a2 United States Patent

Balakrishnan et al.

US007779230B2

US 7,779,230 B2
Aug. 17,2010

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(1)
(52)

(58)

(56)

5,742,824 A *

1

DATA FLOW EXECUTION OF METHODS IN
SEQUENTIAL PROGRAMS

Inventors: Saisanthosh Balakrishnan, Madison,
WI (US); Gurindar Singh Sohi,
Madison, WI (US)

Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 951 days.
Appl. No.: 11/550,687
Filed: Oct. 18, 2006
Prior Publication Data
US 2008/0098403 A1l Apr. 24, 2008
Int. CL.
GO6F 9/38 (2006.01)
US.CL i 712/31; 712/28; 712/30;
717/131,719/312

Field of Classification Search 712/28,
712/30,31; 717/131; 718/100, 102; 719/312
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4/1998 Kosakaccceevinnninne 718/106

39

EXECUTE PROGRAM
ON PRIMARY
PROCESSOR

L

DETECT TRIGGER

4
POINT — 40

|
! a4

INVOKE HANDLER
ON SECONDARY
PROCESSOR

MONITOR READ

N ——

50 SET ACCESS

EXECUTE METHOD

ON SECONDARY BUFFER WRITE

PROCESSOR SET
T]
¥
EVALUATE METHOD 51
SPECULATION [-

]

2009/0125907 Al* 5/2009 Wenetal.ooeee. 718/101

OTHER PUBLICATIONS

Manoj Franklin, The Multiscalar Architecture, Phd. Dissertation,
Univ. of Wisconsin at Madison, 1993.*

Craig Zilles, Master/Slave Speculative Parallelization and Approxi-
mate Code, Phd. Dissertation, Univ. of Wisconsin at Madison, 2002.*
Hammond et al., Programming with Transactional Coherence and
Consistency, ACM SIGOPS Operating Systems Review, vol. 38, iss.
S, Dec. 2004, pp. 1-13.*

Quinones et al., Mitosis Compiler: An Infrastructure for Speculative
Threading Based on Pre-Computation Slices, Proceedings of the
2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 269-279 .*

Steffan et al., The Potential for Using Thread-Level Data Speculation
to Facilitate Automatic Parallelization, Proceedings of the 4th Inter-
national Symposium on High-Performance Computer Architecture,
Feb. 1-4, 1998, pp. 2-13.*

Warg et al., Reducing Misspeculation Overhead for Module-Level
Speculative Execution, Proceedings of the 2" Conference on Com-
puting Frontiers, ACM, 2005, pp. 289-298.*

* cited by examiner

Primary Examiner—William M Treat
(74) Attorney, Agent, or Firm—Boyle Fredrickson, S.C.

(57) ABSTRACT

Distant parallelization of sequential programs is obtained by
making parallelization decisions at the boundaries between
program methods (e.g., functions and sub-routines). Experi-
mentation suggests that such a partitioning allows for large-
scale parallelization without data flow conflicts.

21 Claims, 5 Drawing Sheets

RESOURCE
FAILURE OR
INTERRUPT

CHANGE
IN READ

SET
?

NO

¢ NO
ACCEPT WRITE SET DISCARD WRITE SET
SKIP METHOD 6 60—"1 EXECUTE METHOD

U.S. Patent Aug. 17, 2010 Sheet 1 of 5 US 7,779,230 B2
10
20
—————————— /’_
el "] %/\22 FIG. 1
11~
121 A (12| B o P
Y T D~/=26
I ao
¢ D |4] oo
N \.._____:J..._: \ ¥_16
! /
14 18
i
18 i
A i B
1
1 . L
E— I S — 7z 7 77 [
TPlj\ S TS S fREAD SET]
Y= JUUPtL M(x)
A NNNNN ! — =28
1
5 P2~ rrrrrrry WRITE SETh_4¢
CP1—> 4 // — ~\!:. I
28\/ M(x) TS C 38
VA4 / : IR 777 7 4 [/
,_i———*‘iii\/\J\é\ = fREAD SET]
/- \\\\\\\\ 4!/,,"' M(y) g
38 Pt l 28
——————|- i WRITE SET [~ 45
1
CP2— 7 77 : I
M(y) :
8~/ 2/ ;
i
i
)/—__,_/

