods according to this 

25 invention, material and processes other than crystals in a 
crystallization process can be the subjects of systems and 
methods according to this invention. For example, many 
products obtain strength and other desirable material proper­
ties based on the constituent material being essentially ran-

30 domly distributed, such that the orientations of the material 
object are distributed equally in all directions. For example, 
"felts" of various materials, such as paper, fabrics, engineered 
wood products and the like, obtain strength and other desir­
able material properties in this manner. Typically, the con-

35 stituent objects of these products have high aspect ratios 
and/or have known dimensions or dimensional relationships. 
Accordingly, systems and methods according to this inven­
tion can analyze images of these products to locate and seg­
ment such constituent objects, extract shape information 

40 about those objects and generate statistical information about 
those objects, such as the distribution of orientations of the 
objects. Based on the statistical information, the images can 
be used to inspect the products and determine if the products 
pass inspection or must be rejected. Such information can 

45 also be used to provide process control feedback signals 
and/or to monitor the production processes, as outlined above 
with respect to the crystals and the reaction of the vessel 210. 

In general, regardless of the source of the image data, 
systems and methods according to this invention can be used 

50 to segment such high-aspect-ratio objects and/or objects hav­
ing known dimensional and/or spatial relationships. 

FIG. 4 is a flowchart outlining one exemplary embodiment 
of a method for analyzing images of high-aspect-ratio objects 
and/or for analyzing low-quality images of objects having 

55 known spatial and/or dimensional relationships, and for using 
information extracted from such images. For ease of under­
standing and explanation, the following detailed descriptions 
of the various flowcharts outlining exemplary embodiments 
of methods according to this invention are directed to analyz-

60 ing images containing high-aspect-ratio crystals. However, it 
should be appreciated that the images being analyzed are not 
limited to images of such high-aspect-ratio crystals, as out­
lined above. 

As shown in FIG. 4, beginning in step SlOOO, operation of 
65 the method continues to step SHOO, where an image, such as 

an in situ crystallization image of a crystallization process 
occurring within a reactor vessel or a low quality of a plurality 
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of general objects, is acquired. Then, in step S1200, a plural­
ity of linear features are located within the acquired image. 
Next, in step S1300, the located linear features are analyzed. 
Operation then continues to step S1400. 

14 
hedral or cubic objects will typically have edges that are 
within a defined range of angular orientations to each other, 
that are overlapping for a significant portion of their length, 
and that have a well defined range of possible lengths. It 

5 should be appreciated that, as long as the relationships of the 
edges of the objects can be well defined and will appear in the 
image generally over well defined ranges, systems and meth­
ods according to this invention can be used to locate and 
segment such objects from the background and/or foreground 

In step S1400, sets oflocated linear features are clustered 
into groups based on the analyses of the located linear fea­
tures generated in step S1300. Next, in step S1500, at least 
one parameter is determined for each set of clustered located 
linear features. It should be appreciated that, in various exem­
plary embodiments, these parameters can be, but are not 
limited to, the length and/or orientation of a representative 
line generated for the clustered linear features, a representa­
tive area of image portions associated with clustered linear 
features, length of a major axis, length of a minor axis, and/or 
major/minor axis ratio of an ellipse that encompasses the 15 

clustered linear features, or the like. Then, in step S1600, at 
least one statistical measure for the crystals within the reactor 
vessel can be determined based on the at least one determined 
parameter for the sets of clustered linear features. Operation 
then continues to step S1700. 

10 portions of the acquired image. Accordingly, in step S1200, 
the image is inspected to identify image features. Then, in 
steps S1300 and S1400 the identified image features are ana­
lyzed to locate image features that satisfy the particular spa-
tial and/or dimensional relationships. 

Line segments are commonly used as inputs to higher-level 
processes in automated image analysis methods. Accord­
ingly, many different methods have been developed for 
extracting line segments from images. These methods can be 
roughly divided in to three categories: 1) Hough-transform 

20 based methods, 2) methods based on edge-linking followed 
by line segment grouping, and 3) gradient-based methods. 
Various exemplary embodiments of systems and methods 
according to this invention use a particular type of gradient­
based method, the Burns line finder, as disclosed in "Extract-

In step Sl 700, at least one controllable actuator, process 
variable, alarm and/or the like is controlled based on at least 
one of the at least one determined statistical measure and/or at 
least one of the at least one determined parameter. For 
example, in the system 200 shown in FIG. 2, at least one 
process variable for the crystallization process occurring 
within the reactor vessel can be modified based on at least one 
of the at least one determined statistical measure and/or at 
least one of the at least one determined parameter. It should be 
appreciated that, in the process shown in FIG. 3, the process 
variable can be cooling temperature, cooling rate, stirring rate 
or the like. The process variable can also be an indication of 
whether the crystallization process has completed or not. It 
should be appreciated that any useful process variable that 
affects and/or controls the crystallization process can be 
modified according to this invention. Then, in step S1800, a 
determination is made whether another image is to be 
acquired. If so, operation returns to step SHOO. Otherwise, 
operation continues to step S1900, where operation of the 
method ends. 

It should be appreciated that, in various other exemplary 
embodiments, the controllable actuator can be a valve, a 
material handling system, a motor, a pump, a compressor or 
the like. For example, in the system 200 shown in FIG. 2, the 
controllable actuator can include the mixing valve 222, the 
impeller 216, a drain valve useable to remove the contents of 
the reaction space 212, a supply valve useable to supply a new 
charge of solution to the reaction space 212 or the like. Alter­
natively, one or more alarms can be triggered, such as an 
indicating device being activated, to acquire the attention of 
one or more monitoring personnel. It should also be appreci­
ated that, if the statistical information is not desired or needed, 
step S1600 can be omitted. 

25 ing Straight Lines," J. B. Burns et al, IEEE Trans. Pattern 
Anal. Machine Intell., 8(4); 425-455, July 1986, which is 
incorporated herein by reference in its entirety. The inventors 
have discovered that, for the low quality, noisy images and/or 
images of high-aspect-ratio objects for which systems and 

30 methods according to this invention are particularly useful, 
the Burns line finder is advantageous over Hough-transform 
based methods, because it is scale-independent, has lower 
computational and memory requirements, and finds line end 
points more readily. The Burns line finder is unique in that it 

35 detects lines on the basis of image intensity gradient direc­
tion, whereas most line-finders are based on image intensity 
gradient magnitude. Accordingly, the Burns line finder is able 
to detect subtle linear features that would be missed by other 

40 

line finding techniques. 
As outlined above, images analyzable using systems and 

methods according to this invention include in situ images 
acquired by viewing the interior of the reaction vessel 210 
through the optical flat 214. Typically, a light source is 
directed through the optical flat 214 and the light reflecting off 

45 the various crystals within the reaction space 212 of the 
reaction vessel 210 is directed back to the image capture 
device 230. It should be appreciated that the amount oflight 
directed back to the image capture device 230, i.e., the bright­
ness of the image, and the contrast in the image, are typically 

50 functions of the instantaneous solids concentration within the 
solution within the reaction vessel 210. 

The exemplary method according to this invention outlined 
above with respect to FIG. 4, and especially step S1200, is 55 

based on the assumption that the object to be extracted or 
segmented has known spatial and/or dimensional relation­
ships. For example, a high-aspect-ratio, rod-like or needle­
like object can be approximated as a group of two or more 
spatially adjacent lines having similar spatial orientations and 60 

similar lengths. It should be appreciated that other types of 
objects can have other types of known spatial or dimensional 
relationships. For example, while needle-like or rod-like 
objects such as crystals have edges that are generally rela­
tively long, substantially parallel over their length, and 65 

spaced closely together, other types of objects may have other 
spatial and/or dimensional relationships. For example, tetra-

That is, when most of the chemicals are still in solution and 
few crystals have formed, the absence of opaque, reflective 
material results in only a small amount oflight being reflected 
and returning to the image capture device. Thus, the images 
typically are dim. As the crystallization reaction continues, 
the solids concentration of the solution continues to increase, 
as do the number and size of the crystals. As the solids 
concentration increases, less of the light penetrates deeply in 
to the reaction vessel 210. In addition, the light that does 
penetrate into the reaction vessel 210 typically reflects off a 
crystal suspended in the crystallization solution. This light is 
rarely directed back towards the image capture device 230. 
Rather, this light is typically reflected laterally or deeper in to 
the solution. 

