

LIS007563619B2

(12) United States Patent

Williams et al.

(54) MAMMARY STEM CELL MARKER

(75) Inventors: **Bart Williams**, Grand Rapids, MI (US); **Caroline M. Alexander**, Madison, WI (US); **Charlotta Lindvall**, Grand Rapids, MI (US); **Nisha McConnell**,

Madison, WI (US)

(73) Assignees: Van Andel Research Institute, Grand

Rapids, MI (US); **Wisconsin Alumni Research Foundation**, Madison, WI

(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 56 days.

(21) Appl. No.: 11/807,937

(22) Filed: May 30, 2007

(65) **Prior Publication Data**

US 2007/0280948 A1 Dec. 6, 2007

Related U.S. Application Data

- (60) Provisional application No. 60/809,281, filed on May 30, 2006.
- (51) **Int. Cl.** *C12N 5/00* (2006.01) *C12N 15/00* (2006.01)

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2005/0089518 A1 4/2005 Clarke et al. 2006/0281137 A1 12/2006 Stingl et al.

FOREIGN PATENT DOCUMENTS

WO WO 2006/055635 A 5/2006

J. Biol. Chem. (2006) 281(46): 35081-35087.

OTHER PUBLICATIONS

Lindvall (Stem Cell Rev. 2007, vol. 3, p. 157-168).* Lindvall, et al., The Wnt signaling receptor Lrp5 is required for mammary ductal stem cell activity and wnt1-induced tumorigenesis. (10) Patent No.: US 7,563,619 B2 (45) Date of Patent: Jul. 21, 2009

Li, et al., Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc. Nat. Ac. of Sci. USA (2003) 100(26): 15853-15858

Paguirigan, A., Beebe, D. J., Liu, B., and Alexander, C., Mammary Stem and Progenitor Cells: Tumour Precursors? (2006) Eur. J. Cancer 42, 1225-1236.

Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983-3988 (2003).

Woodward, Wendy A., et al: "On Mammary Stem Cells" (2005) Journal of cell Science (118) 16:3585-3594.

Shackelton, Mark, et al: "Generation of a Functional Mammary Gland from a Single Stem Cell" (2006) Nature (London), (439)7072:84-88.

Lindeman, Geoffrey J., et al: "Shedding Light on mammary Stem cells and Tumorigenesis" (2006) Cell Cycle, (5)7:671-672.

Stingl, John, et al: "Purification and Unique Properties of Mammary Epithelial Stem Cells" (2006) Nature (London), (439)7079:993-997. Chu, Emily Y, et al: "Canonical WNT Signaling Promotes Mammary Placode Development and is Essential . . " (2004) Development (Cambridge), (131)19:4819-4929.

Liu, Bob Y, et al: "The Transforming Activity of Wnt Effectors Correlates with their Ability . . ." (2004) Proceedings of the Natl Acad. of Sciences of USA, (101)12:4158-4163.

Giambernardi, Troy A., et al: "Role of Lrp5 in Mammary Development and MMTV-Wnt1 . . ." (2003) Proc. of the Amer. Assoc. for Cancer Research, (44):991-992.

Van't Veer, Laura J., et al: "Gene Expression Profiling Predicts Clinical Outcome of Breast Cancer" (2002) Nature (London), (415)6871:530-536.

Young, John J., et al: "LRP5 and LRP6 are Not Required for Protective Antigen-Mediated . . . " (2007) Plos Pathogens, (3)3:00001-00000

Lindvall, Charlotta, et al: "Wnt Signaling Stem Cells and the cellular Origin of Breast Cancer" (2007) Stem Cell Reviews, (3)2:157-168.

* cited by examiner

Primary Examiner—Michael C. Wilson (74) Attorney, Agent, or Firm—Quarles & Brady LLP

(57) ABSTRACT

It is disclosed here that low density lipoprotein receptorrelated protein 5 (LRP5) is a cell surface marker for somatic mammary stem cells and mammary tumor stem cells. The disclosure here provides new tools for enriching somatic mammary stem cells and mammary tumor stem cells. Methods of screening for agents that modulate LRP5 activity, of treating mammary tumor or breast cancer, of monitoring somatic mammary stem cells and mammary tumor stem cells in vivo are also provided, and of assessing prognosis of human breast cancer.

12 Claims, 9 Drawing Sheets (3 of 9 Drawing Sheet(s) Filed in Color)

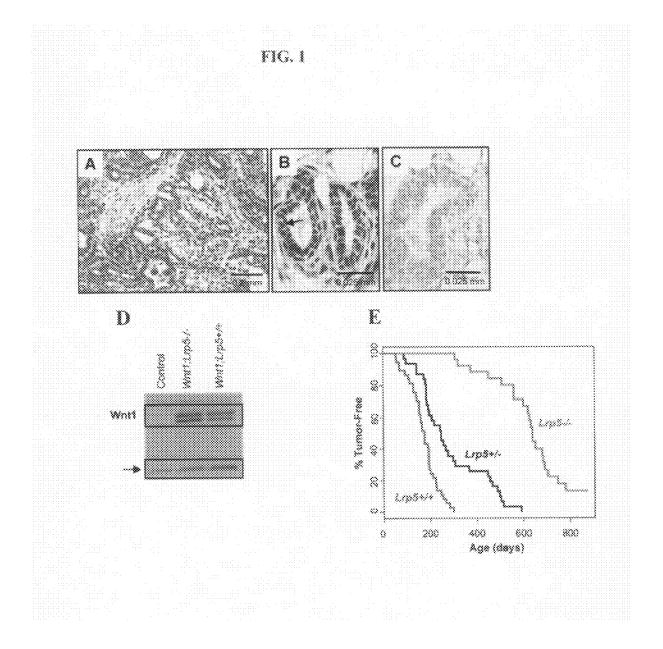
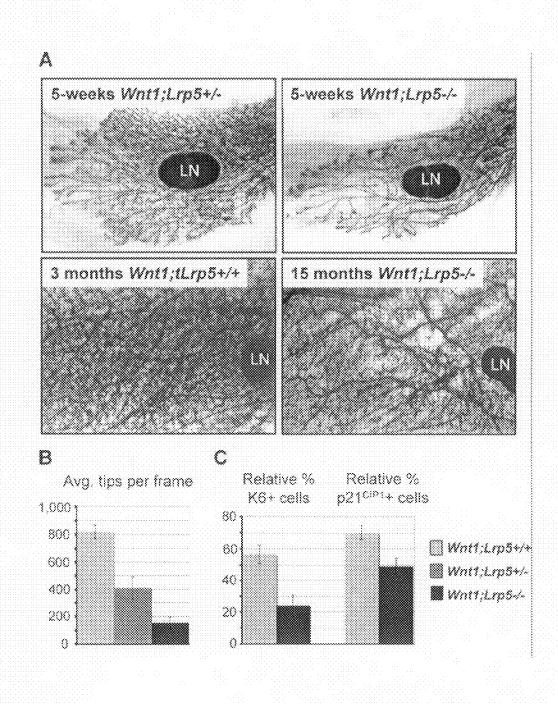
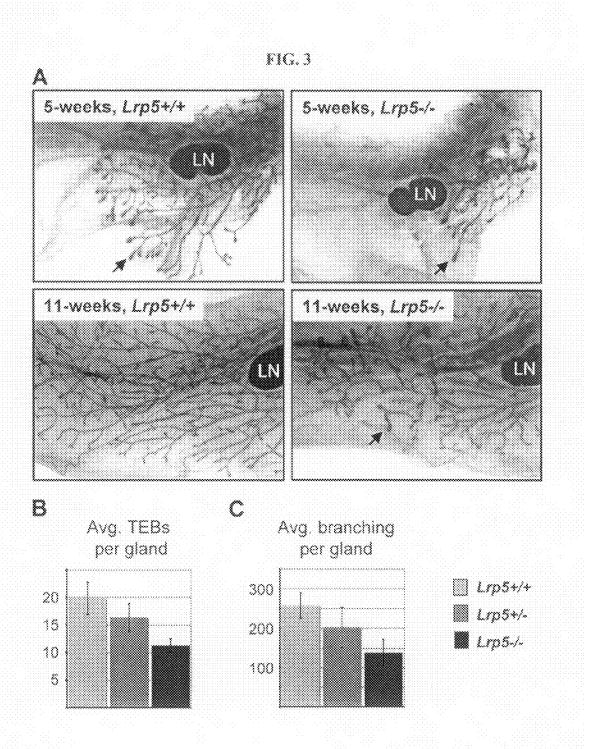
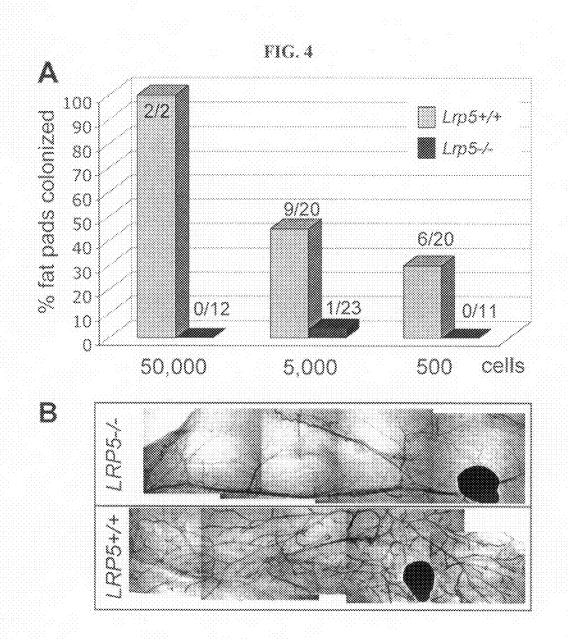





FIG. 2

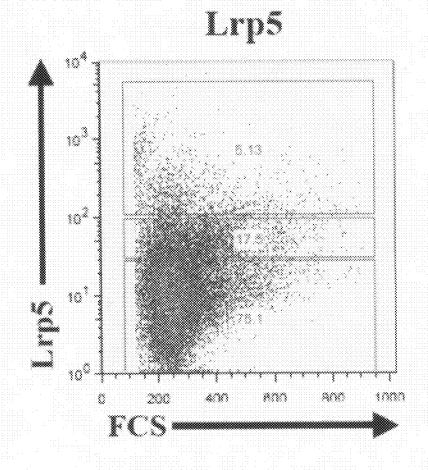
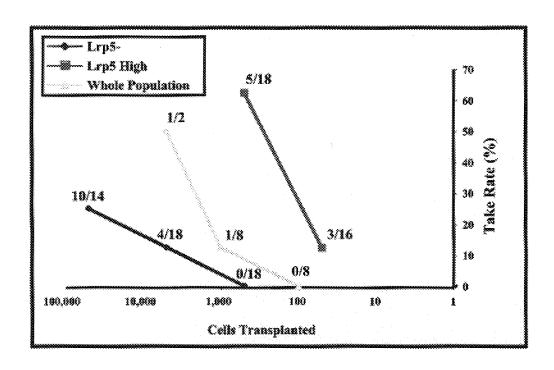



FIG. 6

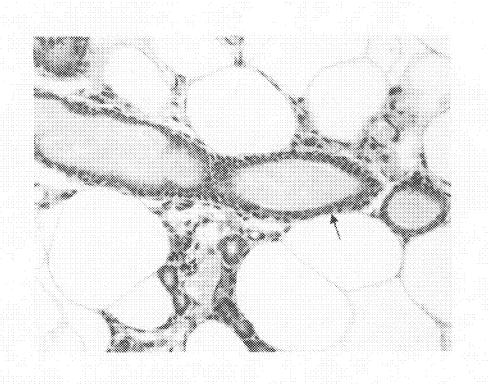
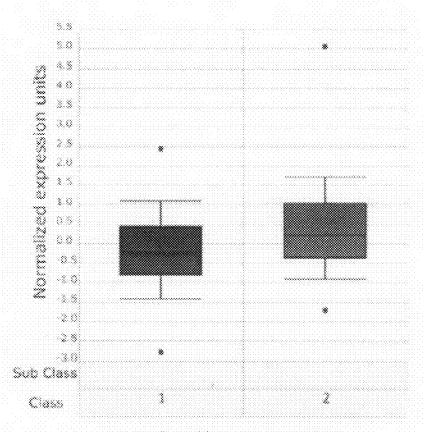
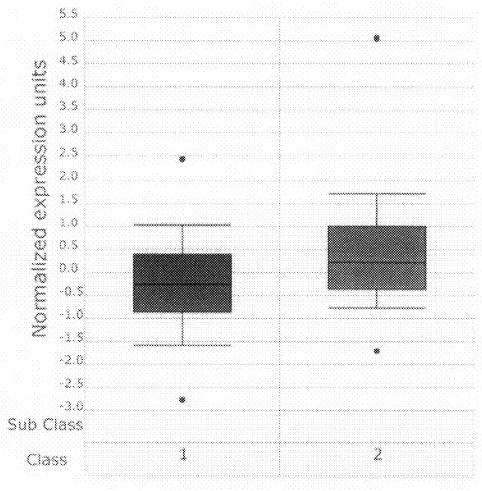




FIG. 8

Box Plot - Description

FIG. 9

Box Plot - Description

MAMMARY STEM CELL MARKER

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Patent Application No. 60/809,281, filed on May 30, 2006, which is herein incorporated by reference in its entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with United States government support awarded by the following agency: NIH RO1 CA113869-01. The United States has certain rights in this invention.