FIG. 2

U.S. Patent Aug. 17, 2010 Sheet 2 of 5 US 7,779,230 B2

1 4
EXECUTE PROGRAM
ON PRIMARY f—41
PROCESSOR
y
DETECT TRIGGER | 44
POINT
4! 44
INVOKE HANDLER S
ON SECONDARY |f—42
PROCESSOR MONITOR READ
50 SET ACCESS
52
N \ | 8
EXECUTE METHOD
ON SECONDARY BUF FEgETWR'TE
PROCESSOR
ri—
EVALUATE METHOD | 54
SPECULATION

FIG. 3

U.S. Patent Aug. 17, 2010 Sheet 3 of 5 US 7,779,230 B2

I ’//—39 54
Lo,

RESOURCE

FAILURE OR

INTERRUPT
?

o4

WRITE
TO READ

SET
?

CHANGE
IN READ
SET
?

YES E

NO NO
ACCEPT WRITE SET | __¢¢ DISCARD WRITE SET
SKIP METHOD [~ 60— EXECUTE METHOD
e e e e o e e e o e e i o e
|
!
TRIGGER READ WRITE
METHOD [CALL POINT| 'SOieT" | HANDLER | cpy SET
CPla TPla
M(x)
CP1b TPlb
M(y) CP2a TP2a | —
I

FIG. 6

U.S. Patent

Aug. 17,2010

FIG. 5

TP =

Sheet 4 of 5

US 7,779,230 B2

LOCATE METHODS
AND CALL POINTS

A

CREATE READ
SETS

— 72

J

IDENTIFY TRIGGER
POINTS

_—74

COLLECT HANDLERS

_—76

MONITOR EXECUTION
PERFORMANCE

———78

MODIFY TRIGGER
POINTS

80

X=G+2

IF ()
Y=G+1
ELSE
Y=G+2

M(x, y)

18

FIG. 7

READ SET
X, ¥

U.S. Patent Aug. 17, 2010 Sheet 5 of 5 US 7,779,230 B2

18
Ve 18~
28 28 28
M(v) _—28 (C (
82\1 M | [Man] [M
| 28 |
] 8
32 Mw) |2 v
< M(z) ~28
M(x) |_~28 t\j
t
\1 M(y) H— 28
|\/|(z) _—28

FIG. 8

US 7,779,230 B2

1

DATA FLOW EXECUTION OF METHODS IN
SEQUENTIAL PROGRAMS

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with United States government
support awarded by the following agencies:

NSF Grants: 0071924 and 0311572

The United States government has certain rights in this
invention.

CROSS-REFERENCE TO RELATED
APPLICATIONS

BACKGROUND OF THE INVENTION

The present invention relates to computer systems with
multiple processors and to multicore processors, and in par-
ticular to a method and apparatus of parallelizing programs
for execution on such computer systems.

Multicore microprocessors, incorporating multiple pro-
cessor units, are being used to increase the processing speed
of computer systems by allowing parallel execution of a pro-
gram on multiple processor units. This is in contrast to tech-
niques that increase the processing speed of computer sys-
tems by increasing the internal clock rate of an individual
processing unit, or techniques that increase the exploitation of
instruction-level parallelism within a processing unit.

While it is possible to write a program that is specially
designed for parallel execution on a multicore processor, it is
clearly desirable to provide a method of parallelizing stan-
dard sequential programs. Such a parallelizing method would
simplify programming, allow the use of standard program-
ming tools, and permit current programs to execute efficiently
on multicore systems.

It is known to parallelize standard sequential programs by
exploiting naturally occurring parallel structure that can be
found in small groups of instructions. Increased paralleliza-
tion may be obtained through speculative techniques that
execute small groups of instructions that are logically sequen-
tial but that may, in practice, be executed in parallel without
data dependency or control dependency conflicts. Generally,
data dependencies are violated when one concurrent thread
executes based on an assumption about data values that are
changed by another concurrently executing thread earlier in
the control flow. Control dependencies are violated when one
concurrent thread executes based on an assumption about the
control flow, for example the resolution of a branch statement
that is changed by another concurrently executing thread
earlier in the control flow.