Thus, as the solids concentration increases, both the bright­
ness and the overall contrast in the image can change signifi-
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cantly. Because the contrast and brightness of the image vary 
substantially during the crystallization process, methods that 
rely on the contrast magnitude, which is a function of overall 
contrast and image brightness, becomes problematic. To use 
such methods, the parameters for the gradient magnitude 5 

image intensity analysis need to be continually adjusted 
based on the instantaneous solids concentration. This, of 
course, is extremely difficult. It should be appreciated that any 
other image, beyond in situ images, where the brightness, the 
contrast, the lighting conditions, the focus, and/or any other 10 

parameter that affects the quality of the image, can vary in 
unknown and/or uncontrolled ways, can also be analyzed 
using systems and methods according to this invention. 

Next, in step S1220, pixels having a gradient magnitude 
that is below a determined threshold are excluded from fur­
ther processing. Referring to FIG.14, the regions in the upper 
left hand comer and the lower right hand comer, while having 
gradient directions, have very small changes in image value. 
Thus, these regions have relatively small gradient magnitudes 
and thus are excluded from further processing. 

Then, in step S1230, a first or next gradient direction quan­
tization map is selected. Operation then continues to step 
S1240. It should be appreciated that the gradient direction, 
which can take any value between 0° and 360°, can be divided 
into any number of quantization sets, and that the 0° point of 
the circle can be set at any location. It should further be 
appreciated that, because the gradient direction divisions and In contrast, the image intensity gradient direction rarely 

changes significantly, regardless of any variation in the image 
intensity and in the overall image contrast. That is, the image 
intensity gradient direction is typically insensitive to changes 

15 the orientation of the 0° direction are somewhat arbitrary, it is 
possible to divide the pixels associated with a single edge in 
the image between two quantization groups based on small 
variations in the gradient direction. Multiple gradient direc-in contrast and/or to changes in brightness. Thus, the image 

intensity gradient direction technique is particularly useful 
when analyzing low quality, noisy, poorly lit images, images 20 

taken when the lighting conditions are unknown or uncon­
trolled, or the like. However, it should be appreciated that 
image intensity gradient magnitude techniques can be used so 
long as the image intensity and the image contrast of the 
captured images are appropriately adjusted orotherwise com­
pensated for. 

tion maps can be used to avoid this problem. 
In various exemplary embodiments of systems and meth-

ods according to this invention, the 360° gradient circle is 
divided into six 60° quantization sectors. To create two dif­
ferent quantization maps, two different 0° starting points, 
offset by 30°, are selected. However, it should be appreciated 

25 that any number of different quantization maps, with different 
0° starting positions, different numbers of divisions, or bins, 
extending over different angular ranges and the like can be 
used to create any set of desired quantization maps. FIG. 5 outlines one exemplary embodiment of a method 

according to this invention for locating linear features within 
the acquired image. As shown in FIG. 5, beginning in step 
S1200, operation continues to step S1210, where the direc­
tion and magnitude of the intensity gradient is determined for 
each pixel. This can be most easily seen in FIGS. 13 and 14. 
FIG. 13 shows an enlarged portion of an acquired image, 
where the individual pixels can be seen. The image gradient is 
a function of the image values, where low image values cor­
respond to dark areas and high image values correspond to 
light areas. The gradient direction typically points from the 
low image value pixels towards the high image value pixels. 

For the image portion shown in FIG. 13, the direction of the 
image gradient is determined according to the technique dis­
closed in the incorporated Bums reference, resulting in the 
gradient map shown in FIG. 14. In the portion of image data 
shown in FIG. 13, a streak of relatively darker pixels extends 
from around the mid-point of the left side of the image to 
about the mid-point of the top side of the image. Parallel to 
that relatively darker streak, a relatively lighter streak extends 
from the lower left hand corner to the upper right hand corner 
of the image. The gradient direction typically extends from a 
relatively darker pixel to a relatively lighter pixel. Because, as 
outlined above, pixel values typically decrease to indicate 
darker image regions, the gradient direction typically extends 
from pixels having relatively low image values to pixels hav­
ing relatively high image values. 

As shown in FIG. 14, in the upper left hand and lower right 
hand corners, because the pixels all have similar image values 
the gradient direction is typically nonexistent or randomly 
oriented relative to the adjacent pixels. However, in the diago­
nal region extending from the upper right to the lower left 
portions of the image, there are two regions where the image 
gradient points in roughly the same direction over sets of 
pixels that are at least touching on their vertices. Because, as 
outlined above, the gradient direction typically extends from 
relatively higher valued pixels to relatively lower valued pix­
els, the two circled regions in FIG.14 correspond to the image 
gradient directions extending from the relatively darker 
streak shown in FIG. 13. 

In step S1240, the gradient direction of each pixel is quan-
30 tized based on the selected quantization map. Then, in step 

S1250, adjacent pixels with the same quantized gradient 
direction, i.e., pixels grouped into the same 60° division or 
bin, are grouped into one or more line support regions. Next, 
in step S1260, the line support regions are filtered to remove 

35 noisy and/or non-line-like regions. Operation then continues 
to step S1270. 

It should be appreciated that, in step S1250, the adjacent 
pixels are grouped based on connected component analysis. 
In various exemplary embodiments of systems and methods 

40 according to this invention, 8-way connectivity is allowed, 
such that pixels touching only at a single vertex point having 
the same quantized gradient are nevertheless grouped into the 
same line support region. It should be appreciated that the 
connected component analysis can be limited to 4-way con-

45 nectivity, such that only pixels that share an edge are grouped 
together into line support regions. However, this is likely to 
lead to line support regions that are inappropriately small. It 
should also be appreciated that step S1260 is optional. Thus, 
step S1260 could be skipped and the noisy or non-line-like 

50 regions left in the set ofline support regions developed in step 
S1250. In this case, operation would continue directly from 
step S1250 to step S1270. 

In step S1270, a determination is made whether there are 
any more gradient direction quantization maps that need to be 

55 applied to the determined gradient directions for the image 
pixels. If so, operation returns to step S1230, where a next 
gradient direction quantization map is selected. Otherwise, if 
all of the gradient direction quantization maps have been 
applied, operation continues to step S1280. In step S1280, for 

60 any line support regions, which were generated based on one 
gradient direction quantization map, that overlap one or more 
other line support regions that were generated from other 
gradient direction quantization maps, one line support region 
of each such set of overlapping line support regions is selected 

65 as the representative line support region for that set of over­
lapping line support regions. It should be appreciated that, in 
various exemplary embodiments, this selection is done 
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according to the technique outlined in the incorporated Bums 
reference. It should further be appreciated, that ifonly a single 
quantization direction gradient map is implemented, steps 
S1270 and S1280 can be omitted. In this case, operation 
would continue directly from step S1250 or step S1260 (as 5 

outlined above) to step S1290. 
In step S1290, a representative linear feature is determined 

for each line support region. In various exemplary embodi­
ments, this is done by blob analysis, where, for each line 
support region, an ellipse, having the same geometric 10 

moments as that line support region, is determined. In various 
exemplary embodiments, for each line support region, the 
properties of the best-fit ellipse for that line support region are 
used as the properties of that line support region. That is, the 
major axis of the best-fit ellipse is used as the representative 15 

line, where its length is the length of the major axis, its 
orientation is the orientation of the major axis, its centroid is 
the center of the major axis, and the length of the minor access 
of the ellipse is the width of the representative line. 

This process is shown in FIGS. 15-18. In particular, FIG. 20 

15 shows, in greater detail, the region 110 of the acquired 
image 100 shown in FIG. 2. FIG. 16 shows 15 line support 
regions identified by applying steps S1210-S1280 to the 
image shown in FIG.15. 