BACKGROUND OF THE INVENTION

The mammary gland is a compound tubulo-alveolar gland that is composed of a series of branched ducts that, during 20 lactation, drain sac-like alveoli (lobules). In the rodents, the mammary epithelium is embedded within a mammary fat pad, whereas in humans, it is embedded within a fibrous and fatty connective tissue. The mammary epithelium is composed of two lineages of epithelial cells: the luminal cells 25 (which make milk during lactation) and basal positioned myoepithelial cells. Like other epithelia, the mammary gland is organized into undifferentiated stem cells and the majority, differentiated cells. Currently, there is no single cell surface biomarker available that allows substantial enrichment of 30 somatic mammary stem cells. All known enrichment protocols rely on combinations of cell surface markers.

While the somatic mammary stem cells (and possibly some of their more immediate descendants that have decreased stem cell potential but still have proliferative potential) may 35 be the targets for malignant transformation, mammary malignancies themselves have been shown to have a cancer stem cell component that propagates the tumor (Al-Hajj M et al. Proc Natl Acad Sci USA 2003,100:3983-8). The presence of tumor stem cells provides an explanation as to why some 40 treatments seem to be effective initially but tumors recur later. Treatments that attack the differentiated tumor cells may not affect the small population of tumor stem cells that actually give rise to tumors. Thus, it is important that the tumor stem cell population be targeted in order for tumors to be successfully contained or eradicated. Cell surface markers for mammary tumor stem cells are of great value in this regard.

Wnt proteins are a family of highly conserved secreted growth factors. Wnt proteins are divided into two types: canonical and noncanonical, and activate different down- 50 stream signal transduction pathways. Wnt proteins that are classified as canonical include, but are not limited to Wnt1, Wnt2, Wnt3, Wnt3a, and Wnt8 (Liu G et al. Mol Cell Biol 2005, 25:3475-3482). In the canonical pathway, a Wnt protein initiates signals by binding to a protein complex contain- 55 ing a member of the Frizzled family of seven-transmembrane-domain receptors and a molecule with homology to the low density lipoprotein (LDL) receptor (LRP5 and LRP6) (Logan C Y and R Nusse, Ann Rev Cell Dev Biol 2004, 20:781-810). This down regulates glycogen synthase 60 kinase-3 (GSK3) activity. Normally, GSK3 phosphorylates β-catenin, marking it for ubiquitin-dependent degradation. Thus, GSK3 inhibition results in increased β -catenin levels in the cytosol and nucleus, allowing physical interaction of the Tcf/Lef class of DNA-binding proteins and activation of tar- 65 get promoters (Logan CY and R Nusse, Ann Rev Cell Dev Biol 2004, 20:781-810).

2

In addition, other proteins regulate the activity of the Wnt pathway at several levels. Secreted Frizzled-related proteins, Norrin, Dickkopf (DKK), Wise, connective tissue growth factor, and Kremen regulate signaling at the level of the Wnt/Frizzled/LRP interaction while other proteins, including APC, control the pathway intracellularly (Finch P W et al., Proc Natl Acad Sci USA 1997, 94:6770-6775; Wang S M et al. 1997, Biochem Biophys Res Commun 1997, 236:502-504; Xu Q et al. Cell 2004, 116:883-895; Semenov MV et al. Curr Biol 2001, 11:951-961; Mao B et al. Nature 2001, 411: 321-325; Itasaki N et al. Development 2003, 130:4295-4305; Mercurio S et al. Development 2004, 131-2137-2147; and Mao B et al. Nature 2002, 417:664-667). The Dickkopf (DKK) family of secreted proteins are antagonists of the canonical Wnt pathway (Bafico A et al. Nat Cell Biol 2001, 3:683-686; Mao B et al. Nature 2001, 411:321-325). Whereas Wnt-Frizzled interactions may also be involved in non-canonical Wnt signaling events, the LRP5/6 moiety appears to be specifically required for the canonical pathway (Liu G et al. Mol Cell Biol 2005, 25:3475-3482).

Published studies suggest that canonical Wnt signaling plays a significant role during normal mammary gland development (Andl T et al. Dev Cell 2002, 2:643-653; Brisken C et al. Genes Dev 2000, 14:650-654; Hsu W et al. J Cell Biol 2001, 155:1055-1064; Tepera S B et al. J Cell Sci 2003, 116:1137-1149; and van Genderen C et al. Genes Dev 1994, 8:2691-2703). The normal mammary gland development in mice begins at approximately embryonic day 10.5 with the formation of two "mammary lines" (Veltmatt J M et al. Differentiation 2003, 71:1-17). In response to signals from the underlying mesenchyme, the mammary lines give rise to five pairs of lens-shaped mammary placodes which subsequently transform into buds of epithelial cells and sink into dermis. Activation of the canonical Wnt pathway along the mammary lines coincides with the initiation of mammary morphogenesis, and subsequently localizes to mammary placodes and buds (Chu E Y et al. Development 2004, 131:4819-4829). Several Wnt ligands and receptor genes, including LRP5, are expressed during embryonic mammary morphogenesis (Chu E Y et al. Development 2004, 131:4819-4829). Embryos expressing the canonical Wnt inhibitor DKK1 display a complete block in the formation of mammary placodes and mice deficient of Lef-1 fail to maintain their mammary buds (Andl T et al. Dev Cell 2002, 2:643-653; and van Genderen C et al. Genes Dev 1994, 8:2691-2703). DKK1 inhibits the Wnt signaling pathway by binding to LRP5 and LRP6 (Bafico A et al. Nat Cell Biol 2001, 3:683-686).

A connection between mammary stem cells and Wnt1- or β-catenin-induced tumorigenesis has been established. Transgenic expression of these genes result in widespread mammary hyperplasia and rapid tumor formation (Imbert A et al. J Cell Biol 2001, 153:555-568; Nusse R and Varmus H E Cell 1982, 31:99-109; and Tsukamoto A S et al. Cell 1988, 55:619-625). The hyperplastic tissue contains an increased ratio of mammary stem cells which are thought to directly give rise to transformed cells (Li Y et al. Proc Natl Acad Sci USA 2003, 100:15853-15858; Liu B et al. Proc Natl Acad Sci USA 2004, 101:4158-4163; and Shackleton M et al. Nature 2006, 439:84-88). Tumors arising from stem cells often show mixed lineage differentiation (Owens D M and Watt F M Nat Rev Cancer 2003, 3:444-451) and tumors induced by Wnt effectors indeed contain cells from both epithelial lineages (Li Y et al. Proc Natl Acad Sci USA 2003, 100:15853-15858; Liu B et al. Proc Natl Acad Sci USA 2004, 101:4158-4163; and Rosner A et al. Am J Path 2002, 161:1087-1097). The large majority of human breast tumors overexpress cytoplasmic and nuclear levels of β-catenin, a hallmark of activation

of the canonical Wnt pathway (Lin S Y et al. Proc Natl Acad Sci USA 2000, 97:4262-4266; and Ryo A et al. Nat Cell Biol 2001, 3:793-801). In addition, many human breast tumors up-regulate Pin1, which inhibits β -catenin degradation by preventing its association with APC (Ryo A et al. Nat Cell 5 Biol 2001, 3:793-801; and Wulf G M et al. EMBO J 2001, 20:3459-3472). Another recent report links amplification and overexpression of Dishevelled1, a positively acting component of the pathway upstream of GSK3, to breast cancer (Nagahata T et al. Cancer Sci 2003, 94:515-518). Further, 10 recent reports have linked down-regulation of the secreted Wnt inhibitors sFRP1 and Wif1 to breast cancer (Ugolini F et al. Oncogene 2001, 20:5810-5817; Klopocki E et al. Int J Oncol 2004, 25:641-649; and Wismann C et al. J Pathol 2003, 201:204-212).

BRIEF SUMMARY OF THE INVENTION

It is disclosed here that low density lipoprotein receptor-related protein 5 (LRP5) is a cell surface marker for somatic 20 mammary stem cells and mammary tumor stem cells. The identification of LRP5 as a cell surface marker for the above stem cells provides new tools for enriching these stem cells. Methods of screening for agents that modulate LRP5 activity, of treating mammary tumor or breast cancer, of imaging 25 somatic mammary stem cells and mammary tumor stem cells in vivo, and of assessing prognosis of human breast cancer are also provided.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the 35 Office upon request and payment of the necessary fee.

FIGS. 1A-C show immunohistochemical stainings using an LRP5-specific polyclonal antibody. LRP5 is expressed in Wnt1-induced tumors (A) and in a fraction of mammary ductal cells from hyperplastic Wnt1 transgenic mammary 40 gland (B). The arrow indicates a representative cell with positive staining. No staining was observed in Wnt1;Lrp5-/-mammary ductal cells (C).

FIG. 1D shows Western blot of total protein from MMTV-Wnt1 transgenic Lrp5*/+ or Lrp5*/- mammary glands, which 45 indicates that the expression of the Wnt1 transgene is not affected by the Lrp5 genotype. Protein from a normal mammary gland was used as a negative control (left lane). The arrow indicates a nonspecific band to monitor equal loading.

FIG. 1E shows that the emergence of Wnt1-induced mam-50 mary tumors is delayed in Lrp5^{-/-} mice. Thirty-seven Lrp5^{+/+}, 31 Lrp5^{+/-}, and 26 Lrp5^{-/-} Wnt1 transgenic female mice were palpated weekly and dates of tumor appearance recorded. Data are plotted as the proportion of mice in each of the three genotypes remaining tumor free as a function of 55 days of age.

FIG. 2 shows that the absence of Lrp5 delays Wnt1-induced mammary hyperplasia and reduces the accumulation of keratin 6- and p21^{CIP1}-positive cells. A, hyperplastic side branching characteristic of MMTV-Wnt1 transgenic mice 60 throughout development is inhibited in Lrp5^{-/-} mammary glands. Representative whole mount preparations (stained with carmine to reveal the mammary ductal tree) are shown for juvenile mice (5-week) and mature virgin female mice. LN, lymph node. B, morphometric analysis of carmine- 65 stained mammary glands from 3-month-old MMTV-Wnt1 transgenic females. The same area of each inguinal mammary

4

gland was scored for the number of tips (ends of branches and lateral buds) from four MMTV-Wnt1 mice of each Lrp5 genotype. The number of tips is reduced by 80% in Wnt1; Lrp5^{-/-} mammary glands compared with Wnt1;Lrp5^{+/+} control glands (p=6.5×10⁻⁶, 2-tailed t test assuming unequal variances). Immunohistochemical staining of Lrp5^{+/+} and Lrp5^{-/-}MMTV-Wnt1 mammary samples from 11-week-old females was used to determine the number and distribution of cells positive for mammary progenitor cell marker keratin 6. The average number of keratin 6-positive cells per total number of ductal cells is shown in panel C. Wnt1;Lrp5^{-/-} ducts contained 58% fewer keratin 6-positive cells ($p=2.8\times10^{-6}$, 2-tailed t test assuming unequal variances). The same counting strategy was used for p21^{CIP1}. C, Lrp5^{+/+} and Lrp5^{-/-} 15 MMTV-Wnt1 mammary samples from 5-week-old females were used for the morphometric analysis of p21^{CIP1}. Wnt1; Lrp5^{-/-} ducts contained 30% fewer p21^{CIP1}-positive cells (p=0.0044, 2-tailed t test assuming unequal variances).

FIG. 3 shows that the absence of Lrp5 delays normal mammary development. A, representative whole mount preparations (stained with carmine to reveal the mammary ductal tree) are shown for juvenile (5-week) and mature (11-week) virgin female mice. The arrows indicate typical terminal end buds. LN, lymph node. The result of morphometric analysis of the average number of TEBs at 5 weeks (B) and branches per gland at 11 weeks (C). In the absence of Lrp5 the number of TEBs is reduced by 42% (p=0.0003, 2-tailed t test assuming unequal variances), and the number of branches per gland is reduced by 46% (p=0.001, 2-tailed t test assuming unequal variances) compared with Lrp5+/+ littermate controls.

FIG. 4 shows the results of stem cell activity assays. Mammary epithelial cells were isolated from Lrp5^{-/-} and control mice, and different numbers of cells were transferred to cleared fat pads to test their outgrowth potential. The fraction of cleared fat pads colonized by cells is shown in panel A. Numbers above columns represent the number of glands colonized per total number of glands transplanted. The morphogenesis of a representative outgrowth from 5,000 Lrp5^{-/-} cell inocula and lack of outgrowth from 5,000 Lrp5^{-/-} cell inocula is shown in panel B.

FIG. 5 is a FACS diagram of LRP5 staining. Single cell preparations of mammary epithelial cells were obtained by brief trypsin and dispase exposures (reagents and protocol from Stem Cell Technologies, Vancouver, BC, Canada). The cells were then stained with Rabbit anti-LRP5-Pacific Blue in addition to the following rat antibodies: anti-CD45-APC (30-F11) and anti-CD31-APC (MEC 13.3) for 30 min at 4° C. The cells were then analyzed using a FACSVantage cell sorter with DiVa software. Hematopoetic and endothelial cells were gated out based on CD45 and CD31 staining, respectively, prior to LRP5 analysis.