These problems of data and/or control dependencies sub-
stantially limit the number of instructions that can be paral-
lelized by these techniques. As the number of concurrently
executing threads increases in an attempt to achieve “distant”
parallelism, violations of data and/or control dependencies
become more common. Violations of data and/or control
dependencies require “squashing” of the thread in violation, a
process that can erase gains in execution speed from the
parallelization.

BRIEF SUMMARY OF THE INVENTION

The present inventors have recognized that speculative
parallelization of significantly larger groups of instructions

10

20

25

30

35

40

45

50

60

65

2

may be obtained by exploiting the construction of most
sequential programs as an assemblage of “methods” (e.g.
subroutines, functions and procedures). These methods par-
tition the sequential program into natural groups of instruc-
tions that often share well-defined and localized initialization
values (referred to as parameters) and return values. This
abstraction eliminates the data dependencies satisfied within
the method and hence, simplifies the avoidance and detection
of data dependency violations. Further, methods provide
groups of instructions that normally execute as a single ele-
ment with respect to control flow, simplifying the avoidance
and detection of control dependency violations. Methods can
be detected in object code, allowing the present invention to
be applied to sequential programs, after the fact, without the
involvement of the programmer.

Specifically, the present invention provides a means of
parallelizing the execution of a computer program. The
invention executes the program on a first processor and at a
trigger point before a point of calling of a method of the
program, executes the method on a second processor using
assumed values of a read set of data read by the method in the
method’s execution. When the method is to be called on the
first processor, if there has been no writing to the read set since
the trigger point, execution of the method on the first proces-
sor is skipped and the write set of data from the second
processor is used. On the other hand, if there has been a
writing to the read set since the trigger point, the method is
simply executed on the first processor.

Thus it is a feature of at least one embodiment of the
invention to follow the natural structure of methods in
sequential programs to provide for a “distant” parallelization
of the sequential program.

A method may be a portion of the program executing using
local variables whose values are retained only during execu-
tion of the method and that may also use the global program
state which can be accessed by any part of the program.

It is thus a feature of at least one embodiment of the inven-
tion to take advantage of the closed structure of some methods
in which the method provides variables having only a local
scope, such as naturally simplifies some data dependency
issues in speculative execution.

The method may be a programmer-defined division of the
sequential program having a distinctive single entry and exit
point to be called from multiple locations of the sequential
program.

It is thus another feature of at least one embodiment of the
invention to make use of the method’s natural modularity,
such as may simplify control and data dependency issues in
speculative execution.

The methods may include functions from system libraries,
application libraries, and class objects.

It is thus another feature of at least one embodiment of the
invention to provide a system that works with common meth-
ods used in many applications.

The write set executed on the second processor may also be
adopted if there has been a writing to the read set but no
change in values of the read set.

It is thus another feature of at least one embodiment of the
invention to permit the acceptance of speculative paralleliza-
tion even in cases where there has been modification to the
read set if that modification would not have affected the
execution of the method.

The method may include the steps of repeating the
described process for an arbitrary number of additional pro-
cessors in the role of the second processor.

US 7,779,230 B2

3

It is thus another feature of at least one embodiment of the
invention to provide a system that may be readily scaled to
multicore processor systems having more than two cores.

The detection of a writing to the read set may consider a
writing by the first processor or others of a set of processors.

Thus, it is a feature of at least one embodiment of the
invention to provide a system that may be readily scaled for
multicore processor systems having more than two cores
where more than two processor cores may be speculatively
executing in parallel.

The trigger point in the program may be selected so that the
method is completely executed by the second processor
before the first processor completes execution of the method.

It is thus a feature of at least one embodiment of the inven-
tion to allow triggering of the speculative execution of a
method relatively close to the call point of the method, reduc-
ing the chance for data and control violations. So long as the
method is fully executed before the first processor would have
completed the method, the benefits of parallelization are
obtained.