FIG. 17 shows the best fit ellipses determined for each of 25 

the 15 line support regions shown in FIG. 16. FIG. 18 shows 
the best fit ellipses and their major axes superimposed on the 
line support regions shown in FIG. 16. FIGS. 17 and 18 thus 
illustrate one exemplary embodiment of determining the rep­
resentative linear feature for each line support region of step 30 

S1290. FIG. 19 shows the linear features determined in step 
S1290 superimposed over the original image data shown in 
FIG. 15, with each of the representative linear features 
labeled 1-15 for the 15 identified line support regions shown 
in FIG.16. 35 

18 
dpn can be determined in a variety of ways. For example, the 
perpendicular distance dPD can be determined by extending 
one line to a point that is perpendicular to one end point of the 
other line and taking the perpendicular distance at that point. 
Moreover, this can be done for both linear features and the 
two perpendicular distances can then be combined and aver­
aged to find an average perpendicular distance. It should be 
appreciated that any other appropriate method for determin­
ing the perpendicular distance dPD can be used. Likewise, an 
end point distance dEP is determined to indicate how far apart 
the nearest end points of the two linear features L1 and L2 are. 
Because there is always some uncertainty in determining the 
end points of the linear features, L1 and L2 , the linear features 
L1 and L2 can be considered to be overlapping if the end point 
distance dEP is negative, or 0, or even positive if the end point 
distance dEP is within an end point threshold Epn· 

As indicated above, once the various linear features are 
extracted from the acquired image, the spatial relationships 
between sets of two or more of the linear features are exam­
ined to: 1) determine if the linear features are co-linear, and 
thus represent portions of the same edge feature of the object 
depicted in the acquired image, or: 2) have the appropriate 
spatial relationship such that the linear features represent two 
different yet related edges on the same object. In various 
exemplary embodiments according to this invention, these 
spatial parameters include orientation offset along the direc­
tion the lines extend in, and offset perpendicular to the linear 
features. 

As shown in FIG. 6, for any pair of two linear features L1 

and L2 , each linear feature L1 and L2 , respectively, will have 
an orientation 8 1 and 8 2 relative to some reference line in the 
image. Each of the linear features L1 and L2 will also have 
respective mid-points (x1 , y1 ) and (x2 , y2).As outlined above, 
there are various ways to determine these spatial parameters. 

FIG. 6 illustrates one exemplary embodiment of a tech­
nique for determining these parameters according to this 
invention. In particular, as shown in FIG. 6, a virtual line Lv is 
defined between the two linear features L1 and L2 . In particu­
lar, the virtual line Lv is defined by determining the length-

FIG. 6 shows a pair of linear features L1 and L2 that are 
representative of a pair of line-like regions that have been 
extracted from a sample image. Each of the linear features L1 

and L2 have an orientation 81 and 82 , respectively, that defines 
the angle that the linear features L1 and L2 make with respect 
to some reference line in the image. Because these images are 
typically digital images comprising a 2-dimensional array of 
pixels, the reference line is typically either horizontal or ver­
tical. However, it should be appreciated that the reference line 
can be at any angle, as the important aspect is not the absolute 
orientation of each of the lines with respect to the reference 
line, but rather the relative orientation of the lines to each 
other. Thus the important feature is the angular difference li.8, 
which is defined as the absolute difference between the two 
orientations 81 and 82 , or: 

40 weighted averages of the positions and orientations of the 
linear features L1 and L2 . Thus, the orientation 8v and the 
mid-point or centroid (xv, y J of the virtual line Lv are defined 

45 

50 

As a result, the absolute orientation of each linear feature L1 

and L2 to the reference line drops out of the equation and is 55 

thus irrelevant. 

as: 

(/1 ,xi)+ (/2 *X2) (1) 
Xv= 

11 +12 

(/1 *Yil+(l2*Y2) (2) 
Yv = 

11 +12 

0v = 
(/1 *01) + (/2 *02) (3) 

11 +12 

where: 
11 and 12 are the lengths of the linear features L1 and L2 ; 

81 and 82 are the orientations of the linear features L1 and 
L2; 

x 1 and x2 are the x-axis positions of the midpoints or cen­
troids of the linear features L1 and L2 ; and 

y 1 and y 2 are the y-axis coordinates of the mid-points of the 
linear features L1 and L2 . 

In addition to the relative orientation between the two 
linear features, the line lengths 11 and 12 and the spatial posi­
tions of the linear features L1 and L2 relative to each other are 
also useful information. Thus, the perpendicular distance dpn 60 

between the linear features L1 and L2 defines their lateral 
spatial offset. If the perpendicular distance dpn is 0, the lines 
are co-linear. Since it is highly unlikely many lines will be 
truly co-linear, a threshold value Epn is typically designated 
such that, when the perpendicular distance dpn is less than the 
threshold Epn, the lines L1 and L2 are considered to be co­
linear. It should be appreciated that the perpendicular distance 

As shown in FIG. 6, the two linear features L1 and L2 have, 
65 respectively, end points p1 and p4 , and p2 and p3 . Each of these 

end points is perpendicularly projected onto the virtual line Lv 
as the points p1 -p4 . The length Iv of the virtual line l)s defined 
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as the shortest line that includes all of the projected end points 
p1-p4 , i.e., in the example shown in FIG. 6, the line extending 
from p2 to p4 . 

FIG. 7 is a flowchart outlining a first exemplary embodi­
ment of a method for analyzing the located linear features 5 

according to this invention. As shown in FIG. 7, beginning in 
step S1300, operation continues to step S1305, where a first or 
next pair oflocated linear features and/or virtual lines, which 
will be described below with respect to step S1330, are 
selected. Then, in step S1310, one or more co-linearity 10 

parameters are determined for the selected pair oflinear fea­
tures and/or virtual lines. Next, in step S1320, a determination 
is made whether the determined co-linearity requirements are 
met by the determined co-linearity parameters for selected 
pair of linear features and/or virtual lines. If so, operation 15 

continues to step S1330. Otherwise, operation jumps directly 
to step S1335. 

In step S1330, a representative virtual line is determined 
for the selected pair of co-linear linear features and/or virtual 
lines, as outlinedabovewithrespectto FIG. 6. Operation then 20 

continues to step S1335, where a determination is made 
whether there are any more pairs that need to be selected. If 
so, operation jumps back to step S1305. Otherwise, operation 
continues to step S1340. 

It should be appreciated that, in various exemplary embodi- 25 

ments of systems and methods according to this invention, 
only pairs oflinear features are selected and analyzed in steps 
S1305-1330. Thus, in such exemplary embodiments, each 
virtual line represents exactly two lines that are determined to 
be co-linear. While this is usually sufficient, it may be desir- 30 

able to generate virtual lines that represent the combination of 
three or more lines that meet the co-linearity requirements. 
This may be desirable when analyzing extremely noisy or 
poorly lit images, images anticipated to have many overlap­
ping objects, or images having extremely long objects, where 35 

it may be difficult to generate at most two lines that represent 
the full extent of the length of the object. 

Accordingly, in various other exemplary embodiments, 
after a virtual line is created in step S1330, that first virtual 
line is added back into the list oflinear features and is used as 40 

one element with each of the other linear features to deter­
mine if any of the other linear features, when paired with that 
first virtual line, also meet the co-linearity requirements. If so, 

20 
Next, in step S1345, a determination is made whether the 
selected pair of elements is valid. If not, operation jumps 
directly to step S1375. Otherwise, if the selected pair of 
elements is valid, operation continues to step S1350. 

It should be appreciated that a selected pair of elements is 
valid if it contains two linear features. A selected pair of 
elements is also valid if it contains a linear feature and a 
virtual line that does not contain the selected linear feature as 
a constituent linear feature of that virtual line. Finally, a 
selected pair of virtual lines is valid so long as the same linear 
feature does not appear in the set of constituent linear features 
for both virtual lines. Thus, a selected pair of elements would 
be invalid if a virtual line C was developed from linear fea­
tures A and B, and the pair comprised the virtual line C and 
either of the linear features A or B. The selected pair of 
elements would also be invalid if the virtual line C discussed 
above was paired with a virtual line E that was developed 
from linear features A and D. Since the linear feature A is a 
constituent of both the virtual lines C and D, the virtual lines 
C and D form an invalid pair. 

In step S1350, one or more parallelism parameters for the 
selected pair of linear features and/or virtual lines are deter­
mined. Next, in step S1360, a determination is made whether 
the determined parallelism requirements are met. If so, opera­
tion continues to step S1370. Otherwise, operation jumps 
directly to step S1375. 