FIG. 6 shows in vivo stem cell activity of FACS sorted LRP5 high (top 5.13%) and negative mammary epithelial cells. Mammary epithelial cells were isolated from 10-week, virgin Balb/c mice and stained for LRP5. LRP5 high (top 5.13%), negative, and total population mammary epithelial cells were FACS sorted (see description for FIG. 5 above). The sorted cells were then transplanted into cleared fat pads of 3-week Balb/c recipient mice. Following 8 weeks, mammary glands were harvested, carmine stained, and scored for primary outgrowths.

FIG. 7 shows immunohistochemical staining of adult mammary tissue of a wild-type B6 mouse using an LRP5-specific polyclonal antibody. The arrow indicates a representative cell with positive staining (brown). The tissue was counterstained with hematoxylin. Hence, cells that lack Lrp5 expression are blue. Lrp5 is found to be expressed on the

cellular surface of a small fraction of mammary ductal cells. Some LRP5 staining can also be observed in the stroma surrounding the mammary ducts.

FIG. 8 shows normalized Lrp5 expression levels (mRNA) in 275 breast cancer patients grouped into the following two 5 classes: class 1 (196 patients)-breast cancer patients who are cancer-free at the 5 year time point from first diagnosis; and class 2 (79 patients)—breast cancer patients who still have cancer (either the original cancer or recurrence) or have died at the 5 year time point from first diagnosis. The line near the 10 middle of the box for each class is the median normalized expression value of Lrp5. Each box captures 25th percentile to 75th percentile of the patients in terms of normalized Lrp5 expression level. The top and bottom bars indicate the 100 percentile and 0 percentile, respectively. The dot above and 15 below the box indicate outliers. The scale is a log2 scale which means that from 0 to 1 there is a 2-fold increase in expression, 0 to 2 4-fold increase, 0 to 3 8-fold increase, and 0 to 4 16-fold increase. T-test was performed to analyze the difference in Lrp5 expression between the two classes of 20 patients and we obtained a P value of 8.8×10^{-5} .

FIG. 9 shows normalized Lrp5 expression levels (mRNA) in 295 breast cancer patients grouped into the following two classes: class 1 (194 patients)—breast cancer patients who are metastasis-free from first diagnosis for 5 years; and class 25 2 (101 patients)—breast cancer patients with metastasized cancer (within 5 years of first diagnosis). The line near the middle of the box for each class is the median normalized expression value of Lrp5. Each box captures 25th percentile to 75th percentile of the patients in terms of normalized Lrp5 expression level. The top and bottom bars indicate the 100 percentile and 0 percentile, respectively. The dot above and below the box indicate outliers. The scale is a log2 scale which means that from 0 to 1 there is a 2-fold increase in expression; 0 to 2, a 4-fold increase; 0 to 3, an 8-fold increase; 35 and 0 to 4, a 16-fold increase. A t-test was performed to analyze the difference in Lrp5 expression between the two classes of patients and we obtained a P value of 3.5×10^{-6} .

DETAILED DESCRIPTION OF THE INVENTION

It is disclosed here that Wnt signaling receptor LRP5 is, highly expressed in a fraction of mammary epithelial cells that contains somatic mammary stem cell activity. The inventors established co-localization of mammary epithelial cells 45 having high LRP5 expression with the somatic mammary stem cell-enriched fraction and determined the enhanced stem cell function of the LRP5 high fraction. In situ examination of LRP5 expression confirmed the heterogeneous expression of LRP5 and located the LRP5 high cells in the 50 mammary ductal cell population. The inventors also generated LRP5 null (knockout) mice and observed that although mammary glands developed in these mice, the adult mammary epithelial cell populations had negligible stem cell activity. LRP5 null mice were also found to be resistant to 55 Wnt1-induced mammary tumors. Similar to somatic mammary stem cells, it is expected that mammary tumor stem cells also express high levels of LRP5, and require this signaling receptor for survival. Although the observations disclosed here were made with mice, it is expected that they also apply 60 to other mammals such as humans and rats given that the Wnt pathway, and mammary gland development, are highly conserved across the mammalian species.

The disclosure here provides new tools for enriching somatic mammary stem cells and mammary tumor stem cells. 65 Methods of screening for agents that may modulate LRP5 activity, of treating mammary tumor or breast cancer, and of

6

monitoring somatic mammary stem cells and mammary tumor stem cells in vivo are also provided. In some embodiments, the methods of the present invention are practiced with human, mouse, or rat mammary cells or human, mouse, or rat mammary tumor cells.

It is further disclosed here that human breast cancer patients with poor prognosis express a higher level of LRP5 in the mammary tumor cells (on average) than those with good prognosis. As shown in Example 4 below, the population of breast cancer patients who still have cancer (either the original cancer or recurrence) or have died at the 5 year time point from first diagnosis expresses a higher level of LRP5 in the tumor cells (the median level of expression) than the population of breast cancer patients who are cancer-free at the 5 year time point from first diagnosis. Further, the population of breast cancer patients with metastasis (within 5 years of initial diagnosis) expresses a higher level of LRP5 in the tumor cells (the median level of expression) than the population of breast cancer patients who are metastasis-free (within 5 years of initial diagnosis). Therefore, LRP5 can serve as a prognostic marker for breast cancer.

The term "somatic mammary stem cells" used herein refers to the cells that can generate both the ductal and lobular structures of the mammary gland, can generate all the cell lineages of the mammary epithelium (e.g., luminal cells and myoepithelial cells), and can self-renew. For example, when transplanted to a mammary fat pad in a mouse or rat in vivo, a somatic mammary stem cell can generate a functional ductal tree. Somatic mammary stem cells can also generate mammary progenitor cells. The progenitor cells have proliferative capability and are the immediate precursors to the differentiated mammary cells such as luminal cells and myoepithelial cells. Mammary progenitor cells can be detected by their ability to generate colonies in vitro.

The term "mammary tumor stem cells" is used herein to refer to mammary tumor cells that are tumorigenic, i.e., that they can give rise to tumorigenic cells (self-renew) and non-tumorigenic tumor cells ("differentiation"). For example, a mammary tumor stem cell can form a new tumor when grafted to a mammary fat pad of a mouse (e.g., a nude mouse, a NOD immuno-deficient mouse, or a NOD/SCID immuno-deficient mouse). Mammary tumor stem cells can be analyzed using dilution xenograft assays.

As used herein, "antibody" includes an immunoglobulin molecule immunologically reactive with a particular antigen, and includes both polyclonal and monoclonal antibodies. The term also includes genetically engineered forms such as chimeric antibodies (e.g., humanized murine antibodies) and heteroconjugate antibodies (e.g., bispecific antibodies). For example, the term includes bivalent or bispecific molecules, diabodies, triabodies, and tetrabodies. Bivalent and bispecific molecules are described in, e.g., Kostelny et al. J Immunol 1992, 148:1547, Pack and Pluckthun Biochemistry 1992, 31:1579, Zhu et al. Protein Sci 1997, 6:781, Hu et al. Cancer Res. 1996, 56:3055, Adams et al. Cancer Res. 1993, 53:4026, and McCartney, et al. Protein Eng. 1995, 8:301. The term "antibody" also includes antigen binding forms of antibodies, including fragments with antigen-binding capability (e.g., Fab', F(ab')₂, Fab, Fv and rIgG). The term also refers to recombinant single chain Fv fragments (scFv). Preferably, antibodies employed to practice the present invention bind to a selected target antigen on the surface of a cell with an affinity (association constant) of greater than or equal to 10^7 M^{-1}

When an antibody is referred to as specific for a particular antigen, it means that the binding reaction is determinative of the presence of the antigen in a heterogeneous population of

proteins and other biologics. Thus, under suitable conditions, the specified antibodies bind to a particular protein sequences at least two times the background and more typically more than 10 to 100 times the background.

In one aspect, the present invention relates to a method for 5 enriching somatic mammary stem cells from a population of mammary cells. The method includes the steps of obtaining a population of mammary cells containing one or more somatic mammary stem cells (e.g., a mammary cell population that includes the total mammary epithelial cell population or a 10 substantial portion thereof that is essentially free of adipocyte contamination), contacting said population of mammary cells with an anti-LRP5 antibody, and selecting cells that bind to the antibody. Preferably, at least 1%, 2%, 3%, 4%, 5%, 6%, or 7% of the selected cells are somatic mammary stem cells. As 15 Shackleton M et al. (Nature 439:84-88, 2006) estimated that mammary stem cells occur at a frequency of about 1 in 1,300 total mammary cells in mice, a 1% mammary stem cell concentration represents a 13-fold enrichment. While other methods of enriching for mammary stem cells that involve the 20 use of cell surface markers are known, these methods require a combination of at least two cell surface markers (see e.g., "Stingl J et al. Nature 2006, 439:993-997" for the use of cell surface markers CD49f and CD24). The method provided here uses a single marker (LRP5) and can achieve a compa- 25 rable enrichment level to the methods that involve the use of multiple markers.

It is well within the capability of a skilled artisan to isolate mammary cells from a mammary gland. One example is provided in example 2 below (see also Stingl J et al. Nature 2006, 439:993-997, which is herein incorporated by reference in its entirety). Other methods are known in the art. Typically, known procedures provide a population of mammary cells that is essentially free of adipocyte contamination but includes mammary epithelial cells, stromal cells (e.g., 35 fibroblasts and other connective tissue cells), endothelial cells, and hematopoietic cells. Methods of isolating mammary epithelial cells are also well known in the art (see e.g., Gould MN et al. Cancer Res 1986, 46:4942-4945, which is herein incorporated by reference in its entirety). Somatic 40 mammary stem cells can be enriched using the LRP5 marker for positive selection from the population of mammary cells. Optionally, a somatic mammary stem cell "negative marker" (i.e., a marker not present on the cell surface of somatic mammary stem cells) is used for negative selection (i.e., for 45 the elimination of cells that are not somatic mammary stem cells). For example, endothelial cell markers CD31 and Von Willebrand factor, hematopoietic cell markers CD45 and Ter119, and stromal cell marker CD140a can be used to eliminate certain endothelial, hematopoietic, and stromal 50 cells to facilitate the enrichment of somatic mammary stem cells. Depending on the particular enrichment techniques, the negative markers can be used to eliminate certain non-mammary stem cells before the positive selection with LRP5 or the positive and negative selections can be accomplished in one 55 step. As an example for the former, antibodies to one or more of CD31, Von Willebrand factor, CD45, Ter119, and CD140a can be conjugated to a matrix such as magnetic beads to deplete the non-epithelial cells. The leftover epithelial enriched population of mammary cells is then labeled with fluorochrome-conjugated LRP5 antibodies for enriching somatic mammary stem cells by, for example, flow cytometry. As an example for the latter, antibodies to one or more of CD31, CD45, Ter119, and CD140a and antibodies to LRP5 can be conjugated to different fluorochrome so that endothelial, stromal, and/or hematopoietic cells can be gated out from LRP5 flow cytometry enrichment. Similarly, one or more

8

mammary epithelial cell surface markers can optionally be used to enrich for mammary epithelial cells first before the LRP5 marker is used to enrich for somatic mammary stem cells

Any agent that can bind to the cell surface markers can be used to practice the present invention. Antibodies specific for the markers are examples of such agents.

cDNA and amino acid sequences for LRP5 in various species are available and it is well within the capability of a skilled artisan to generate specific antibodies to these proteins if they are not already available. The human LRP5 cDNA and amino acid sequences are provided in the sequence listing at SEQ ID NO: 1 and 2, respectively. The mouse LRP5 cDNA and amino acid sequences are provided in the sequence listing at SEQ ID NO:3 and 4, respectively. The rat LRP5 cDNA and amino acid sequences can be found at GenBank Accession numbers XM_215187.4 and XP_215187.3, respectively. The chimpanzee LRP5 cDNA and amino acid sequences can be found at GenBank Accession number XM_508605.2. The monkey LRP5 cDNA and amino acid sequences can be found at GenBank Accession number XP_001115564.1. The cow LRP5 cDNA and amino acid sequences can be found at GenBank Accession number XM_614220.3. The rabbit LRP5 cDNA and amino acid sequences can be found at numbers AB017499.1 GenBank Accession BAA33052.1, respectively.