The trigger point may be detected by monitoring a program
counter of the first processor against a stored program counter
value or by placing a triggering instruction in the program at
the trigger point or by monitoring an address of memory
access by the first processor.

Thus, it is a feature of at least one embodiment of the
invention to provide a flexible set of techniques for identify-
ing a trigger point.

The method may include the step of measuring the perfor-
mance of the program and changing the trigger point in
response to that measurement, either by removing selected
trigger points or moving the trigger points in the program.

It is thus a feature of at least one embodiment of the inven-
tion to provide for a dynamic system that may improve its
performance by empirical measurement.

The method may include the steps of identifying the loca-
tions of methods in the program and executing the program
while monitoring memory accesses during the method execu-
tion to determine the read set for each method.

It is thus a feature of at least one embodiment of the inven-
tion to provide a technique for determining the read set that
does not require a syntactic understanding of the method and
its memory accesses.

The methods may be identified by call instructions that are
used to call a given method located in the program.

It is thus a feature of at least one embodiment of the inven-
tion to take advantage of the natural delimiters of methods,
without imposing special requirements at the time of pro-
gramming.

The trigger points may be determined by identifying when
the values of the read set are available.

Thus, it is a feature of at least one embodiment of the
invention to provide a simple mechanism for determining
trigger points.

The processors may further execute instruction level
speculation.

It is thus a feature of at least one embodiment of the inven-
tion to provide a method level parallelization technique that
may be used in conjunction with instruction level paralleliza-
tion and other speculative execution techniques for increased
speed of execution.

These particular features and advantages may apply to only
some embodiments falling within the claims, and thus do not
define the scope of the invention.

20

25

30

35

40

45

50

55

60

65

4
BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1 is a block diagram of'a multicore processor showing
multiple processor units communicating with a common
memory under the control of parallelization circuitry of the
present invention;

FIG. 2 is a graphical representation of a sequential program
having two methods, M(x) and M(y), showing control flow
during the parallelization process of the present invention;

FIG. 3 is a flow chart showing the steps of speculative
parallelization of FIG. 2;

FIG. 4 is a flow chart showing the steps of the process of
evaluating the speculative execution of FIG. 3;

FIG. 5 is a flow chart showing the steps of preparing the
standard parallel program for parallelization by identifying
methods, trigger points, call points, handlers, and read sets;

FIG. 6 is a table representing values used by the present
invention as collected per FIG. 5;

FIG. 7 is a figure similar to that of FIG. 2 showing example
instructions used in the process of identifying trigger points
per FIG. 5; and

FIG. 8 is a representation of the operation of the present
invention in demultiplexing methods to execute in parallel.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

Referring now to FIG. 1, an example computer system 10
suitable for use with the present invention provides a multi-
core architecture including a number of processor units 12
labeled A through D. Each processing unit will typically
provide a full arithmetic logic unit (ALU) and local cache
structures (L1), though different processing cores may or may
not have different resource capabilities.

The processor units 12 communicate on a common bus 14
with memory 16, for example a second level (I.2) cache
and/or off-board random access memory. The memory 16
will typically hold at least a portion of a sequential execution
program 18, as well as provide storage space for an execution
buffer 24 and handlers 26, as will be described.

The computer system 10 may preferably include parallel-
ization circuitry 20 providing coordination of the execution of
the sequential program 18 on the processor units 12. This
parallelization circuitry 20 provides one or more dedicated
registers 22 for holding trigger points and calling points and
other data as will be described below.

Referring now to FIG. 2, the sequential program 18 may
include a first and second method 28 being each, for example
C functions, that accept initialization values of X and Y,
respectively, and produce return values M(X) and M(Y) at the
conclusion of their execution. Typically but not necessarily,
each of the methods 28 will execute using locally scoped
internal variables and typically, but not necessarily, will not
modify global variables during execution. In such cases, the
initialization values and return values are typically passed
through a stack structure (not shown) using stack push and
pop instructions well understood to those of skill in the art.
More generally, the methods 28 will include logical program
divisions commonly termed sub-routines, functions, or pro-
cedures. Methods may share one or more of the qualities of
being callable from many locations within a program, being
self-contained in execution, and having local scoping of vari-
ables.