It should be appreciated that the "parallelism" require-
ments will typically change depending on the expected spa­
tial relationships between the edges of the objects appearing 
in the acquired images. For example, for high-aspect-ratio 
crystals or other high-aspect-ratio objects, the linear features 
and/or virtual lines are typically desirably parallel, or within 
a few degrees of parallel. In contrast, in other types of struc­
tures, the linear features may meet at an angle. For example, 
a tetrahedral crystal will have the edges meeting within a 
defined angular range based on the last structure of the crys-
tal. While the linear features will not be parallel, they will 
need to be within a few degrees of the appropriate angle to 
properly be considered as potential lines representing the 
edges of the crystal. 

In step S1370, because the parallelism requirements have 
been met in step S1360, a significance measure is determined 
for the selected pair of elements and the selected pair of 
elements and their determined significance value are added to in various exemplary embodiments, a second virtual line is 

created that represents the combination of the first virtual line 
with the selected linear feature. That first virtual line may be 
maintained or may be discarded. In various other exemplary 
embodiments, a second virtual line is created that represents 
the virtual line generated from all three ( or more) linear 
features. Again, the first virtual line may be maintained or 
may be discarded. 

45 a list of pairs of elements that meet the parallelism require­
ments. Then, in step S1375, a determination is made whether 
any more pairs of linear features and/or virtual lines need to 
be selected and analyzed. If so, operation returns to step 
S1340. Otherwise, operation continues to step S1380, which 

50 returns operation of the method to step S1400. 

In various other exemplary embodiments, after all of the 
pairs oflinear features have been selected and all of the virtual 
lines for those linear features have been generated, the virtual 
lines are examined to determine if any pair of virtual lines 55 

contains the same linear features. If so, a new virtual line is 
created, as outlined above with respect to FIG. 6, using the 
two virtual lines instead of two linear features. This process 
can, of course, then be repeated to determine if the new virtual 
line shares a constituent linear feature with any other virtual 60 

lines. If so, the process can be repeated. It should be appre­
ciated, that in such exemplary embodiments, the original 
virtual lines can either be maintained or discarded as desired. 

FIG. 20 illustrates the virtual lines determined from the 
linear features shown in FIG. 19. In particular, the virtual 
lines shown in FIG. 20 were determined by using only linear 
features to determine the virtual lines. That is, no pairs of 
virtual lines with either linear features or other virtual lines 
were used to determine the virtual lines shown in FIG. 20. As 
shown in FIG. 20, six pairs of the linear features shown in 
FIG. 19 meet the co-linearity requirements, resulting in the 
six virtual lines 16-21 shown in FIG. 20. In particular, virtual 
line 16 corresponds to linear features 1 and 2, virtual line 17 
corresponds to linear features 8 and 13, virtual line 18 corre-
sponds to linear features 9 and 15, virtual line 19 corresponds 
to linear features 10 and 12, virtual line 20 corresponds to 
linear features 12 and 14, and virtual line 21 corresponds to In step S1340, a first or next pair of elements, selected from 

the located linear features and/or the virtual lines, is selected. 
Thus, this pair of elements can have either two linear features, 
two virtual lines, or one linear feature and one virtual line. 

65 linear features 14 and 15. 
FIG. 21 shows the pairs of linear features and or virtual 

lines that met the parallelism requirements and thus the pairs 
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of elements for which significance measure values were 
determined. In the exemplary embodiment shown in FIG. 21, 
these pairs oflinear features and/or virtual lines include linear 
feature pairs 10 and 14, and 12 and 15, and virtual line pairs 
18 and 19, 18 and 20, and 19 and 21. It should be appreciated 5 

that, although they would meet the parallelism requirements, 
virtual line pairs 19 and 20, 18 and 21, and 20 and 21 are not 
valid, and thus were skipped. In particular, lines 18 and 21 
share linear feature 15, while virtual lines 19 and 20 share 
linear feature 12 and virtual lines 20 and 21 share linear 10 

feature 14. 

22 
axis superimposed over those line support regions. FIG. 26 
shows the major axis, labeled 1, superimposed over the image 
data shown in FIG. 15. 

Next, in step S1450, any pairs of elements within the list of 
pairs of elements meeting the parallelism requirement that 
include at least one linear feature in the determined group are 
deleted from the list of pairs of elements. For example, since 
the linear features 9, 10, 12, 14 and 15 are in the determined 
group, the pairs of virtual lines 18 and 19, 18 and 20, 19 and 
21, and20 and 21, as well as the pairs oflinearfeatures 10 and 
14, and 12 and 15, are deleted from the list of pairs of elements 
meeting the parallelism requirements. Then, in step S1460, a 
determination is made whether any pairs remain on the list. If 
so, operation jumps back to step S1410, where the pair of 

15 linear features and/or virtual lines remaining on the list hav­
ing the greatest significance measure value is selected. Oth­
erwise, if there are no pairs remaining on the list, operation 
continues to step S1470. In the exemplary embodiment out­
lined above, looking just at the image data shown in FIG. 15, 

FIG. 8 is a flowchart outlining a first exemplary embodi­
ment of a method for clustering sets oflocated linear features 
according to this invention. As shown in FIG. 8, beginning in 
step S1400, operation of the method continues to step S1410, 
where the pair oflinear features and/or virtual lines having the 
greatest significance measure value is selected from the list of 
pairs as an initial group of elements meeting the parallelism 
requirement. Then, in step S1420, all other pairs of linear 
features and/or virtual lines in the list of pairs of elements 
meeting the parallelism requirements, that also share at least 
one pair element with the selected pair, are identified. It 
should be appreciated that pair element refers both to virtual 
lines, when the selected pair includes one or two virtual lines, 25 

and/or linear features, when the selected pair contains one or 
more linear features. Next, in step S1430, any selected or 
identified linear features are added to the initial group of 
elements, while the constituent linear features of any selected 

20 there are no pairs of elements remaining on the list, so opera­
tion would continue from step S1460 to step S1470. 

or identified virtual line replace those virtual lines in the 30 

initial group of elements. Operation then continues to step 
S1440. 

In step S1470, the aspect ratio of each representative shape 
is determined. In various exemplary embodiments where the 
representative shape is a best-fit ellipse or the like, the aspect 
ratio is the ratio of the length of the major axis to the length of 
the minor axis. Then, in step Sl 480, any representative shapes 
having a determined aspect ratio that is below a determined 
threshold aspect ratio EAR are discarded. Operation then con­
tinues to step S1490, where operation returns to step S1500. 

FIG. 9 is a flowchart outlining one exemplary embodiment 
of the method for determining the co-linearity parameters of 
step S1310. As shown in FIG. 9, beginning in step S1310, 
operation continues to step S1311, where the angular orien-FIG. 22 illustrates the application of step S1410 to the 

virtual lines and linear features comprising the list of pairs 
meeting the parallelism requirements shown in FIG. 21. That 
is, the pair of linear features and/or virtual lines having the 
greatest significance is the pair of virtual lines 18 and 20. 
Because virtual line pairs 18 and 19, and 20 and 21, are also 

35 tation difference between the linear features (and/or virtual 
lines, if analyzed as described above) of the selected pair of 
linear features (and/or virtual lines) is determined as: 

on the list of pairs of linear features and/or virtual lines that 
40 

meet the parallelism requirements the virtual lines 19 and 21 
are identified in step S1420. FIG. 23 shows the selected and 
identified virtual lines superimposed on the image data shown 
in FIG. 15. FIG. 24 shows the constituent linear features 9, 10, 
12, 14 and 15 of the selected and identified virtual lines shown 

45 
in FIG. 23 superimposed on the image of FIG. 15. FIG. 24 
illustrates, that in step S1430, any virtual lines are replaced 
with their constituent linear features. 