In some embodiments, flow cytometry is employed to conduct the positive selection and, if applicable, the negative selection as well. A skilled artisan is familiar with flow cytometry-related techniques such as labeling targeted cells (e.g., somatic mammary stem cells) with cell surface marker antibodies (e.g., anti-LRP5 antibodies), setting suitable parameters for sorting and collecting labeled cells, and collecting the targeted cells (see e.g., Givan A, Flow Cytometry: First Principles, Wiley-Liss, New York, 1992; and Owens M A & Loken M R, Flow Cytometry: Principles for Clinical Laboratory Practice, Wiley-Liss, New York, 1995). As shown in Example 2 below, flow cytometry analysis of mammary epithelial cells stained for LRP5 revealed a gradient of LRP5 expression from negative to high levels. For the purpose of the present invention, a population of LRP5 high mammary epithelial cells is taken for the enrichment of somatic mammary stem cells. By LRP5 high mammary epithelial cells, we mean the top 10% of the total mammary epithelial cell population in terms of LRP5 expression level at the cellular surface. For example, a population of mammary epithelial cells defined by any percentage ranging from the top 10% to the top 1% of total mammary epithelial cell population in terms of LRP5 expression level at the cellular surface can be taken for the enrichment of somatic mammary stem cells. In certain embodiments, a population of mammary epithelial cells defined by a percentage ranging from the top 9% to the top 1%, from the top 8% to the top 1%, from the top 7% to the top 1%, from the top 6% to the top 1%, from the top 5% to the top 1%, from the top 4% to the top 1%, from the top 3% to the top 1%, or from the top 2% to the top 1% of total mammary epithelial cell population in terms of LRP5 expression level at the cellular surface is taken for the enrichment of somatic mammary stem cells. Said enrichment for somatic mammary stem cells can be achieved by collecting the top 10 or smaller percentage (e.g., any percentage ranging from the top 10% to the top 1%) of a mammary cell population (in terms of LRP5 expression level at the cellular surface) that includes the total mammary epithelial cell population or a substantial portion thereof and is essentially free of adipocyte contamination. In one form, the mammary cell population has been depleted of certain endothelial cells, hematopoietic cells, and/or stroma

cells using one or more of the following markers: CD31, Von Willebrand factor, CD45, Ter119, and CD140a. For example, the mammary cell population can be depleted of CD31+cells. By a substantial portion of the total mammary epithelial cell population, we mean at least 70%, 80%, 90%, or 95% of the 5 total mammary epithelial cell population.

In some embodiments, a matrix such as magnetic beads to which an antibody (e.g., an anti-LRP5 antibody) can be conjugated directly or indirectly is employed to conduct the positive selection and, if applicable, the negative selection as well. In this regard, targeted cells can be separated from other cells by binding to the matrix through the antibody. When the matrix is used for positive selection in connection with an anti-LRP5 antibody, a skilled artisan can readily adjust and find suitable binding conditions so that LRP5 high mammary epithelial cells are bound to the matrix while other mammary epithelial cells (LRP5 negative and LRP5 low) are not.

In some other embodiments, flow cytometry is used to conduct the positive selection and a matrix described above is used to conduct the negative selection or vise versa.

Antibodies (e.g., anti-LRP5 antibodies) useful in the present invention can be labeled with a marker or they may be conjugated to a matrix. In some embodiments, the marker is used to conjugate the antibodies to the matrix. Examples of markers include biotin, which can be removed by avidin 25 bound to a support, and fluorochromes (e.g. fluorescein), which provide for separation using fluorescence activated sorters. Examples of matrices include magnetic beads, which allow for direct magnetic separation (Kemshead JT, J Hematother 1992;1:35-44), panning surfaces such as plates, (Leb- 30 kowski J S et al., J. of Cellular Biochemistry supple. 1994, 18b:58), dense particles for density centrifugation (Van Vlasselaer P, Density Adjusted Cell Sorting (DACS), A Novel Method to Remove Tumor Cells From Peripheral Blood and Bone Marrow StemCell Transplants. (1995) 3rd International 35 Symposium on Recent Advances in Hematopoietic Stem Cell Transplantation-Clinical Progress, New Technologies and Gene Therapy, San Diego, Calif.), dense particles alone (Zwerner et al., Immunol. Meth. 1996, 198:199-202), adsorption columns (Berenson et al., Journal of Immunological Methods 40 1986, 91:11-19), and adsorption membranes.

The antibodies may be directly or indirectly coupled to a matrix. For example, the antibodies may be chemically bound to the surface of magnetic particles (e.g., using cyanogen bromide). When the magnetic particles are reacted with a 45 sample, conjugates will form between the magnetic particles with bound antibodies and the cells having the corresponding markers on their surfaces. Alternatively, the antibodies may be indirectly conjugated to a matrix. For example, the antibodies may be biotinylated and indirectly conjugated to a 50 matrix which is labeled with avidin. Magnetic iron-dextran particles that are covalently labeled with avidin (Miltenyi S et al., Cytometry 1990, 11:231) can be used in this regard. Many alternative indirect ways to specifically cross-link the antibodies and matrices would also be apparent to those skilled in 55 the art.

As another example, a matrix may be coated with a second antibody having specificity for the antibodies against the cell surface markers. By way of example, if the antibodies against the cell surface markers are mouse IgG antibodies, the second 60 antibody may be rabbit anti-mouse IgG.

As another example, bispecific antibodies and tetrameric antibody complexes can be used. Bispecific antibodies contain a variable region of an antibody specific for a cell surface marker and a variable region specific for at least one antigen 65 on the surface of a matrix. The bispecific antibodies may be prepared by forming hybrid hybridomas. The hybrid hybridomas.

10

domas may be prepared using the procedures known in the art such as those disclosed in Staerz & Bevan, (Proc Natl Acad Sci USA 1986, 83:1453) and Staerz & Bevan, (Immunology Today 1986, 7:241). Bispecific antibodies may also be constructed by chemical means using procedures such as those described by Staerz et al. (Nature 1985, 314:628) and Perez et al. (Nature 1985, 316:354), or by expression of recombinant immunoglobulin gene constructs.

A tetrameric immunological complex may be prepared by mixing a first monoclonal antibody which is capable of binding to an antigen on the surface of a matrix and a second monoclonal antibody specific for a cell surface marker. The first and second monoclonal antibodies are from a first animal species. The first and second antibody are reacted with an about equimolar amount of monoclonal antibodies of a second animal species which are directed against the Fc-fragments of the antibodies of the first animal species. The first and second antibodies may also be reacted with an about equimolar amount of the F(ab')2 fragments of monoclonal 20 antibodies of a second animal species which are directed against the Fc-fragments of the antibodies of the first animal species. (See U.S. Pat. No. 4,868,109 to Lansdorp, which is incorporated herein by reference for a description of tetrameric antibody complexes and methods for preparing

In an embodiment of the invention, the cell conjugates are removed by magnetic separation using magnetic particles. Suitable magnetic particles include particles in ferrofluids and other colloidal magnetic solutions. "Ferrofluid" refers to a colloidal solution containing particles having a magnetic core, such as magnetite (Fe₃O₄) coated or embedded in material that prevents the crystals from interacting. Examples of such materials include proteins, such as ferritin, polysaccharides, such as dextrans, or synthetic polymers such as sulfonated polystyrene cross-linked with divinylbenzene. The core portion is generally too small to hold a permanent magnetic field. The ferrofluids become magnetized when placed in a magnetic field. Examples of ferrofluids and methods for preparing them are described by Kemshead J. T. in J. Hematotherapy 1992, 1:35-44, at pages 36 to 39 and Ziolo et al. Science 1994, 257:219 which are incorporated herein by reference. Colloidal particles of dextran-iron complex are preferably used in the process of the invention (Molday, R. S. and McKenzie, L. L. FEBS Lett. 1984, 170:232; Miltenyi et al. Cytometry 1990, 11:231; Molday, R. S. and MacKenzie, D., J. Immunol. Methods 1982, 52:353; Thomas et al., J. Hematother, 1993, 2:297; and U.S. Pat. No. 4,452,733, which are each incorporated herein by reference).

In accordance with the magnetic separation method, a sample containing the cells to be recovered, is reacted with an antibody specific for a cellular surface marker of the cells so that the antibody binds to the cells present in the sample to form cell conjugates of the targeted cells and the antibody. The reaction conditions are selected to provide the desired level of binding of the targeted cells and the antibody. The concentration of the antibody is selected depending on the estimated concentration of the targeted cells in the sample. The magnetic particles are then added and the mixture is incubated for a suitable period of time at a suitable temperature. The sample is then ready to be separated in a magnetic device.

In another aspect, the present invention relates to a method of enriching mammary tumor stem cells from a population of mammary tumor cells. The method includes the steps of obtaining a population of mammary tumor cells containing one or more mammary tumor stem cells, contacting said population of mammary tumor cells with an anti-LRP5 anti-

body, and selecting cells that bind to the antibody. Preferably, at least 1%, 2%, 3%, 4%, 5%, 6%, or 7% of the selected cells are mammary tumor stem cells. Also preferably, the mammary tumor stem cells are enriched for at least 2-fold, 3-fold, 5-fold, 7-fold, or 10-fold relative to the original tumor from which said population is derived (unfractionated tumor cells). Reagents and procedures for enriching somatic mammary stem cells can be used similarly here for enriching mammary tumor stem cells.

11

In another aspect, the present invention relates to a method 10 for forming a mammary tumor in an animal such as a mammal (e.g., a mouse or rat). The method includes the step of introducing a population of mammary tumor cells enriched for mammary tumor stem cells into the animal (e.g., a mammary fat pad), wherein said population is derived from a solid 15 mammary tumor and the mammary tumor cells in said population express LRP5.

In another aspect, the present invention relates to a method for screening for an agent that may modulate (either inhibit or enhance) LRP5 activity in a cell. The method includes the 20 steps of providing a cell that has attenuated LRP6 activity (e.g., the LRP6 activity is reduced by at least 80%, 90%, or 95%), exposing the cell to a test agent, determining the LRP5 activity in the cell, and comparing the LRP5 activity to that of a control cell (the same type of cell as the exposed cell) not 25 exposed to the test agent wherein a higher or lower LRP5 activity in the exposed cell than that of the control cell indicates that the agent can modulate LRP5 activity. If the cell does not express any Wnt ligand or produces an insufficient amount of Wnt for the purpose of conducting the screening 30 assay, a Wnt ligand such as Wnt1, Wnt2, Wnt3, Wnt3a, or Wnt8 (e.g., Wnt1 or Wnt3a) may be added exogenously to stimulate Wnt signaling through LRP5. Alternatively, a DNA construct for expressing a Wnt ligand (e.g., a Wnt expression vector) can be introduced into the cell to express a Wnt 35

A cell with attenuated LRP6 activity can be provided by using a LRP6-specific antibody to block its activity or by using antisense oligonucleotides, siRNA, or shRNA to block LRP6 gene expression so that the level of LRP6 protein in the 40 cell is reduced by at least 80%, 90%, or 95% (see e.g., Young J J et al. PLoS Pathog 2007, 3:e27). Agents that can inhibit LRP5 activity specifically are useful for treating mammary tumor or breast cancer.

Optionally, a cell that has wild-type LRP6 activity can also 45 be employed in the screening assay as a control to select for agents that specifically modulate LRP5-mediated signaling. Those agents that can modulate Wnt signaling in LRP6 attenuated cells but not wild-type LRP6 control cells are identified as specific modulators of LRP5-mediated signal- 50

In a preferred embodiment, a LRP6 null (knockout) cell is used in the screening. By a LRP6 null cell, we mean that no detectable level of functional LRP6 is produced. Such a cell can be provided by, for example, introducing one or more 55 mutations into the LRP6 nucleic acid gene sequence (including complete deletion of the gene sequence). In one form, the LRP6 gene is disrupted so that the cell does not express any part of the LRP6 coding sequence at the mRNA level. Prefsequence are disrupted in the cell.

A LRP6 null animal such as a LRP6 null mouse or rat can be a source of LRP6 null cells. Null or knockout animals such as knockout mice and rats are routinely generated in the art. For example, LRP6 knockout (LRP6^{-/-}) mice have been generated by Pinson K I et al. (Nature 2000, 407:535-538). Given that LRP6 knockout mice die around birth, fetuses (full term

12

or not) can be rescued by caesarean section. A LRP6 knockout rat can be generated by a variety method such as that described in published U.S. patent application 20030150001, which is herein incorporated by reference in its entirety. The term null or knockout animals are used broadly to encompass a knockout fetus and as well as a knockout neonate and adult

The LRP6 gene may be disrupted using a variety of technologies familiar to those skilled in the art. For example, a stop codon may be introduced into the gene by homologous recombination. Alternatively, a deletion may be introduced into the gene by homologous recombination. In some embodiments, stop codons may be introduced into all reading frames in the sequence downstream of the deletion to eliminate artifactual translation products. In further embodiments, the gene may be disrupted by inserting a gene encoding a marker protein, for example, via homologous recombination.

Examples of suitable cells that can be used in the screening method include murine (mouse or rat) embryonic fibroblasts (MEFs), primary keratinocyte cultures (e.g., mouse or rat primary keratinocyte cultures), and murine (mouse or rat) embryonic stem cells. A skilled artisan can readily isolate from Lrp6^{-/-} murine animals murine embryonic fibroblasts from mid-gestational embryos, primary keratinocyte cultures from later stage embryos, or murine embryonic stem cells. For example, to establish murine embryonic fibroblast lines, one can isolate Lrp6^{-/-} embryos (or control littermate embryos) at embryonic day 12 or 13, remove the head and internal organs, and then disassociate the remaining tissue with a razor blade in the presence of trypsin. These cells will be useful for up to 6-7 passages.