Methods 28 are placed in a control flow order 32 in the
sequential program 18 reflecting their normal execution
order. The control flow order 32 may be, and typically is,
different from the order in which the methods 28 occur in the

US 7,779,230 B2

5

program 18 as stored in memory 16, reflecting the fact that the
methods 28 may be invoked from multiple call points in the
program 18. In this example, method M(X) is invoked at
calling point CP1 and method M(Y) is invoked at calling
point CP2. Generally, the methods themselves need not fol-
low the calling points in the actual program, but are shown
following the calling points according to the control flow
order 32 of the sequential program 18.

The instructions before each call point CP1 and CP2
include preparatory instructions 34 that generate values that
will be used by the respective methods 28 and then passed to
the methods 28 when they are called. These values and other
global program values used by the methods 28 will be the
“read set” 38 for the methods 28. The global program values
that are part of read set 38 of a method 28 may be determined
by inspection of the instructions of the method 28 or by
monitoring execution of the method 28 as will be described
and will be assigned a storage structure (of the same name) in
the execution buffer 24 generally recording the memory loca-
tions accessed by the method 28 and the assumed data values
for those memory locations.

In the present invention, trigger points, TP1 and TP2, will
be identified in the program 18 before the calling points CP1
and CP2 for each method 28 so that some preparatory instruc-
tions 34 are located between each respective trigger point TP1
and TP2 and its related calling point CP1 and CP2. Each of
these “embraced” preparatory instructions 34 will be incor-
porated into a handler 36. The preparatory instructions 34 will
typically be a small percentage of the total instructions
between a given trigger point and its calling point so that the
preparatory instructions 34, when executed in isolation in a
handler 36 as begun at the trigger point, may, but need not, be
completed well before a processor executing all the instruc-
tions between the trigger point and the calling point arrives at
the calling point.

Referring now to FIGS. 1, 2 and 3, during speculative
parallelization of the program 18, the parallelization circuitry
20 executing internal firmware 39, selects a first one of the
processor units 12, for example processor A, to begin execu-
tion of the program 18. This is indicated at process block 41
of FIG. 3 and in the headings of FIG. 2.

During this execution, the firmware 39 monitors trigger
points, for example stored in register 22 of parallelization
circuitry 20, and when a trigger point occurs, as detected by
process block 40, a handler 36 associated with that trigger
point is invoked per process block 42. At this time, the firm-
ware 39 also begins monitoring any memory accesses to the
memory locations stored in read set 38 by any other processor
unit 12, as indicated by process block 44.

Referring to FIGS. 2 and 3, the handler 36 will be executed
on a second processor unit 12 (any of B, C or D in this
example) based on a determination by the firmware 39 that
the particular processor unit 12 is available. The execution of
the handler 36 executes the preparatory instructions 34 read-
ing any necessary values from registers, the stack, or global
memory (the heap) and recording the values used and/or
generated in the read set 38.

As indicated by process block 52, when the handler 36 is
complete, the firmware begins execution of the associated
method 28 also on the second processor unit 12. During the
execution of the method, data is read from the read set 38 and
written to a write set 46 also in the execution buffer 24 and is
not yet written to their normal locations in memory 16, as
indicated by process block 50. The write set 46 may thus store
the data values generated by the method 28 and the memory
addresses to which they were intended to be written. Any

20

25

30

35

40

45

50

55

60

65

6

trigger points reached during this execution are also stored in
the execution buffer, and do not invoke any handlers yet.