Then, in step S1312, the perpendicular distance dpn 
between the linear features (and/or virtual lines) of the 
selected pair of linear features ( and/or virtual lines) is deter­
mined as shown in FIG. 6. Next, in step S1313, the total line 
position uncertainty ( 0 1 +a2 ) for the linear features (and/or 
virtual lines) of the selected pair of linear features (and/or 
virtual lines) is determined. The line position uncertainty 
values 0 1 and 0 2 for the two linear features (and/or virtual 
lines) 1 and 2 represents the uncertainty of the position of the 
elements 1 and 2, respectively, in the direction perpendicular 

50 to their length. In various exemplary embodiments, for linear 
features, the line position uncertainty a 1 and 0 2 is assumed to 
be equal to one-half of the length of the minor axis of the 
best-fit ellipse for the corresponding linear feature. In various 
other exemplary embodiments, the line position uncertainty 

In step S1440, a representative shape and/or one or more 
representative lines for the group of linear features meeting 
the parallelism requirements are determined based on the 
constituent linear features of that group. In particular, in vari­
ous exemplary embodiments, the underlying line support 
regions, i.e., the connected components, that those linear 
features are representative of are combined and a representa­
tive ellipse, having the same geometrical moments as the 
combined line support regions, is determined. As above, the 
properties of this best-fit ellipse are used as the properties of 
the corresponding representative shape. That is, the length of 
the ellipse's major axis is used as the length of the represen- 60 
tative shape, the length of its minor axis is used as the width 
of the representative shape, its orientation is the orientation of 
the representative shape and its centroid is the center centroid 
of the representative shape. 

55 av for a virtual line Lv is assumed to be one half of the 
length-weighted average of the uncertainties a 1 and 0 2 of its 
constituent linear features L1 and L2 . Operation then contin­
ues to step S1314. 

In step S1314, the endpoint distance dEP between the end­
points of the linear features (and/or virtual lines) of the 
selected pair of linear features ( and/or virtual lines) is deter­
mined as outlined above with respect to FIG. 6. Next, in step 
S1315, the total projected length (IP 1 +IP 2 ) of the two linear 
features (and/or virtual lines) of the selected pair of linear 

FIG. 25 illustrates the connected component line support 65 

regions corresponding to the representative lines 9, 10, 12, 14 
and 15 shown in FIG. 24 and the best-fit ellipse and its major 

features ( and/or virtual lines) is determined as outlined above 
with respect to FIG. 6. Operation then continues to step 
S1316, which returns operation of the method to step S1320. 



US 7,885,467 B2 
23 

FIG. 10 is a flowchart outlining one exemplary embodi­
ment for the method for determining whether the co-linearity 
requirements of step S1320 are met. As shown in FIG. 10, 
operationofthe method begins in step S1320 and continues to 
step S1321, where a determination is made whether the angu- 5 

lar offset or difference li.8 meets the criterion: 

where Eec is a user specified threshold that provides a limit on 
how large the angle can be between the linear features (and/or 10 

virtual lines) before they can no longer be considered to be 
co-linear. If li.8<E8 c operation continues to step S1322. Oth­
erwise, operation jumps directly to step S1324. 

In step S1322, a determination is made whether the per­
pendicular off-set distance dPD is less than the total line posi- 15 

tion uncertainty. That is, whether the perpendicular offset 
distance dPD meets the criterion: 

24 
lines of the selected pair of elements is determined as outlined 
above. Again, this perpendicular distance dPD is the perpen­
dicular distance for a distinct pair of linear features and/or 
virtual lines. Then, in step S1353, a quality of overlap mea­
sure Qp for the linear features and/or virtual lines of the 
selected pair of elements is determined. In particular, in vari­
ous exemplary embodiments, the quality of the overlap is 
defined as: 

where: 
IP 1 and IP 2 are the projected lengths of the pair of selected 

linear features and/or virtual lines onto a new virtual line, as 
outlined above with respect to FIG. 6 for that selected pair of 
virtual lines and/or linear features: and 

Iv is the length of that new virtual line. 
It should be appreciated that this overlap quality measure 

Qp is scale independent, as it depends only on the relative 

If the perpendicular off-set distance dpn is less than the total 
line uncertainty a 1 and 0 2 , operation continues to step S1323. 
Otherwise, operation again jumps directly to step S1324. 

20 
lengths of the lines. Overlapping pairs give a Qp of between 
0.5 and 1. In particular, a value of 0.5 represents that the lines 
overlap only at their endpoints, while a value of 1 represents 
that the lines perfectly overlap. Operation then continues to 

In step S1323, a determination is made whether the ratio of 
the endpoint distance over the projected lengths of the two 

25 
linear features and/or virtual lines is less than a user specific 
endpoint off-set threshold Ee. That is, whether the endpoint 
offset distance dEP meets the criterion: 

step S1354, which returns operation of the method to step 
S1360. 

FIG. 12 is a flowchart outlining one exemplary embodi­
ment of a method for determining if the parallelism require­
ments of step S1360 are met. As shown in FIG. 12, operation 
of the method begins in step S1360, and continues to step 

This criterion will always be met if the end point distance is 
negative, i.e., if the linear features (and/or vertical lines) are 
overlapping. Ifso, operation jumps to step S1325. Otherwise, 
operation continues to step S1324. In step S1324, at least one 

30 
S1361, where a determination is made whether the angular 
orientation difference li.8meets the criterion: 

of the co-linear requirements was not met. Accordingly, 35 

operation of the method returns to step S1335. In contrast, in 
step S11325, all of the co-linearity requirements were met. 
Accordingly, operation of the method returns to step S1330. 

It should be appreciated that, while the steps outline in 
FIGS. 9 and 10 are shown distinct from each other for ease of 40 

understanding and explanation, in a typical implementation 

where E8p is a user specified threshold. If the absolute value of 
the angular orientation difference li.8 is less than E8p, opera­
tion continues to step S1362. Otherwise, operation jumps to 
step S1364. 

In step S1362, a determination is made whether the ratio of 
the perpendicular off-set distance dpn to the length of the new 
virtual line Iv is less than a user specified threshold EAR. That 
is whether the perpendicular off set distance dpn meets the 
criterion: of the steps outlined in FIGS. 9 and 10, such as in a pro­

grammed microcomputer, microprocessor or the like, steps 
S1311-S1315 and steps S1321-S1323 would typically be 
interleaved. For example, step S1321 would be interleaved 
between steps S1311 and 1312. Similarly, step S1322 would 
be interleaved between steps S1313 and 1314, while step 
S1323 would be interleaved between steps S1315 and 1316. 

45 If so, operation continues to step S1363. Otherwise, operation 
again jumps directly to step S1364. 

In this way, after each set ofinformation sufficient for the next 
test is determined, it is immediately tested to determine if that 50 

co-linearity requirement is met. If not, there is no need to 
determine the other sets of information and operation can 
immediately jump to step S1324. In this way, ifa pairoflinear 
features and/or virtual lines fails to meet a previous co-lin­
earity requirement, it is not necessary to determine the sub- 55 

sequent co-linearity parameters or perform the further analy-
sis for the subsequent co-linearity requirements. 

In step S1363, a determination is made whether the overlap 
quality measure Qp is greater than the user specified quality 
threshold Ep. That is whether the overlap quality measure Qp 
meets the criterion: 

If so, all of the angularity requirements are met and operation 
jumps to step S1365, which returns control of the method to 
step S1370. Otherwise, operation continues to step S1364. 
Step S1364, which is reached when any one or more of the 
parallelism requirements are not met, returns operation of the 
method to step S1375. 

It should be appreciated that, in various exemplary embodi­
ments according to this invention, to obtain appropriate 
results, the overlap quality threshold Ep should be quite high, 
such as, for example, on the order of0.86 or higher. 

FIG. 11 outlines one exemplary embodiment of a method 
for determining the angularity parameters of step S1350. As 
shown in FIG. 11, beginning in step S1350, operation of the 60 

method continues to step S1351, where the angular orienta­
tion difference li.8 between the linear features and/or virtual 
lines of the selected pair of elements is determined. In par­
ticular, li.8 is determined as outlined above, except that the 
input angles 81 and 82 represent the orientations of a different 

The significance measures of the parallel pairs of elements 
65 are used to determine the order in which the parallel pairs are 

selected for clustering. The significance measure of each pair 
of elements that meet the linearity requirements is based on 

set of elements. Next, in step S1352, the determined perpen­
dicular distance dpn between the linear features and/or virtual 
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erwise, the linear features of the selected pair of linear fea­
tures are perpendicularly too far apart and operation again 
jumps to step S1365. 