LRP5 activity can be measured by any part of the Wnt pathway at or downstream of LRP5. For example, the level of LRP5 at the mRNA or protein level can be measured. Phosphorylation of the C-terminus of LRP5 can also be measured. Alternatively, the activity of glycogen synthase kinase-3 (GSK3) activity can be measured. An increase in GSK3 activity indicates an inhibition of LRP5 activity and a decrease in GSK3 activity indicates an increase in LRP5 activity. β-catenin level such as that in the cytosol and/or nucleus can also be measured as a reflection of LRP5 activity. An increase in β-catenin level indicates an increase in LRP5 activity and vise versa. In one embodiment, the β -catenin level in the nucleus is measured wherein an increase in level indicates more LRP5 activity and vise versa. Alternatively, a Wnt reporter construct containing a reporter operably linked to a suitable promoter responsive to Wnt pathway activity can be provided in a cell for measuring LRP5 activity. Examples of suitable promoters include promoters for Wnt/β-catenin-responsive genes such as Axin2, CyclinD1, PPAR-delta, TCF, and LEF1 (see e.g., Yan D et al. Proc Natl Acad Sci USA 2001, 98:14973-8; Lustig B et al. Mol Cell Biol 2002, 22:1184-93; Jho E H et al. Mol Cell Biol 2002, 2:1172-83; Tetsu 0 et al. Nature 1999, 398:422-6; Shtutman M et al. Proc Natl Acad Sci USA 1999, 96:5522-7; He T C et al. Cell 1999, 99:335-45; Roose J et al. Science 1999, 285:1923-6; Hovanes K et al. Nat Genet 2001, 28:53-7; and Filali M et al. J Biol Chem 2002, 277:33398-410). A skilled artisan is familiar with these promoters. For example, a TCF-luciferase reporter gene assay (TOPFLASH) erably, both chromosomal copies of the LRP6 nucleic acid 60 is commercially available (Mao et al. Nature 2001, 411:321-

Additional examples of Wnt/β-catenin-responsive genes include c-myc, c-jun, fra-1, uPAR, matrix metalloproteinase MMP-7, Nr-CAM, ITF-2, Gastrin, CD44, EphB/ephrin-B, BMP4, claudin-1, Survivin, VEGF, FGF18, Hath1, Met, endothelin-1, c-myc binding protein, L1 neural adhesion, Id2, Tiam1, Nitric Oxide, Synthase 2, Dickkopf, FGF9, FGF20,

Sox9, Runx2, SALL4, RANK ligand, CCN1/Cyr61, Sox2, Pituitary tumor transforming gene (PTTG), Delta-like 1, FoxN1, matrix metalloproteinase-26, nanog, Frizzled 7, Follistatin, Siamois, fibronectin, myogenic bHLH, engrailed-2, Xnr3, connexin43, twin, connexin 30, retinoic acid receptor 5 gamma, dharma/bozozok, MITF/nacre, Wrch-1, TNF family 41 BB ligand, ephrinB1, Stra6, autotoxin, ISLR, Twist, Stromelysin, WISP, Brachyury, Proglucagon, Osteocalcin, cyclooxygenase-2, Irx3, Six3, neurogenin 1, WISP-1, WISP-2, IGF-II, Proliferin-2, Proliferin-3, Emp, IGF-I, VEGF-C, 10 MDR1, IL-6, periostin, Cdx1, Cdx4, betaTrCP, sFRP-2, Pitx2, EGF receptor, Eda (TNF-related), E-cadherin, Keratin, movol, Jagged1, mBTEB2, FGF4, Interleukin8, ret, connexin43, versican, Ubx, wingless, Dpp, Engrailed, Dfrizzled2, shavenbaby, stripe, and Nemo.

A reporter gene is defined broadly here to refer to a DNA sequence whose expression in a cell can be measured. Preferably, the reporter gene produces a polypeptide product whose function can be measured. Examples of such reporter genes include but are not limited to a β-galactosidase gene, a 20 luciferase gene, and a green fluorescent protein (GFP) gene. An increase in the expression (at the mRNA or protein level) or activity of the reporter gene indicates an increase in LRP5 activity and vise versa. As another example, the reporter gene can be an inhibitor of the expression of a killer gene (the 25 product of which lead to the death of the host cell) from another expression construct introduced into the cell. This is especially useful for screening for agents that can inhibit the activity of LRP5. For example, when an agent sufficiently inhibits the activity of LRP5, the expression of reporter gene 30 will be sufficiently inhibited resulting in the expression of the killer gene and in turn the death of the cell. In this regard, cell death is the end point of the screening.

In another aspect, the present invention relates to a method for inhibiting the proliferation or causing the death of a mam- 35 istered. In mammalian cells, introduction of long dsRNA mary tumor cell that expresses LRP5. The method includes the step of contacting the mammary tumor cell with an agent that inhibits LRP5 activity in an amount sufficient to inhibit the proliferation or causing the death of the mammary tumor cell. Preferably, the mammary tumor cell expresses a high 40 level of LRP5. For example, the mammary tumor cell can be a mammary tumor stem cell. Since mammary tumor stem cells are expected to co-localize with the fraction of high level LRP5 mammary tumor cells, mammary tumor stem cells can be treated by contacting a population of mammary tumor 45 cells that express a high level of LRP5.

In one embodiment, the above method is used to treat a mammary tumor in a mammal (e.g., a human, mouse, or rat) in vivo by administering an agent that inhibits LRP5 activity into the mammal in an amount sufficient to inhibit the prolif- 50 eration or causing the death of mammary tumor cells such as mammary tumor stem cells. As mammary tumor stem cells express a high level of LRP5, the method is especially useful to inhibit the growth or causing the death of mammary tumor stem cells. Optionally, another mammary tumor/breast can- 55 cer therapeutic agent such as a chemotherapeutic agent or radiation is administered in connection with the agent that inhibits LRP5 activity. This other mammary tumor/breast cancer therapeutic agent in some cases may eradicate the non-stem cell population in the mammary tumor.

One example of agents that inhibit LRP5 activity is an anti-LRP5 antibody (e.g., specific for LRP5). As LRP5 is a cellular surface receptor with an extracellular domain, an anti-LRP5 antibody directed to an epitope in the extracellular domain can readily inhibit the activity of LRP5.

In some instances, the antibody belongs to a sub-type that activates serum complement when complexed with the trans14

membrane protein thereby mediating cytotoxicity or antigendependent cytotoxicity (ADCC).

The LRP5 antibody can also be conjugated to a mammary tumor/breast cancer therapeutic agent (e.g., a chemotherapeutic agent) to deliver the therapeutic agent to the targeted tumor cells. In this case, the LRP5 antibody serves as a delivering vehicle. The therapeutic agent can be conjugated to the antibody either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds. The therapeutic agent is typically a cytotoxic agent that can cause the death of the target

Another example of the agents that inhibit LRP5 activity is a nucleic acid molecule that inhibits LRP5 gene expression. Examples of such nucleic acid molecules include antisense oligonucleotides, RNA interference (RNAi) molecules such as siRNA (small interfering RNA) molecules, and shRNA (short hairpin RNA) molecules. Given the cDNA sequences of LRP5 for various species are known in the art, it is well within the capability of a skilled artisan to develop such nucleic acid molecules. Both non-viral and viral vector delivery systems can be used to deliver the nucleic acid molecules. For a review of gene therapy procedures, see Anderson, Science 1992, 256:808-813; Nabel & Felgner, TIBTECH 1993, 11:211-217; Mitani & Caskey, TIBTECH 1993, 11:162-166; Dillon, TIBTECH 1993, 11:167-175; Miller, Nature 1992, 357:455-460; Van Brunt, Biotechnology 1988, 6:1149-1154; Vigne, Restorative Neurology and Neuroscience 1995, 8:35-36; Kremer & Perricaudet, British Medical Bulletin 1995, 51:31-44; Haddada et al., in Current Topics in Microbiology and Immunology Doerfler and Bohm (eds) (1995); and Y u et al., Gene Therapy 1994, 1:13-26.

In some embodiments, small interfering RNAs are admin-(>30 nt) often initiates a potent antiviral response, exemplified by nonspecific inhibition of protein synthesis and RNA degradation. The phenomenon of RNA interference is described and discussed, e.g., in Bass, Nature 2001, 411:428-29; Elbahir et al., Nature 2001, 411:494-98; and Fire et al., Nature 1998, 391:806-11, where methods of making interfering RNA also are discussed. The siRNA inhibitors are less than 100 base pairs, typically 30 bps or shorter, and are made by approaches known in the art. Exemplary siRNAs according to the invention can have up to 29 bps, 25 bps, 22 bps, 21 bps, 20 bps, 15 bps, 10 bps, 5 bps or any integer thereabout or therebetween.

Methods of non-viral delivery of nucleic acid molecules include lipofection, microinjection, biolistics, virosomes, liposomes, immunoliposomes, polycation or lipid:nucleic acid conjugates, naked DNA, artificial virions, and agentenhanced uptake of DNA. Lipofection is described in e.g., U.S. Pat. No. 5,049,386, U.S. Pat. No. 4,946,787; and U.S. Pat. No. 4,897,355 and lipofection reagents are sold commercially (e.g., TransfectamTM and LipofectinTM). Cationic and neutral lipids that are suitable for efficient receptor-recognition lipofection of polynucleotides include those of Felgner, WO 91/17424 and WO 91/16024. Delivery can be to cells (ex vivo administration) or target tissues (in vivo administration). 60 The preparation of lipid:nucleic acid complexes, including targeted liposomes such as immunolipid complexes, is well known to one of ordinary skill in the art (see e.g., Crystal, Science 1995, 270:404-410; Blaese et al., Cancer Gene Ther. 1995, 2:291-297; Behr et al., Bioconjugate Chem. 1994, 5:382-389; Remy et al., Bioconjugate Chem. 1994, 5:647-654; Gao et al., Gene Therapy 1995, 2:710-722; Ahmad et al., Cancer Res. 1992, 52:4817-4820; and U.S. Pat. Nos. 4,186,

183, 4,217,344, 4,235,871, 4,261,975, 4,485,054, 4,501,728, 4,774,085, 4,837,028, and 4,946,787).

The use of RNA or DNA viral based systems for the delivery of the nucleic acid molecules are known in the art. Conventional viral based systems for the delivery of such nucleic 5 acid molecules include retroviral, lentivirus, adenoviral, adeno-associated and herpes simplex virus vectors for gene transfer.

It may be desirable that the gene therapy vector be delivered with a high degree of specificity to a particular tissue 10 type such as mammary tumor. A viral vector is typically modified to have specificity for a given cell type by expressing a ligand as a fusion protein with a viral coat protein on the viruses outer surface. The ligand is chosen to have affinity for a receptor known to be present on the cell type of interest. For 15 example, Han et al., Proc Natl Acad Sci USA 1995, 92:9747-9751, reported that Moloney murine leukemia virus can be modified to express human heregulin fused to gp70, and the recombinant virus infects certain human breast cancer cells expressing human epidermal growth factor receptor. This 20 principle can be extended to other pairs of virus expressing a ligand fusion protein and target cell expressing a receptor. For example, filamentous phage can be engineered to display antibody fragments (e.g., FAB or Fv) having specific binding affinity for virtually any chosen cellular receptor. Although 25 the above description applies primarily to viral vectors, the same principles can be applied to nonviral vectors. Such vectors can be engineered to contain specific uptake sequences thought to favor uptake by specific target cells.

Gene therapy vectors can be delivered in vivo by administration to an individual patient (include humans and other mammals such as mice and rats), typically by systemic administration (e.g., intravenous, intraperitoneal, intramuscular, subdermal, or intracranial infusion) or topical application, as described below.

Vectors (e.g., retroviruses, adenoviruses, liposomes, etc.) containing therapeutic nucleic acids can also be administered directly to the patient for transduction of cells in vivo. Alternatively, naked DNA can be administered. Administration is by any of the routes normally used for introducing a molecule 40 into ultimate contact with blood or tissue cells. Suitable methods of administering such nucleic acids are available and well known to those of skill in the art, and, although more than one route can be used to administer a particular composition, a particular route can often provide a more immediate and more 45 effective reaction than another route.

Pharmaceutically acceptable carriers are determined in part by the particular composition being administered, as well as by the particular method used to administer the composition. Accordingly, there is a wide variety of suitable formulations of pharmaceutical compositions of the present invention, as described below (see, e.g., Remington's Pharmaceutical Sciences, 17th ed., 1989).

The agents that inhibit LRP5 activity can be administered by a variety of methods including, but not limited to 55 parenteral (e.g., intravenous, intramuscular, intradermal, intraperitoneal, and subcutaneous routes), topical, oral, local, or transdermal administration. These methods can be used for prophylactic and/or therapeutic treatment.

The compositions for administration will commonly comprise an agent that inhibits LRP5 activity dissolved in a pharmaceutically acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers can be used, e.g., buffered saline and the like. These solutions are preferably sterile and generally free of undesirable matter. These compositions may be sterilized by conventional, well known sterilization techniques. The compositions may contain pharmaceutically

16

acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, for example, sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like. The concentration of active agent in these formulations can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the patient's needs.

The pharmaceutical compositions can be administered in a variety of unit dosage forms depending upon the method of administration. For example, unit dosage forms suitable for oral administration include, but are not limited to, powder, tablets, pills, capsules and lozenges. It is recognized that antibodies when administered orally, should be protected from digestion. This is typically accomplished either by complexing the molecules with a composition to render them resistant to acidic and enzymatic hydrolysis, or by packaging the molecules in an appropriately resistant carrier, such as a liposome or a protection barrier. Means of protecting agents from digestion are well known in the art.