Because, as noted above, the preparatory instructions 34 of
the handler 36 will be a small percentage of the instructions
between the trigger point and the calling point, the execution
of'the method 28 and the generation of the write set 46 on the
second processor unit 12 will typically be concluded before
the first processor unit 12 arrives at the calling point for the
method 28. Nevertheless, the method 28 need not be com-
pleted when the first processor arrives at the calling point. If
the method 28 is in progress on the second processor unit 12,
the first processor unit 12 can choose to wait until the execu-
tion of the method 28 has finished on the second processor
unit 12. When the second processor unit 12 is finished, the
first processor unit 12 may then use the results from the
second processor unit 12, rather than execute the method 28
on the first processor unit 28. This will frequently be pre-
ferred, if the execution of the method 28 is near completion on
the second processor unit 12 when the first processor unit 12
arrives at the calling point, thus it is beneficial to wait for the
method’s completion rather than re-execute the method 28
completely.

Referring still to FIGS. 2 and 3, when the first processor
unit 12 arrives at the calling point for the method 28, detected
again by parallelization circuitry 20 holding the calling points
in register 22, the firmware 39 proceeds to process block 54 to
evaluate the success of the speculative parallel execution of
the method 28 on the second processor unit 12.

Referring now to FIG. 4, this evaluation of the speculation
determines initially, as indicated by decision block 56,
whether there has been aresource failure during the execution
of'the handler 36 and method 28 on the second processor unit
12. Such a resource failure, for example might be exhaustion
of execution buffer 24 or other common resource failures as
will be understood to those of ordinary skill in the art. In
addition, or alternatively, the speculation may be terminated
upon an interrupt or the lack of a second processor.

If such a resource failure occurred, the program proceeds to
process block 60 and the write set 46 is discarded, and the
firmware 39 causes the first processor unit 12 to continue
execution to execute the method 28 in the normal course of'its
control flow order 32.

If, at decision block 56, there has been no resource failure,
then the firmware 39 proceeds to decision block 62 where it is
determined whether there has been any write by the first
processor unit 12 or any other processor units 12 to memory
16 at the addresses stored in the read set 38. Such a writing
may indicate that the data used in the execution of the method
28 on the second processor is invalid, which in turn may
indicate a data dependency violation.

If such a write has occurred, such as may, for example, be
detected by well known techniques, for example those used
for cache invalidation protocols, the firmware 39 proceeds to
decision block 64, and checks to see whether the detected
writes actually changed the value in memory 16 of any of the
addresses in the read set 38 to be different from the value
stored in the read set 38 for the corresponding address.

Ifthe answer is that the writing changes a read set value, the
program proceeds again to process block 60 as has been
described.

If however, the value in the read set 38 has not been
changed per decision block 64 or there has been no writing to
any of the addresses recorded in the read set 38, then the
program proceeds to process block 66 where the firmware 39
causes the write set 46 to be adopted by the first processor unit
12 (that is written to memory 16) and for the first processor
unit 12 to skip the execution of method 28. Any trigger points

US 7,779,230 B2

7

buffered during the execution are raised and the executions of
other methods begin with the respective handlers.

This process of allocating methods 28 to other processor
units 12 may be repeated for multiple processors, with differ-
ent processor units 12 being used in place of the second
processor unit 12 above and multiple second processors
executing concurrently, for example, with the next method
M(Y), beginning execution of its handler at TP2 on a third
processor unit 12 (e.g. C) concurrently with the execution of
method M(X) on (B) and the execution of the program 18 on
(A).

Referring now to FIGS. 5 and 6, identification of the meth-
ods, their trigger points and calling points, the read sets and
the handlers 36 may be done before execution of the program
18 and refined as the program 18 executes. Generally this
identification process does not require input from the pro-
grammer of the program 18 but may be performed by inspec-
tion of the object code of the program 18 and its execution.

Atafirst step of this process, indicated by process block 70,
the methods 28 and call points in the program 18 are identified
by one of several techniques, including most simply review-
ing the object code of the program 18 for call instructions. The
program counter used in the call instruction indicates the
beginning of a method. Once the methods 28 are detected, the
call points may be easily identified by looking for calls to the
addresses of the identified methods 28.