In step S1340, a determination is made whether the per-

the probability that that pair of linear features and/or virtual 
features will occur. Thus, the significance measure is deter­
mined using a probability-based metric suggested in "3-Di­
mensional Object Recognition from Single Two-Dimen­
sional Images", D. G. Lowe,Artificial Intel!., 31(3): 355-395, 
1987 ., which is incorporated herein by reference in its 
entirety. In particular, the metric suggested by Lowe for the 
significance S is: 

s~ 180° 12 mj(4t,.0dpdlm=), 

5 pendicular distance dpn is less than or equal to a co-linear 
perpendicular distance threshold Eco· If so, the linear features 
of the selected pair oflinear features are co-linear and opera­
tion jumps to step S1445, where the co-linear classification is 
assigned to the selected pair. Operation then again jumps to 

where: 
lm,n is the length of the shorter linear feature and/ or virtual 

line in the pair of linear features and/or virtual lines: 

10 step S1365. If not, the linear features of the selected pair of 
linear features are not collinear but may be overlapping. 
Accordingly, operation continues to step S1350, where a 
determination is made whether the determined distance 

!max is the length of the longer one of the pair of linear 
15 

features and/or virtual lines; and 
ll8, as outlined above, is a magnitude of the angular differ­

ence, in degrees, in the orientations of the two lines. 
It should be appreciated that this metric is based on the 

assumption that the line orientations are uniformly distrib- 20 
uted and that the density of line segments of lengths that are 
greater than a given length I is 1/12

. This significance measure 
gives higher significance to pairs oflonger linear features or 
virtual lines. It should be appreciated, that in general, the 
significance comes into play only when there is a conflict 25 
between two high quality pairs or when two high quality pairs 
are mutually exclusive. As outlined above, these conflicts 
arise because the identified parallel pairs can include both 
virtual lines as well as individual linear features. Thus, if a 
given linear feature is a member of a high quality parallel pair, 30 
but is also one of the constituents of a virtual line that is also 
a member of another high quality pair, the significance mea­
sure will favor the interpretation that leads to the longer 
object. 

FIG. 27 is a flowchart outlining a second exemplary 35 
embodiment of a method for analyzing located linear features 
of step S1300 according to this invention. As shown in FIG. 
27, in this second exemplary embodiment of the method for 
analyzing located linear features, operation again begins in 
step S1300 and continues to step S1305, where a first or next 40 
pair of linear features is selected. Then, in step S1310, the 
angular similarity or angular orientation difference ll8 is 
determined for the pair of selected linear features. Next, in 
step S1315, a determination is made whether the angular 
similarity or angular orientation difference ll8 is less than or 45 
equal to a user specified angular similarity threshold EAs- If 
not, the selected pair of linear features have too large of an 
angular orientation difference and therefore cannot be co­
linear or parallel. Accordingly, operation jumps to step 
S1365. Otherwise, if the angular similarity or angular orien- 50 
tation difference ll8 is less than the user specified threshold 
EAs, operation continues to step 1320. 

In step S1320, the distance between the nearest end points 
dEP for the pair of selected linear features is determined, as 
outlined above with respect to FIG. 6. Next, in step S1320, a 55 

determination is made whether the distance between nearest 
end points dEP is less than the user specified end point offset 
threshold EEP· If so, operation continues to step S1330. Oth­
erwise, if not, the linear features of the selected pair oflinear 
features are spaced too far apart. Accordingly, operation again 60 

jumps to step S1365. 
In step S1330, the perpendicular distance dpn between the 

pair of selected linear features is determined, as outlined 
above with respect to FIG. 6. Then, in step S1335, a determi­
nation is made whether the perpendicular distance dEP is less 65 

than or equal to a user specified perpendicular distance 
threshold Epn• If so, operation continues to step S1340. 0th-

between nearest end points dEP is less than or equal to a user 
specified overlapping distance Eov· If so, operation continues 
to step S1355, where the selected pair of linear features is 
assigned the overlapping classification. Operation then jumps 
to step S1365. If not, operation jumps to step S1360, where 
the selected pair of linear features is assigned the non-over­
lapping classification. Operation then continues to step 
S1365, where a determination is made whether there are any 
more pairs of linear features to be selected. If so, operation 
jumps back to step S1305. Otherwise, operation continues to 
step S1370, where operation of the method returns to step 
S1400. 

FIG. 29 shows another set ofline support regions extracted 
from the image shown in FIG. 13, as outlined above with 
respect to FIGS. 5 and 16. In the exemplary image shown in 
FIG. 29, the connected component line support regions and 
the major axes are also shown, as outlined above with respect 
to FIGS. 5, 17 and 18. In FIG. 29, some of the various 
classifications, as outlined above with respect to FIG. 27, are 
shown relative to various pairs of the linear features. In par­
ticular, FIG. 29 illustrates various co-linear pairs, including 
pairs that are spaced apart and pairs that are partially over­
lapping. FIG. 29 also illustrates various relationships that are 
classified as overlapping and relationships that are classified 
as non-overlapping. 

FIG. 28 is a flowchart illustrating a second exemplary 
embodiment of a method for clustering sets of located linear 
features of step S1400 according to this invention. As shown 
in FIG. 28, in the second exemplary embodiment of the 
method of clustering sets oflocated linear features, operation 
begins in step S1400 and continues to step S1410, where one 
or more of the various different types of classifications, such 
as, for example, co-linear, overlapping or non-overlapping, 
are selected for clustering. Typically, in various exemplary 
embodiments of systems and methods according to this 
invention, the co-linear and overlapping classification types 
are selected for clustering, while the non-overlapping classi­
fication is not. 

Then, in step S1420, for each classification, a union of all 
pairs that have been assigned that classification is created. 
Thus, when the co-linear and overlapping classification are 
selected, unions like those shown in FIG. 30 are created. As 
shown in FIG. 30, various linear features may be involved in 
one or more linear pairs and may be involved in one or more 
overlapping pairs. Thus, each linear feature may appear zero, 
once or more than once in each of the unions of the different 
classifications. 

Next, in step S1430, networks of directly and indirectly 
connected linear features within the created unions are iden­
tified. For example, given the unions shown in FIG. 30, the 
two networks shown in FIG. 30 can be generated. As shown in 
FIG. 30, the co-linear pairs 1, 2 and 2, 4 form an initial 
network. The overlapping linear feature pairs 1 and 10, 2 and 
3 and 4 and 6 can be added to that network, because at least 
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least ordinary skill in the art. Accordingly, the exemplary 
embodiments of the invention, as set forth above, are intended 
to be illustrative, not limiting. Various changes may be made 
without departing from the spirit or scope of the invention. 

one linear feature of each of those pairs already appears in the 
network begun by analyzing the union of the co-linear pairs. 
Additionally, because the linear feature 6 now appears in the 
network, the co-linear pair 5, 6, which could not previously be 
added to the network, can be added to the network. This 
continues until no further co-linear or overlapping pairs can 
be added to the network in view of the previous additions to 
the network. Once that network has completed, another net­
work can be begun, such as the network 7, 9 shown in FIG. 3 0. 
Operation then continues to step S1440. 

5 Therefore, the invention is intended to embrace all known or 
earlier developed alternatives, modifications, variations, 
improvements and/or substantial equivalents. 

The invention claimed is: 

In step S1440, a first or next one of the identified networks 

1. A method for locating objects in an image containing at 
10 least one object to be located, comprising: 

is selected. Then, in step S1450, the linear features, or more 
particularly, the line support regions underlying those linear 
features, within the selected network are clustered to form a 
single line support region, as shown in FIG. 31. Next, in step 15 

S1460, a determination is made whether there are any more 
networks identified in step S1430 that need to be selected. If 
so, operation returns to step S1430. Otherwise, operation 
continues to step S1470. 