The compositions containing agents that inhibit LRP5 activity (e.g., antibodies) can be administered for therapeutic or prophylactic treatments. In therapeutic applications, compositions are administered to a patient suffering from breast cancer/mammary tumor in an amount sufficient to cure or at least partially arrest the disease and its complications. An amount adequate to accomplish this is defined as a "therapeutically effective dose." Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health. Single or multiple administrations of the compositions may be administered depending on the dosage and frequency as required and tolerated by the patient. In any event, the composition should provide a sufficient quantity of the agents to effectively treat the patient. An amount of an agent that is capable of preventing or slowing the development of breast cancer in a patient is referred to as a "prophylactically effective dose." The particular dose required for a prophylactic treatment will depend upon the medical condition and history of the patient as well as other factors such as age, weight, gender, administration route, efficiency, etc. Such prophylactic treatments may be used, e.g., in a patient who has previously had breast cancer/mammary tumor to prevent a recurrence of the cancer/tumor, or in a patient who is suspected of having a significant likelihood of developing breast cancer/mammary tumor.

In another aspect, the present invention relates to a method for detecting or imaging mammary or mammary tumor cells that express a high level of LRP5 such as somatic mammary stem cells and mammary tumor stem cells. The method includes the steps of administering an LRP5 antibody based contrast agent and obtaining an image of the labeled mammary or mammary tumor cells. This method is useful for monitoring the effectiveness of breast cancer treatment by determining whether the mammary tumor stem cells have been inhibited or eradicated. Any suitable medical imaging techniques can be used in this regard. Examples of such techniques include ultrasound, computerized tomography (CT), magnetic resonance imaging (MRI), and nuclear medicine techniques such as gamma ray detection by a gamma ray detector (e.g., a gamma scintillation camera or a 3-dimensional imaging camera), positron emission tomography (PET) and single photon emission computed tomography (SPECT). A skilled artisan can readily make the suitable contrast agents using the LRP5 antibody, for example, by attaching a detectable label for a particular imaging technique to a LRP5 antibody (e.g., covalently through a linker or a

18 EXAMPLE 1

chemical bond). For example, for MRI detection, a superparamagnetic iron oxide nanoparticle (SPION) can be conjugated to an LRP5 antibody for administering and MRI detection. For nuclear medicine detection, radionuclide-labeled LRP5 antibody can be administered and radiation emission 5 from the nucleotide can be measured and an image thereof can be obtained.

In another aspect, the present invention relates to a method of determining breast cancer prognosis. By prognosis, we mean (i) whether a breast cancer patient is likely to survive for 5 years from initial diagnosis and be breast cancer free at the time point of 5 years from initial diagnosis or (ii) whether a breast cancer patient is likely to be metastasis-free for the period from initial diagnosis to the 5-year anniversary time point of initial diagnosis. The method involves the steps of determining the level of Lrp5 expression in breast cancer cells of a breast cancer patient and comparing the Lrp5 level of the patient to a suitable control wherein, on average, breast cancer patients with an Lrp5 level lower than the suitable control are more likely to survive for 5 years from initial diagnosis 20 and be breast cancer free at the time point of 5 years from initial diagnosis than breast cancer patients with an Lrp5 level higher than the suitable control. Likewise, on average, breast cancer patients with an Lrp5 level lower than the suitable control are more likely to be metastasis-free for the period 25 from initial diagnosis to the 5-year anniversary time point of initial diagnosis than breast cancer patients with an Lrp5 level higher than the suitable control.

Although Example 4 below showed that Lrp5 is useful as a breast cancer prognostic marker at the mRNA level, it is expected that LRP5 protein level can be used the same way. Therefore, Lrp5 expression level can be measured either at the mRNA level or at the protein level to practice the method of the present invention. Based on the data presented in Example 4 below, a skilled artisan can readily set up suitable controls as reference points of comparison for the expression of Lrp5. One suitable control, which is preferred, is the median or average expression level of many breast cancer patients including both patients with good prognosis and patients with poor prognosis.

Another suitable control is the median or average expression level of many breast cancer patients with poor prognosis (poor prognosis control). Still another suitable control is the median or average expression level of many breast cancer patients with good prognosis (good prognosis control). In one particular embodiment, both of the above controls are used. With these two controls, lower than good prognosis control level of Lrp5 expression indicates good prognosis and higher than poor prognosis control level of Lrp5 expression indicates poor prognosis. For example, patients with lower than good prognosis control level of Lrp5 expression will have on average a better prognosis than patients with higher than poor prognosis control level of Lrp5 expression.

The larger the number of patients used to establish a median or average level of Lrp5 expression as a control is, the more accurate the prognosis determination is. Preferably, at least 25, 50, or 100 patients are used to establish the control level of expression. In the case of using a median or average expression level of many breast cancer patients including both patients with good prognosis and patients with poor prognosis as a control, it is preferred that the number of patients with good prognosis and the number of patients with poor prognosis used to established the median or average level are about the same or within 3-fold of each other.

By way of example, but not limitation, examples of the present invention are described below.

The Wnt Signaling Receptor Lrp5 is Required for Mammary Ductal Stem Cell Activity and Wnt1-induced Tumorigenesis

Canonical Wnt signaling has emerged as a critical regulatory pathway for stem cells. The association between ectopic activation of Wnt signaling and many different types of human cancer suggests that Wnt ligands can initiate tumor formation through altered regulation of stem cell populations. This example shows that mice deficient for the Wnt co-receptor LRP5 are resistant to Wnt1-induced mammary tumors, which have been shown to be derived from the mammary stem/progenitor cell population. These mice exhibit a profound delay in tumorigenesis that is associated with reduced Wnt1-induced accumulation of mammary progenitor cells. In addition to the tumor resistance phenotype, loss of LRP5 delays normal mammary development. The ductal trees of 5-week-old Lrp5^{-/-} females have fewer terminal end buds, which are structures critical for juvenile ductal extension presumed to be rich in stem/progenitor cells. Consequently, the mature ductal tree is hypomorphic and does not completely fill the fat pad. Furthermore, Lrp5-/- ductal cells from mature females exhibit little to no stem cell activity in limiting dilution transplants. Finally, this example shows that Lrp5-/- embryos exhibit substantially impaired canonical Wnt signaling in the primitive stem cell compartment of the mammary placodes. These findings suggest that LRP5-mediated canonical signaling is required for mammary ductal stem cell activity and for tumor development in response to oncogenic Wnt effectors.

Introduction

Signaling by the Wnt family of secreted lipoproteins plays a central role in development and disease (1). At the cellular level, Wnt proteins regulate a broad range of functions, including the self-renewal and differentiation of stem cells (2). Activation of the canonical Wnt cascade is initiated by the binding of Wnt proteins to cell surface receptors composed of a member of the Frizzled protein family and one of the low density lipoprotein receptor-related proteins, LRP5 or LRP6 (3, 4). Signaling from Wnt receptors increases cytoplasmic levels of β-catenin, which binds to transcription factors such as those of the LEF-1/TCF family and modulates the transcription of specific target genes. Whereas Wnt-Frizzled interactions may also be involved in non-canonical Wnt signaling events, the LRP5/6 moiety appears to be specifically required for the canonical pathway (5).

Studies in mice suggest that canonical Wnt signaling plays a significant role during normal mammary gland development (6-11), which begins at about embryonic day 10.5 with the formation of two "mammary lines" (12). In response to signals from the underlying mesenchyme, the mammary lines give rise to five pairs of lens-shaped mammary placodes that grow and invaginate downwards into the dermis to colonize the rudimentary fat pad. Activation of the canonical Wnt signaling pathway along the mammary lines coincides with the initiation of mammary morphogenesis and subsequently localizes to mammary placodes and buds (13, 14). Several Wnt ligands and receptor genes, including Lrp5, are expressed during embryonic mammary morphogenesis (13). Embryos ectopically expressing the canonical Wnt inhibitor Dkk1 display a complete block in the formation of mammary placodes, and mice deficient for Lef-1 fail to maintain their mammary buds (6, 7), showing that Wnt signals are necessary for embryonic mammary development.

By birth, the mammary gland is composed of a few rudimentary ducts, containing an outer layer of myoepithelial and an inner layer of luminal epithelial cells, surrounded by the fat pad. During pre-pubertal and pubertal development, the ductal epithelium proliferates until the fat pad is fully colonized with a sparse ductal tree. Lobuloalveolar precursor cells respond to endocrine signals during pregnancy to colonize all the interductal spaces, increasing cell number at least 10-fold (15). The expansion of mammary epithelium during juvenile growth, estrous, and pregnancy, together with the remarkable regenerative capacity apparent during successive reproductive cycles, imply the existence of a mammary stem cell. In fact, stem-like cells from mature mammary glands have been isolated, and their ability to reconstitute the different epithelial lineages in vitro and functional ductal trees through lim- 15 iting dilution transplants in vivo has been demonstrated (16, 17). However, the signals that regulate mammary stem cells have yet not been defined.

A connection between mammary stem/progenitor cells and Wnt1- or β-catenin-induced tumorigenesis has recently been 20 established. Transgenic expression of these genes results in widespread mammary hyperplasia and rapid tumor formation (11, 18). The hyperplastic tissue contains an increased fraction of mammary stem/progenitor cells that are thought to directly give rise to transformed cells (17, 19, 20). Tumors 25 arising from stem/progenitor cells often show mixed lineage differentiation (21), and tumors induced by Wnt effectors indeed contain cells from both epithelial lineages (19, 20).

Materials and Methods

Mouse Crosses: The Lrp5-/- mice (22) (maintained on a B6 background) carry a mutation in the first exon, eliminating the initiating ATG and the sequence encoding the signal peptide. MMTV-Wnt1 transgenic mice (18) (maintained on a (maintained on a B6D2FI background) were crossed with Lrp5^{-/-} mice to generate Lrp5+/+, Lrp5+/-, or Lrp5-/female mice that either carried or lacked the MMTV-Wnt1 or the BAT-gal transgene. PCR-based strategies were then used to genotype these mice. All experiments performed were in 40 compliance with the guiding principles of the "Care and Use of Animals" available at www.nap.edu/books/0309053773/ html and were approved in advance by the Van Andel Research Institute Institutional Animal Care and Use Committee. To assay the appearance of mammary tumors, the 45 mice were inspected weekly and were euthanized when tumors appeared.

Immunohistochemistry and Western Blotting: Mammary tissues were fixed for 2 h in 4% paraformaldehyde at 4° C. and then embedded in paraffin and sectioned (5 µm). Immunohis- 50 tochemistry was performed by using Vector ABC and DAB kits according to the manufacturer's recommendations (Vector Laboratories). The following primary antibodies were used: rabbit polyclonal antibody against keratin 6 (1:100; Covance), LRP5 (1:5,000; provided by John Robinson (24)), 55 Lrp6 (1:250; Zymed Laboratories Inc.), and p21^{CIP1} (1:250; Santa Cruz). Western blotting using goat polyclonal antibodies against Wnt1 (1:500; Santa Cruz) was performed as previously described in reference 19.

Mammary Whole Mounts and Analysis of BAT-Gal 60 Expression: Inguinal mammary glands were fixed in 4% paraformaldehyde, washed in phosphate-buffered saline and stained with carmine alum, dehydrated, and cleared in xylene. For analysis of BAT-gal expression whole mount embryos were fixed (0.2% glutaraldehyde, 1.5% formaldehyde, 5 mM EGTA, 2 mM MgCl₂ in phosphate-buffered saline) and stained with X-gal (1 mg/ml X-gal, 2 mM MgCl₂, 0.01%

20

sodium deoxycholate, 0.02% Nonidet P-40, 5 mM Fe₃(CN)₆, 5 mM Fe₄(CN)₆ in phosphate-buffered saline), photographed and paraffin-embedded, sectioned (5 µm), and counterstained with eosin. Embryonic stage was confirmed by analysis of limb morphology.

Preparation of Mammary Epithelial Cells: Mammary epithelial cells were isolated as described in reference 16. Briefly, mammary glands were digested for 8 h at 37° C. in EpiCult-B with 5% fetal bovine serum, 300 units/ml collagenase, and 100 units/ml hyaluronidase. After vortexing and lysis of the red blood cells in NH₄Cl, a single-cell suspension was obtained by sequential dissociation of the fragments by gentle pipetting for 1-2 min in 0.25% trypsin and then for 2 min in 5 mg/ml Dispase II plus 0.1 mg/ml DNase I, followed by filtration through a 40-mm mesh. All reagents were from StemCell Technologies Inc.

Transplantation of Cleared Mammary Fat Pads: Mammary glands of 3-week-old female B6 mice were cleared of endogenous epithelium as described in reference 25. Viable mammary epithelial cells from 2- to 3-month-old Lrp5+/+ or Lrp5-/- virgin female B6 mice were counted and suspended in Dulbecco's modified Eagle's medium plus 2% fetal bovine serum with 5 µg/ml Matrigel (BD Biosciences) at 4° C. together with loading dye (final concentration, 5% glycerol/ 0.5% trypan blue/25 mM HEPES), and inoculated in a 1-μl volume containing 500-50,000 cells/µl. Three to five months after transplantation, the fat pads were dissected, processed, and stained with carmine as described above.