At process block 72, the read sets 38 are then identified by
looking at the sections of the program 18 identified to the
methods 28, for example simply by tallying all of the reads
that occur in that program section or by collecting the
addresses from which data is obtained that will be passed on
the stack or by means of registers, or register windows or
other similar data structures or special memory address
spaces. The read set 38 may be over-inclusive to some extent
without significantly affecting the invention. Alternatively,
the read set 38 may be obtained by observing actual memory
accesses by the program sections identified as methods 28
during execution of those program sections. The read set 38 is
stored in the execution buffer 24 and a pointer to the read set
38 enrolled in the logical table 71.

Referring to FIG. 6, each of the methods 28 defined for
example by a range of program counter values, may be
enrolled in a logical table 71 that may be held all or in part in
registers 22 of parallelization circuitry 20 and/or memory 16,
the range of program counter values indicating a starting and
stopping point of the method. The call points, again expressed
as program counter values, may also be enrolled in the table
71. In general, there may be multiple call points for a given
method 28 and each call point may be associated with unique
trigger points, handlers 36, read sets 38 and write sets 46.

At process block 74, the trigger points for each method 28
are identified. This is a substantially more complicated prob-
lem as will be discussed below. Generally there will not be a
clear pre-defined instruction pattern indicating the appropri-
ate trigger point. It is desirable that the trigger point occur
when the read set 38 for the method 28 has been resolved and
that the trigger point be soon enough in the program 18 that
the method 28 and handler 36 may be fully executed before
the corresponding call point, but neither of these conditions is
required. As discussed above, the execution of the method 28
may be on-going on the second processor unit 12 when the
first processor unit 12 arrives at the call point, and unresolved
values of the read set, may in one embodiment, be predicted
values for some or all of the read set. The prediction may be
based on historical values or simple prediction rules, of a type
known in the art.

40

45

50

55

60

65

8

At process block 76, preparatory instructions 34 between
the trigger point and calling point, defined in light of the read
set 38, are then collected as handlers 26 in memory 16. A
pointer to these handlers 26 is enrolled in the logical table to
allow the proper handler to be invoked by the firmware 39. To
some extent, the preparatory instructions 34 could include all
prior instructions in the program 18; however, it is only nec-
essary to collect those instructions after the trigger point, as
instructions earlier than the trigger point will have been
resolved in the execution of the program 18 itself, and thus are
not speculative.

At optional process block 78, the program 18 may be
executed and its performance monitored, and based on this
monitoring, adjustments may be made to the trigger points,
either moving them ahead or back, or eliminating some trig-
ger points so as not to speculatively execute given methods 28
at all. In this way, the locations of the trigger points may be
dynamically adjusted, as indicated by process block 80.

Referring now to FIG. 7, in one technique of identifying the
trigger points, the parameters of the read set 38 are used to
evaluate the instructions before the method 28 in the control
flow order 32 from the call point backwards in a backtracking
operation. Any instruction necessary for developing the input
parameter values is marked as a preparatory instruction. This
backtracking process is continued until the first point at which
the heap is accessed for the development of a read set value;
that is, variables outside of the stack or local registers. At this
occurrence, the trigger point may be placed at the next (in
control flow order 32) preparatory instruction. The trigger
point may also be placed earlier if the read set for the method
and handler is resolved earlier. This technique reflects gener-
ally the fact that the heap is accessible by many methods 28,
and thus the potential of data conflicts is increases at this
point. Nevertheless, this is simply one technique for locating
the trigger points and may be modified or replaced with other
such techniques.

Referring now to FIG. 8, the sequential program 18 will
have a normal control flow defining an order of execution of
multiple methods 28 labeled M(V) to M(Z). Each of these
methods 28 will be executed in sequence according to the
control flow order 32. In the present invention, the methods 28
are effectively de-multiplexed to be executed in parallel
according to an implicit data flow 82 allowing them to be
executed in a shorter span of time.

Empirical work done by the present inventors suggests that
the parallelization of methods can speed up standard test
programs as much as two times.

It will be recognized that the present invention can also be
applied to multiprocessor architectures where the processors
are not necessarily on one integrated circuit. Further it will be
understood that the functions of the present invention can be
variously executed in software or hardware and that the allo-
cation of storage among different memory and register types
may be freely varied, as will be understood to those of ordi-
nary skill in the art reviewing this disclosure.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained
herein, but include modified forms of those embodiments
including portions of the embodiments and combinations of
elements of different embodiments as come within the scope
of' the following claims.