In step S1470, a representative shape is determined for 20 

each cluster oflinear features, or more particularly, the com­
bined line support regions underlying those clustered linear 
features. Thus, as shown in FIG. 31, a representative best-fit 
ellipse can be determined for the clustered line support 
regions shown in FIG. 31. As outlined above, while various 25 

exemplary embodiments use the blob analysis technique, it 
should be appreciated that other shape determining tech­
niques can be used. It should be further appreciated that, as 
outlined above, once the best fit ellipse is determined, a major 
axis can be determined for that best fit ellipse, as well as a 30 

minor axis, a centroid and an orientation. Next, in step S1480, 
any linear features that do not appear within the selected 
classifications and that do not meet one or more user defined 
thresholds for major axis length, aspect ratio, i.e., the ratio 
between the length of the major axis and the length of the 35 

minor axis, as outlined above, or the like, are discarded. The 
remaining lines for the representative shapes represent the 
determined object lengths, centers and orientations. FIG. 32 
shows the representative lines, i.e., the major axes of the 
determined best-fit ellipses, superimposed on the image 40 

shown on FIG. 15. Operation then continues to step S1490, 
where operation returns to step S1500. 

FIGS. 33-36 illustrate another sample image analyzed 
using the methods outlined above with respect to FIGS. 4, 5 
and 7-12. Beginning with therawimageinFIG. 33, a plurality 45 

oflinear features are determined from that image data. FIG. 
34 shows the determined linear features superimposed on the 
image shown in FIG. 33. Next, as shown in FIG. 35, a plural-
ity of virtual lines representing co-linear pairs of co-linear 
linear features are determined. FIG. 35 shows these virtual 50 

lines superimposed over the linear features of FIG. 34, which 
are in turn superimposed on the image shown in FIG. 33. The 
virtual lines and linear features are then analyzed to identify 
pairs of the linear features and/or virtual lines that meet the 
parallelism requirements outlined above. These parallel pairs 55 

of linear features and/or virtual lines are then clustered as 
outlined above. In particular, the line support regions for these 
various linear features are clustered to form a combined line 
support region. A best-fit ellipse is then fit to that combined 
line support region and a major axis for that best fit ellipse is 60 

determined. FIG. 36 shows the major axes of the identified 
clusters superimposed over the image data shown in FIG. 33. 

obtaining an image comprising a plurality of pixels having 
image values; 

segmenting the plurality of pixels of the obtained image 
into a plurality of connected pixel components, each 
connected pixel component comprising a subset of the 
plurality of pixels; 

locating, for each of at least some of the connected pixel 
components, at least one linear feature, each located 
linear feature representative of at least one spatial 
parameter of that connected pixel component; 

analyzing the located linear features at least to identify 
pairs oflocated linear features that are co-linear; 

analyzing a set of linear elements to identify pairs of spa­
tially-related linear elements, the set of linear elements 
comprising at least the linear features of at least one 
identified pair of co-linear located linear features; 

identifying subsets of spatially-related located linear fea­
tures based on the identified pairs of spatially-related 
linear elements, each identified subset comprising at 
least two spatially-related located linear features; 

generating, for each identified subset of spatially-related 
located linear features, a combined connected pixel 
component from the connected pixel components repre­
sented by the spatially-related located linear features of 
that identified subset; and 

determining, for each combined connected pixel compo­
nent, at least one linear feature for that combined con­
nected pixel component, wherein the at least one linear 
feature for that combined connected pixel component is 
representative of one of the objects to be located in the 
image. 

2. The method of claim 1, wherein: 
segmenting the plurality of pixels of the obtained image 

into a plurality of connected pixel components com­
prises: 
determining, for each pixel, a gradient direction for the 

image value of that pixel; 
applying at least one gradient direction quantization 

map to the determined gradient directions for the plu­
rality of pixels to generate at least one quantized gra­
dient direction for each of the plurality of pixels; and 

determining, for each applied gradient quantization 
map, at least one connected pixel component within 
the plurality of pixels, based on the quantized gradient 
directions for the plurality of pixels associated with 
that applied gradient quantization map; and 

locating, for each of at least some of the connected pixel 
components, at least one located linear feature occurring 
within the image comprises determining, for each of at 
least some of the determined connected pixel compo-
nents, at least one linear feature for that connected pixel 
component. While this invention has been described in conjunction 

with the exemplary embodiments outlined above, various 
alternatives, modifications, variations, improvements and/or 
substantial equivalents, whether known or that are or may be 
presently foreseen, may become apparent to those having at 

3. The method of claim 2, further comprising, if a plurality 
65 of gradient quantization maps are applied to the determined 

gradient directions for the plurality of pixels, determining, for 
any connected components for different gradient quantiza-
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tion maps that contain at least one pixel in common, one of 
those connected components to be used when determining the 
at least one linear feature. 

4. The method of claim 2, wherein analyzing the located 
linear features at least to identify pairs oflocated linear fea- 5 

tures that are co-linear comprises: 
selecting a pair of elements from an initial set of elements 

comprising at least the determined linear features; 
determining at least one co-linearity parameter for the 

selected pair of elements; 
comparing, for at least one co-linearity requirement, at 

least one corresponding co-linearity parameter with that 
co-linearity requirement; and 

10 

if a determined number of the at least one co-linearity 
requirement are met, adding a virtual line determined 15 

based on at least the selected pair of elements to a set of 
elements comprising at least the virtual lines. 

5. The method of claim 4, further comprising repeating the 
selecting, determining, comparing, and adding steps for at 
least one other pair of elements selected from the set of 20 

elements. 
6. The method of claim 5, wherein repeating the selecting, 

determining, comparing, and adding steps for at least one 
other pair of elements selected from the set of elements com­
prising repeating the selecting, determining, comparing, and 25 

adding steps for each other pair of elements selected from the 
set of elements. 

7. The method of claim 4, wherein adding the determined 
virtual line to a set of elements comprising at least the virtual 
lines comprises adding the determined virtual line to the 30 

initial set of elements that comprises at least the determined 
linear features. 

8. The method of claim 4, wherein: 
the set of co-linear elements comprises at least some of the 

determined linear features and at least one virtual line, 35 

each virtual line corresponding to an identified pair of 
co-linear located linear features; and 

analyzing the set of co-linear elements, to identify pairs of 
spatially-related elements, comprises: 

40 
selecting a pair of elements from the set of co-linear 

elements; 
determining if the selected pair is a valid pair; 
determining, if the selected pair is a valid pair, at least 

one parallelism parameter for the selected pair of 45 
elements; 

30 
selecting, from the set of spatially-related element pairs 

that met the determined number of the at least one par­
allelism requirement, any other pairs of spatially-related 
elements that include at least one spatially-related ele­
ment of the pair of selected spatially-related elements 
having the greatest significance value and any pairs of 
spatially-related elements that include at least one of the 
determined linear features associated with at least one 
spatially-related element of the pair of selected elements 
having the greatest significance value; 

determining, if any of the newly selected pairs of spatially­
related elements includes at least one virtual line, the 
linear features associated with that virtual line; and 

identifying the subset of at least two spatially-related 
located linear features from the linear features in the 
selected pairs of spatially-related elements and the linear 
features determined to be associated with any selected 
virtual lines. 

10. The method of claim 1, further comprising determining 
at least one parameter for the combined connected pixel com­
ponents. 

11. The method of claim 10, further comprising: 
generating at least one control signal based on the at least 

one determined parameter; 
outputting at least one of the at least one generated control 

signals to at least one controllable device; and 
for each at least one controllable device to which at least 

one generated control signal is output, controlling at 
least one function of that controllable device based on 
the at least one control signal output to that controllable 
device. 

12. The method of claim 11, wherein the at least one 
controllable device is at least one of a controllable actuator, a 
controllable signaling device and a programmed computing 
device programmed to perform at least one function m 
response to the at least one control signal. 

13. The method of claim 10, further comprising: 
generating at least one data signal based on the at least one 

determined parameter; 
outputting the at least one generated data signal to at least 

one device; and 
for each at least one device to which at least one generated 

data signal is output, performing at least one function of 
that device based on the at least one data signal output to 
that device. 

comparing, for each of at least one parallelism require­
ment, at least one corresponding determined parallel­
ism parameter for the selected pair of elements with 
that parallelism requirement; and 

if a determined number of the at least one parallelism 
requirement for the selected pair of elements are met: 
determining a significance value for the selected pair 

14. The method of claim 13, wherein the at least one device 
is at least one of a controllable actuator, a signaling device, a 
control signal generating device that generates at least one 

50 
control signal based on the at least one data signal and a 
programmed computing device programmed to perform at 
least one function in response to the at least one data signal. 