30 Results

Lrp5Deficiency Inhibits MMTV-Wnt1-induced Carcinogenesis: Female Mice expressing the Wnt1 gene under the control of the mouse mammary tumor virus (MMTV)-long terminal repeat enhancer reproducibly develop adenocarci-FVB/N background) and BAT-gal transgenic mice (23) 35 nomas within one year (18). To test whether LRP5 is the principal signaling receptor for Wnt ligands in mammary epithelial cells, we crossed Lrp5^{-/-} mice to MMTV-Wnt1 transgenic mice. These crosses gave rise to females of approximately the same genetic background that were hemizygous for the Wnt1 transgene in the context of Lrp5^{+/+}, Lrp5^{+/-}, and Lrp5^{-/-} genotypes. Wnt1 transgenic mammary tissue and tumors normally express LRP5 and LRP6 (immunohistochemical staining study). In particular, immunohistochemical stainings using an LRP5-specific polyclonal antibody showed that LRP5 is expressed in Wnt1-induced tumors and in a fraction of mammary ductal cells from hyperplastic Wnt1 transgenic mammary gland (FIGS. 1A and 1B). No staining was observed in Wnt1;Lrp5^{-/-} mammary ductal cells (FIG. 1C). Immunohistochemical stainings using an Lrp6specific polyclonal antibody showed that Lrp6 is expressed in Wnt1-induced tumors and in a fraction of mammary ductal cells from hyperplastic Wnt1 transgenic mammary gland. No staining was observed in Lrp6^{-/-} embryos, which were used as negative controls because Lrp6^{-/-} pups die shortly after birth. The presence or absence of LRP5 did not affect expression of the Wnt1 transgene (FIG. 1D).

We found that within 10 months, 100% of Lrp5^{+/+} mice developed tumors with a median time of onset of 25 weeks, and 68% of Lrp5^{+/-} mice formed tumors with a median time of onset of 35 weeks (FIG. 1E). Thus, tumor appearance was delayed several weeks in Lrp5^{+/-} mice (p=3×10⁻⁵), indicating that the gene dose of Lrp5 affects the onset of tumorigenesis. In sharp contrast, 100% of Lrp5 $^{-/-}$ mice were tumor free at 10 months of age (FIG. 1E), demonstrating that absence of LRP5 suppressed tumor formation. We extended this analysis over two years and found that Lrp5^{-/-} mice formed tumors with a median time of 90 weeks. Three Lrp5^{-/-} mice (12%)

failed to develop palpable tumors and were sacrificed at the end of the study (124 weeks old). All mammary glands from these animals exhibited epithelial hyperplasia, but no foci of mammary tumors were found.

Histopathological examination of the tumors in this study revealed that all Lrp5^{+/+} and Lrp5^{+/-} tumors, as well as 18/26 Lrp5^{-/-} tumors, were moderately differentiated alveolar mammary adenocarcinomas. Alveolar adenocarcinoma is the most common type of mammary tumor reported in Wnt1 transgenic mice. Five Lrp5^{-/-} tumors were papillary adeno- 10 carcinomas, a morphological variant that is more differentiated and less aggressive than alveolar adenocarcinoma and normally occurs at a low frequency in Wnt1 transgenic mice (26). Hence, even though we could only detect the papillary growth pattern in Lrp5^{-/-} tumors, the Lrp5^{-/-} tumors were not 15 of a different tumor type than previously described for Wnt1induced tumors. Furthermore, all tumors regardless of Lrp5 genotype expressed cell markers from both the myoepithelial and the luminal epithelial cell lineages, and all tumors contained cells positive for the putative mammary progenitor cell 20 marker keratin 6 (19). Taken together, these findings suggest that the tumor precursor cell is likely the same regardless of Lrp5 genotype.

Loss of Lrp5 Delays Wnt1-induced Mammary Hyperplasia: Tumors induced by Wnt effectors ultimately arise within 25 a context of widespread mammary hyperplasia that is noticeable as early in development as embryonic day 18 (18). To determine the contribution of LRP5 to Wnt1-induced mammary gland hyperplasia, ductal development was analyzed in virgin MMTV-Wnt1;Lrp5-/- mice. Inguinal mammary 30 glands were isolated, whole mounted, and compared in the juvenile (5-week) and mature (3 and 15-month) mammary glands from MMTV-Wnt1;Lrp5-/- and control female mice. In the absence of LRP5, we found that the hyperplastic response to Wnt1 was dramatically delayed (FIG. 2A). Morphometric analysis showed that hyperplasia was inhibited by 80% in mammary glands from Lrp5-/- mice relative to Lrp5+/+ matched controls (p=6.5×10-6) (FIG. 2B).

The hyperplastic mammary tissue of Wnt1 transgenic mice contains an increased ratio of mammary progenitor cells (17, 40 19, 20). These progenitor cells are thought to directly give rise to transformed cells. To test whether the delay in tumorigenesis could be due to a reduced accumulation of mammary progenitor cells, we immunostained mammary sections from MMTV-Wnt1;Lrp5^{-/-} and control female mice using keratin 45 6 antibody. We found that Wnt1 transgenic mammary ducts from Lrp5^{-/-} females contained less than half the number of keratin 6-positive cells detected in littermate controls (FIG. 2C). This was further confirmed by staining for another putative mammary progenitor cell marker, p21^{CIP1} (27), which 50 also showed a significant reduction of positive cells in Lrp5 ducts (FIG. 2C). Taken together, these findings suggest that Lrp5 deficiency reduces the normal accumulation of mammary stem and progenitor cells in MMTV-Wnt1 transgenic

Impaired Mammary Gland Development in Lrp5^{-/-} Mice: To determine the contribution of LRP5 to normal mammary gland function, ductal development was analyzed in virgin Lrp5^{-/-} mice. Whole mount preparations of inguinal mammary glands are shown for juvenile (5-week) and mature 60 (11-week) mammary glands from Lrp5^{-/-} and control female littermates (FIG. 3A). At 5 weeks the ductal network extends away from the nipple through the fat pad, past the lymph node. The mammary ducts of Lrp5^{-/-} mice were clearly shorter than those of littermate controls. Whereas the Lrp5^{-/-} 65 ductal tree ended right around the lymph node, the wild type had extended considerably further. Terminal end buds (TEBs)

22

are club-shaped epithelial thickenings at the distal ends of growing ducts and are the sites of most rapid cell proliferation and ductal elongation. TEBs are presumed to be rich in mammary stem cells (28, 29). We found that the number of TEBs was reduced by 42% in juvenile Lrp5^{-/-} mice compared with littermate wild-type mice (p=0.0003) (FIG. 3B). In both control and Lrp5^{-/-} mice, the histology of the TEBs appeared normal.

The branching complexity in adult mice is a function of terminal end bud activity during juvenile ductal extension. TEBs normally disappear when the ductal tree is fully branched and fills the fat pad. In contrast, the ductal tree of adult Lrp5^{-/-} mice still contained TEBs and did not completely fill the mammary fat pad (FIG. 3A). Morphometric analysis showed that the branching complexity of adult Lrp5^{-/-} glands was decreased by 46% compared with littermate wild-type mice (p=0.001) (FIG. 3C). On the histological level, the adult Lrp5^{-/-} mammary glands looked normal except for the reduction of mammary ducts as seen on whole mounts.

Epithelial Transplants from Lrp5^{-/-} Mice Lack Stem Cell Activity: The outgrowth of a full mammary branching tree from limiting dilutions of mammary epithelial cell transplants is considered to be an assay of clonal stem cell function (25). Surgical removal of the area between the nipple and the fat pad at 3 weeks of age leaves a fat pad free of the endogenous mammary epithelium. Mammary cells from another syngenic animal can be implanted and will develop an epithelial tree if the transplant contains cells with stem cell activity. One benefit of this technique is that the transplanted cells are exposed to normal circulating hormone levels and wild-type stroma. To test whether the reduction in terminal end bud numbers and branching complexity of Lrp5-/- mammary glands could be due to compromised mammary stem cell activity, we transferred cells from 12- to 15-week-old $Lrp5^{-/-}$ and wild-type glands by limiting dilutions (500-50, 000) into cleared fat pads of 3-week-old congenic or isogenic recipients. Transplants were harvested after 3-5 months, and whole mounts were prepared to evaluate the extent of epithelial outgrowth. Half and 32% of host glands were colonized after the transfer of 5,000 and 500 wild-type mammary cells, respectively (FIG. 4A). Only one of 46 fat pads hosting Lrp5^{-/-} mammary cells contained a mammary tree (FIG. 4A); an additional three host glands contained an epithelial rudiment. In fact, transfers of 50,000 Lrp5^{-/-} mammary cells still failed to reconstitute a mammary tree (FIGS. 4, A and B), suggesting a loss of stem cell activity in the context of LRP5 deficiency.

Canonical Wnt Signaling Is Compromised in Lrp5-/-Mammary Placodes: Mammary development begins at E10.5, and by birth a primitive ductal tree has formed. The stem cells required for its extension during puberty are already present at birth. To test whether LRP5 is the principal signaling receptor for Wnt ligands during embryonic mam-55 mary development, we crossed Lrp5-/- mice to transgenic mice carrying a BAT-gal lacZ reporter gene that is expressed at sites of canonical pathway activity (23). Reporter gene activity, detected by X-gal staining for β-galactosidase, was significantly reduced in Lrp5^{-/-} embryos relative to littermate controls. In particular, at E12.5 X-gal staining reveals that the mammary placodes stain dark blue in embryos that carry at least one copy of Lrp5. In Lrp5-/- BAT-gal transgenic embryos the staining of the mammary placodes is significantly fainter. On the histological level the mammary placodes of Lrp5^{-/-} embryos were significantly smaller and contained fewer cells with reporter gene activity than mammary placodes from littermates carrying at least one intact copy

Lrp5. We also performed X-gal staining on mammary whole mounts from newborn, juvenile, and adult virgin females. Reporter gene activity was significantly reduced in the ductal tree of 2-day-old Lrp5^{-/-} female mice relative to littermate controls (both in regard to staining intensity and to the number of BAT-gal-positive cells). BAT-gal expression could not be detected after the first week of life, which is consistent with previous reports (13, 14).

In summary, we described in the above study a requirement for the Wnt co-receptor LRP5 in mammary morphogenesis and tumor formation mediated by ductal stem cells. Importantly, Lrp5^{-/-} mice are resistant to Wnt1-induced tumors, which have been shown to be derived from the mammary stem/progenitor cell population. These mice exhibit a profound delay in tumorigenesis that is associated with reduced 15 Wnt1-induced hyperplasia and reduced accumulation of mammary progenitor cells. In addition to the tumor resistance phenotype, loss of Lrp5 impairs various stem cell activities required for normal mammary development, and Lrp5^{-/-} ductal cells exhibit little to no stem cell activity in limiting 20 dilution transplants. Lrp5^{-/-} embryos also exhibit substantially impaired canonical Wnt signaling in the primitive stem cell compartment of the mammary placode. Lrp5^{-/-} mice still express Lrp6 throughout mammary development (data not shown), and the Wnt1-induced tumors that finally do arise in 25 mice also express Lrp6. Non-canonical Wnt signaling or mTOR signaling directly induced by Wnt ligands may also play a role in Wnt1-induced tumorigenesis and contribute to tumor development in Lrp5^{-/-} mice (30, 31). These findings have important implications for the characterization 30 of mammary stem cells and tumors induced by Wnt effectors.

Canonical Wnt signaling has been implicated in the regulation of various stem cells, including hematopoietic, intestinal, and epidermal stem cells (32). For example, soluble Wnt proteins promote growth and inhibit differentiation in 35 hematopoietic stem cells (2). Wnt signaling also inhibits the differentiation of stem cells in the intestinal epithelium and in hair follicles (33, 34). In many of the same tissues where the Wnt pathway controls stem cells, deregulation of Wnt signaling leads to tumor formation. Stabilization of β -catenin in the 40 intestinal epithelium or overexpression of β -catenin in the epidermis results in the development of intestinal adenomas or hair tumors, respectively (35, 36). This suggests that Wnt ligands can initiate tumor formation through altered regulation of stem cell populations.

The pre-neoplastic hyperplasia contains an increased fraction of cells positive for molecular markers that have been associated with mammary progenitor cells, and the likelihood of progression to carcinoma correlates with the overall number of progenitor cells (17, 19, 20). In addition, mammary 50 ductal cells from pre-neoplastic Wnt1 transgenic mice show an increased frequency of cells with stem cell activity, measured by transferring limiting dilutions of cells to fat pads in vivo (17, 20). This finding again demonstrates the ability of the Wnt pathway to target stem/progenitor cells for transformation, possibly reflecting a role of the Wnt pathway in the self-renewal of normal breast epithelium.