We claim:
1. A method of parallelizing execution of a computer pro-
gram comprising the steps of:
(a) executing the program on a first processor, the program
having at least one program method;

US 7,779,230 B2

9

(b) at a trigger point in the program as executed on the first
processor and before a point of calling of the program
method as executed on the first processor, executing the
program method on a second processor based on
assumed values of a read set of data read by the program
method in the program method’s execution; and

(c) at the point of calling the program method as executed
on the first processor;

(1) if there has been no writing to the read set since the
trigger point, not executing the program method on
the first processor and instead adopting a write set of
data written by the given program method during
execution of the program method on the second pro-
Cessor;

(ii) if there has been a writing to the read set since the
trigger point executing the program method on the
first processor.

2. The method of claim 1 wherein program method is a
programmer-defined portion of a program communicating
with other program portions through a stack-type memory
structure.

3. The method of claim 1 wherein the program method is a
programmer-defined portion of a program called at one or
more locations in the program and having a distinctive entry
and exit defining a scope of local variables used by the pro-
gram method.

4. The method of claim 1 wherein program methods are
functions selected from the group consisting of system librar-
ies, application libraries, and class objects.

5. The method of claim 1 wherein step (¢)(i) also adopts the
write set if there has been a writing to the read set but no
change of values of the read set; and

wherein step (c)(ii) executes the program method on the
first processor only if the writing to the read set changed
a value of the read set.

6. The method of claim 1 including the step of repeating
steps (b) and (c) for additional program methods of the pro-
gram using additional processors.

7. The method of claim 1 wherein the writing to the read set
of step (c) is by the first processor.

8. The method of claim 1 wherein the writing to the read set
of step (c) is by a third processor.

9. The method of claim 1 wherein a location of the trigger
point in the program is selected so that the program method is
completely executed by the second processor before the first
processor completes execution of the program method.

10. The method of claim 1 including the step of detecting
the trigger point by monitoring a program counter of the first
processor against a stored value.

11. The method of claim 1 wherein the trigger point is
detected by placing a triggering instruction in the first pro-
gram at the trigger point.

20

25

30

35

40

45

50

10

12. The method of claim 1 wherein the trigger point is
detected by monitoring a memory access address.

13. The method of claim 1 including the step of repeating
steps (a)-(c) to measure performance of the program and
changing the trigger point in response to that measurement.

14. The method of claim 13 wherein changing the trigger
point moves a location of the trigger point.

15. The method of claim 13 wherein changing the trigger
point removes the trigger point.

16. The method of claim 1 including the steps of:

identifying locations of the program methods in the pro-
gram; and

executing the program while monitoring memory accesses
during program method execution to determine the read
set for the program method.

17. The method of claim 1 wherein the program methods
are identified by call instructions associated with program
methods.

18. The method of claim 1 wherein the trigger points are
determined by an availability of the read sets of the program
methods.

19. The method of claim 1 wherein the assumed values of
the read set are predicted values.

20. The method of claim 1 further including the step of
performing instruction level speculative execution or other
speculative optimizations.

21. A computer system parallelizing execution of a com-
puter program comprising:

multiple intercommunicating processors;

a parallelization unit communicating with the processors
and operating to:

(a) execute the program on a first processor, the program
having at least one program method;

(b) at a trigger point in the program as executed on the first
processor and before a point of calling of the program
method as executed on the first processor, execute the
program method on a second processor based on
assumed values of a read set of data read by the program
method in the program method’s execution; and

(c) at the point of calling the program method as executed
on the first processor;

(1) if there has been no writing to the read set since the
trigger point, not executing the program method on
the first processor and instead adopting a write set of
data written by the given program method during
execution of the program method on the second pro-
cessor;

(ii) if there has been a writing to the read set since the
trigger point executing the program method on the
first processor.

#* #* #* #* #*

	Bibliography
	Abstract
	Drawings
	Description
	Claims