15. The method of claim 10, further comprising 
of elements, and 

adding the selected pair of elements, along with the 55 

determined significance value, to a set of spatially­
related element pairs that met the determined num­
ber of the at least one parallelism requirement. 

9. The method of claim 8, wherein identifying subsets of at 
least two spatially-related located linear features comprises: 60 

selecting, from the set of spatially-related element pairs 
that met the determined number of the at least one par­
allelism requirement, a pair of spatially-related elements 
in the set having a greatest significance value; 

determining, if the selected pair of spatially-related ele- 65 

ments includes at least one virtual line, the linear fea­
tures associated with that linear line; 

determining at least one statistical measure based on the at 
least one determined parameter; 

generating at least one control signal based on the at least 
one determined statistical measure; 

outputting at least one of the at least one generated control 
signals signal to at least one controllable device; and 

for each at least one controllable device to which at least 
one generated control signal is output, controlling at 
least one function of that controllable device based on 
the at least one control signal output to that controllable 
device. 

16. The method of claim 15, wherein the at least one 
controllable device is at least one of a controllable actuator, a 
controllable signaling device and a programmed computing 
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device programmed to perform at least one function m 
response to the at least one control signal. 

17. The method of claim 10, further comprising: 
determining at least one statistical measure based on the at 

least one determined parameter; 5 

generating at least one data signal based on the at least one 
statistical measure; 

outputting the at least one generated data signal to at least 
one device; and 

for each at least one device to which at least one generated 10 

data signal is output, performing at least one function of 
that device based on the at least one data signal output to 
that device. 

18. The method of claim 17, wherein the at least one device 
is at least one of a controllable actuator, a signaling device, a 15 

control signal generating device that generates at least one 
control signal based on the at least one data signal and a 
programmed computing device programmed to perform at 
least one function in response to the at least one data signal. 

19. The method of claim 10, further comprising 20 

determining at least one statistical measure based on the at 
least one determined parameter; 

outputting at least one of at least one control signal and at 
least one information signal, based on at least one of the 
at least one determined parameter and the at least one 25 

determined statistical measure, to at least one device; 
and 

for each at least one device to which at least one generated 
control or information signal is output, controlling at 
least one function of that device based on the at least one 30 

control or information signal output to that device. 
20. The method of claim 19, wherein the at least one device 

is at least one of a controllable actuator, a signaling device, a 
control signal generating device that generates at least one 
control signal based on the at least one control or information 35 

signal and a programmed computing device programmed to 
perform at least one function in response to the at least one 
control or information signal. 

21. The method of claim 1, further comprising repeating 
the selecting, determining, comparing, and adding steps for at 40 

least one other pair of elements selected from the initial set of 
elements. 

22. The method of claim 21, wherein repeating the select­
ing, determining, comparing, and adding steps for at least one 
other pair of elements selected from the initial set of elements 45 

comprising repeating the selecting, determining, comparing, 
and adding steps for each other pair of elements selected from 
the initial set of elements. 

23. The method of claim 1, wherein adding the determined 
virtual line to a set of elements comprising at least the virtual 50 

lines comprises adding the determined virtual line to the 
initial set of elements that comprises at least the located linear 
features. 

24. The method of claim 1, wherein: 
the set of co-linear elements comprises at least some of the 55 

located linear features and at least one added virtual line; 
and 

analyzing the set of co-linear elements, to identify pairs of 
spatially-related elements comprises: 
selecting a pair of elements from the set of co-linear 60 

elements; 
determining if the selected pair is a valid pair; 
determining if the selected pair is a valid pair, at least one 

parallelism parameter for the selected pair of ele-
ments; 65 

comparing, for each of at least one parallelism require­
ment, at least one corresponding determined parallel-
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ism parameter for the selected pair of elements with 
that parallelism requirement; and 

if a determined number of the at least one parallelism 
requirement for the selected pair of elements are met: 
determining a significance value for the selected pair 

of elements, and 
adding the selected pair of elements, along with the 

determined significance value, to a set of spatially­
related element pairs that met the determined num­
ber of the at least one parallelism requirement. 

25. The method of claim 24, wherein identifying subsets of 
at least two spatially-related located linear features com­
prises: 

selecting, from the set of spatially-related element pairs 
that met the determined number of the at least one par­
allelism requirement, a pair of spatially-related elements 
in the set having the greatest significance value; 

determining, if the selected pair of spatially-related ele­
ments includes at least one virtual line, the linear fea­
tures associated with that virtual line; 

selecting, from the set of spatially-related element pairs 
that met the determined number of the at least one par­
allelism requirement, any other pairs of spatially-related 
elements that include at least one spatially-related ele­
ment of the pair of selected spatially-related elements 
having the greatest significance value and any pairs of 
spatially-related elements that include at least one of the 
determined linear features associated with at least one 
spatially-related element of the pair of selected elements 
having the greatest significance value; 

determining, if any of the newly selected pair of spatially­
related elements includes at least one virtual line, the 
linear features associated with that virtual line; and 

identifying the subset of at least two spatially-related 
located linear features from the linear features in the 
selected pairs of spatially-related elements and the linear 
features determined to be associated with any selected 
virtual lines. 

26. A method for locating occurrences of at least one 
known object in an image, each known object having linear 
features having at least one known spatial relationship, the 
image containing at least one occurrence of the known object 
to be located, the method comprising: 

obtaining an image comprising a plurality of pixels having 
image values, the image containing occurrences of at 
least one known object; 

segmenting the plurality of pixels of the obtained image 
into a plurality of connected pixel components, each 
connected pixel component comprising a subset of the 
plurality of pixels; 

determining, for at least some of the connected compo­
nents, a linear feature representative of that connected 
pixel component; 

analyzing the determined linear features; 
clustering subsets of the linear features based on the analy­

sis of the linear features; 
combining, for each subset oflinear components, the con­

nected pixel components associated with that subset of 
linear components into a combined pixel component; 
and 

determining, for each combined pixel component, at least 
one linear feature corresponding to that combined pixel 
connected component, wherein the at least one linear 
feature corresponding to that combined connected com­
ponent corresponds to an occurrence of one of the at 
least one known object in the image. 
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27. The method of claim 1, wherein the recited steps are 
carried out in a logic circuit programmed to locate objects in 
the obtained image. 

28. The method of claim 1, wherein generating a combined 
connected pixel component includes transforming the con- 5 

nected pixel components represented by the spatially-related 
located linear features of that identified subset into the com­
bined connected pixel component. 

29. The method of claim 26, wherein the recited steps are 10 
carried out in a logic circuit programmed to locate occur­
rences of at least one known object in the obtained image. 

30. A system for locating objects in an image containing at 
least one object to be located, the image being represented by 
image data including a plurality of pixels having image val- 15 

ues, the system comprising: 

a logic circuit configured to 

segment the plurality of pixels of the obtained image 
data into a plurality of connected pixel components, 
each connected pixel component comprising a subset 20 

of the plurality of pixels; 

locate, for each of at least some of the connected pixel 
components, at least one linear feature represented by 
the connected pixel components, each located linear 

34 
feature representative of at least one spatial parameter 
of that connected pixel component; 

analyze the located linear features to identify pairs of 
located linear features that are co-linear; 

analyze a set oflinear elements to identify pairs of spa­
tially-related linear elements, the set of linear ele­
ments comprising at least the linear features of at least 
one identified pair of co-linear located linear features; 

identify subsets of spatially-related located linear fea­
tures based on the identified pairs of spatially-related 
linear elements, each identified subset comprising at 
least two spatially-related located linear features; 

generate, for each identified subset of spatially-related 
located linear features, a combined connected pixel 
component from the connected pixel components rep­
resented by the spatially-related located linear fea­
tures of that identified subset; and 

determine, for each combined connected pixel compo­
nent, at least one linear feature for that combined 
connected pixel component, the at least one linear 
feature for that combined connected pixel component 
being representative ofone of the objects to be located 
in the image. 

* * * * * 
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