It is disclosed here for the first time that loss of LRP5-mediated canonical Wnt signaling impairs the mammary stem cell compartment. During normal development, the ductal tree fills the mammary fat pad by the end of puberty and TEBs disappear. In the absence of Lrp5, juvenile ductal branching and extension is supported by fewer TEBs and is significantly delayed. TEBs persist several weeks after they disappear in control littermate females, and the ductal tree for never fills the fat pad, even after the TEBs disappear. Lrp5-/-ductal cells are unable to reconstitute ductal trees even when

24

transplanted in large numbers (50,000 ductal cells). Shackleton et al. (17) recently showed that a functional mammary gland could be generated from the transplantation of one ductal stem cell. They estimated the fraction of ductal stem cells in the mature mammary gland to be 1/1,400. Thus we conclude that the mammary glands from adult Lrp5^{-/-} females lack functioning somatic stem cells.

Without intending to be limited by theory, there are various ways to explain why Lrp5^{-/-} mammary glands are relatively normal but contain no or very few stem cells: 1) fewer primitive mammary stem cells develop leading to very low stem cell fractions in the adult mammary gland; 2) the proportion of stem cells dividing by self-renewal (and symmetric division) is decreased, leading to progenitor-based organogenesis (either because the stem cell niche is ineffective or the cells differentiate precociously); or 3) canonical Wnt signaling is required for stem/progenitor cell survival (37). In support of 1), our analysis of Wnt reporter mice shows that Lrp5^{-/} embryos develop abnormally small mammary placodes with significantly reduced canonical signaling relative to littermate controls. Previous literature on Wnt reporter mice has shown that canonical Wnt signaling is specifically active during embryonic mammary development (13, 14). Furthermore, Wnt signaling is absolutely required, because mammary placodes fail to develop in transgenic mice overexpressing the Wnt inhibitor Dkk1 (6). Dkk1 inhibits the Wnt signaling pathway by binding to, and presumably inactivating, LRP5 and LRP6.

A growing body of evidence suggests that specific subtypes of the most common human tumors, including breast (38), lung (39), and colon (40), originate in stem cell compartments. Signaling pathways that regulate stem cell activity could therefore be effective drug targets. In fact, several studies have shown that activation of canonical Wnt signaling is common in human breast cancer (41-43). We show that in the absence of LRP5, the response to ectopically expressed Wnt1 in the mammary epithelium is almost eliminated, as is tumor development.

REFERENCES

- 1. Nusse, R. (2005) Cell Res. 15, 28-32.
- Reya, T., Duncan, A. W., Ailles, L., Domen, J., Scherer, D.C., Willert, K., Hintz, L., Nusse, R., and Weissman, I. L. (2003) *Nature* 423, 409-414.
- 3. Sharpe, C., Lawrence, N., and Martinez Arias, A. (2001) *BioEssays* 23, 311-318.
- 4. Schweizer, L., and Varmus, H. (2003) BMC Cell Biol. 4, 4.
- Liu, G., Bafico, A., and Aaronson, S. A. (2005) Mol. Cell. Biol. 25, 3475-3482.
- Andl, T., Reddy, S. T., Gaddapara, T., and Millar, S. E. (2002) Dev. Cell 2, 643-653.
- 7. van Genderen, C., Okamura, R. M., Farinas, I., Quo, R. G., Parslow, T. G., Bruhn, L., and Grosschedl, R. (1994) *Genes Dev.* 8, 2691-2703.
- Hsu, W., Shakya, R., and Costantini, F. (2001) J. Cell Biol. 155, 1055-1064.
- 9. Brisken, C., Heineman, A., Chavarria, T., Elenbaas, B., Tan, J., Dey, S. K., McMahon, J. A., McMahon, A. P., and Weinberg, R. A. (2000) *Genes Dev.* 14, 650-654.
- Tepera, S. B., McCrea, P. D., and Rosen, J. M. (2003) J. Cell Sci. 116, Pt. 6, 1137-1149.
- 11. Imbert, A., Eelkema, R., Jordan, S., Feiner, H., and Cowin, P. (2001) *J. Cell Biol.* 153, 555-568.
- Veltmaat, J. M., Mailleux, A. A., Thiery, J. P., and Bellusci, S. (2003) Differentiation 71, 1-17.

- 13. Chu, E. Y., Hens, J., Andl, T., Kairo, A., Yamaguchi, T. P., Brisken, C., Glick, A., Wysolmerski, J. J., and Millar, S. E. (2004) *Development* 131, 4819-4829.
- Boras-Granic, K., Chang, H., Grosschedl, R., and Hamel,
 P. A. (2006) Dev. Biol. 295, 219-231.
- Hennighausen, L., and Robinson, G. W. (1998) Genes Dev. 12, 449-455.
- Stingl, J., Eirew, P., Ricketson, I., Shackleton, M., Vaillant, F., Choi, D., Li, H. I., and Eaves, C. J. (2006) *Nature* 439, 993-997.
- Shackleton, M., Vaillant, F., Simpson, K. J., Stingl, J., Smyth, G. K., Asselin-Labat, M. L., Wu, L., Lindeman, G. J., and Visvader, J. E. (2006) *Nature* 439, 84-88.
- Tsukamoto, A. S., Grosschedl, R., Guzman, R. C., Parslow, T., and Varmus, H. E. (1988) *Cell* 55, 619-625.
- Li, Y., Welm, B., Podsypanina, K., Huang, S., Chamorro, M., Zhang, X., Rowlands, T., Egeblad, M., Cowin, P., Werb, Z., Tan, L. K., Rosen, J. M., and Varmus, H. E. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 15853-15858.
- Liu, B. Y., McDermott, S. P., Khwaja, S. S., and Alexander, C. M. (2004) *Proc. Natl. Acad. Sci. U.S.A.* 101, 4158-4163.
- 21. Owens, D. M., and Watt, F. M. (2003) Nat. Rev. Cancer 3, 444-451.
- 22. Holmen, S. L., Giambernardi, T. A., Zylstra, C. R., Buckner-Berghuis, B. D., Resau, J. H., Hess, J. F., Glatt, V., Bouxsein, M. L., Ai, M., Warman, M. L., and Williams, B. O. (2004) *J. Bone. Miner. Res.* 19, 2033-2040.
- Maretto, S., Cordenonsi, M., Dupont, S., Braghetta, P., Broccoli, V., Hassan, A. B., Volpin, D., Bressan, G. M., and Piccolo, S. (2003) *Proc. Natl. Acad. Sci. U.S.A.* 100, 3299-3304.
- 24. Babij, P., Zhao, W., Small, C., Kharode, Y., Yaworsky, P. J., Bouxsein, M. L., Reddy, P. S., Bodine, P. V., Robinson, J. A., Bhat, B., Marzolf, J., Moran, R. A., and Bex, F. (2003) J. Bone Miner. Res. 18, 960-974.
- Kordon, E. C., and Smith, G. H. (1998) Development 125, 1921-1930.
- Donehower, L. A., Godley, L. A., Aldaz, C. M., Pyle, R., Shi, Y. P., Pinkel, D., Gray, J., Bradley, A., Medina, D., and Varmus, H. E. (1995) *Genes Dev.* 9, 882-895.
- Clarke, R. B., Spence, K., Anderson, E., Howell, A., Okano, H., and Potten, C. S. (2005) *Dev. Biol.* 277, 443-456
- Kenney, N. J., Smith, G. H., Lawrence, E., Barrett, J. C., and Salomon, D. S. (2001) J. Biomed. Biotechnol. 1, 133-143.
- 29. Williams, J. M., and Daniel, C. W. (1983) *Dev. Biol.* 97, 274-290
- Veeman, M. T., Axelrod, J. D., and Moon, R. T. (2003) Dev. Cell 5, 367-377.
- Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y.,
 Zhang, X., Yang, Q., Bennett, C., Harada, Y., Stankunas,
 K., Wang, C. Y., He, X., Macdougald, O. A., You, M.,
 Williams, B. O., and Guan, K. L. (2006) *Cell* 126, 955-968.
- 32. Reya, T., and Clevers, H. (2005) Nature 434, 843-850.
- 33. Korinek, V., Barker, N., Moerer, P., van Donselaar, E., Huls, G., Peters, P. J., and Clevers, H. (1998) *Nat. Genet.* 19, 379-383.
- 34. Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G., and Birchmeier, W. (2001) *Cell* 105, 533-545.
- 35. Dietrich, W. F., Lander, E. S., Smith, J. S., Moser, A. R., Gould, K. A., Luongo, C., Borenstein, N., and Dove, W. (1993) *Cell* 75, 631-639.
- 36. Gat, U., DasGupta, R., Degenstein, L., and Fuchs, E. (1998) *Cell* 95, 605-614.

26

- Paguirigan, A., Beebe, D. J., Liu, B., and Alexander, C. (2006) Eur. J. Cancer 42, 1225-1236.
- Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., and Clarke, M. F. (2003) *Proc. Natl. Acad. Sci. U.S.A.* 100, 3983-3988.
- Kim, C. F., Jackson, E. L., Woolfenden, A. E., Lawrence,
 S., Babar, I., Vogel, S., Crowley, D., Bronson, R. T., and
 Jacks, T. (2005) *Cell* 121, 823-835.
- 40. Radtke, F., and Clevers, H. (2005) *Science* 307, 1904-1909.
- Lin, S. Y., Xia, W., Wang, J. C., Kwong, K. Y., Spohn, B., Wen, Y., Pestell, R. G., and Hung, M. C. (2000) *Proc. Natl. Acad. Sci. U.S.A.* 97,4262-4266.
- 42. Ugolini, F., Charafe-Jauffret, E., Bardou, V. J., Geneix, J., Adelaide, J., Labat-Moleur, F., Penault-Llorca, F., Longy, M., Jacquemier, J., Birnbaum, D., and Pebusque, M. J. (2001) Oncogene 20, 5810-5817.
- 43. Klopocki, E., Kristiansen, G., Wild, P. J., Klaman, I., Castanos-Velez, E., Singer, G., Stohr, R., Simon, R., Sauter, G., Leibiger, H., Essers, L., Weber, B., Hermann, K., Rosenthal, A., Hartmann, A., and Dahl, E. (2004) *Int. J. Oncol.* 25, 641-649.

EXAMPLE 2

LRP5 is a Biomarker for Mammary Stem Cells

Materials and Methods

Mammary glands were obtained from 14 week old, virgin Balb/c mice. The glands were harvested and minced with fine scissors on ice. Mammary organoids were dissociated by enzymatic digestion with hyaluronidase and collagenase for six hours at 37° C. (reagents and protocol from Stem Cell Technologies, Vancouver, Canada). The mammary organoids were then further dissociated into single cells by brief trypsin and dispase exposures (reagents and protocol from Stem Cell Technologies). Single mammary epithelial cell preparations were then stained with the following rat antibodies (BD Biosciences, San Jose, Calif.): anti-CD45-APC (30-F11) and anti-CD31-APC (MEC 13.3) for 30 min at 4° C. In addition, the cells were also incubated for 30 min at 4° C. with rabbit anti-mouse LRP5 (Babij P. et al. J. Bone Miner. Res. 2003, 18:960-974) followed by incubation with Goat anti-rabbit IgG-Pacific Blue (Molecular Probes, Eugene, Oreg.) for 30 min at 4° C. The cells were then analyzed using a FACSVantage cell sorter with DiVa software (BD Biosciences). Apoptotic and necrotic cells were first gated out using propidium iodide (2 μg/μl, Sigma, St. Louis, Mo.). Hematopoetic and endothelial cells were then gated out based on CD45 and CD31 staining, respectively. The remaining cells were then sorted and analyzed for LRP5 staining. Cells exhibiting either high (top 5.13%) or negative levels of LRP5 staining were subsequently sorted into polystyrene flow tubes containing pure FBS. The sorted sub-populations were stored in liquid nitrogen until transplantation into recipient mice for assaying stem cell activity. Mammary fat transplantation assay is well known in the art (see e.g., Kordon, E. C., and Smith, G. H. Development 1998, 125:1921-1930; and DeOme K B et al. J. Natl. Cancer Inst. 1959, 78:751-757).

Results

60

Stem Cell Activity is Augmented in Mammary Epithelial Cells with High Levels of Lrp5 Expression: Staining of mammary epithelial cells for LRP5 revealed a gradient of Lrp5 expression from negative to high levels (FIG. 5). We found that about 75% of the cells were LRP5 negative (FIG. 5). We also found that some CD31+ cells are LRP5 positive and

28

almost all CD45+ cells are LRP5 negative. Therefore, one may only need to gate out CD31+ cells from the initially isolated mammary cells to improve the selection efficiency of LRP5 positive mammary epithelial cells or somatic mammary stem cells. To directly test the in vivo stem cell activity 5 of LRP5 expressing mammary epithelial cells, we transplanted purified LRP5-high (top 5.13% in this particular experiment), LRP5-negative, and the total mammary epithelial cell population into cleared fat pads of 3 week old Balb/c recipient mice. The isolated mammary epithelial cell fractions were transplanted in limiting dilutions and the resulting outgrowths were scored 8 weeks following transplantation. Mammary outgrowths from the LRP5-high fraction revealed the stem cell activity of the LRP5-high cells was highly augmented (at least 10-fold) compared to the total population 15 (FIG. 6). In addition, the LRP5-negative fraction was found to have significantly decreased stem cell activity, compared to both the total population and the LRP5-high fraction. These results show that high levels of LRP5 expression are required for normal mammary stem cell activity. Since Wnt signaling 20 has been shown to maintain stem cell pools in other tissues, it is likely that the mammary gland also requires Wnt signaling through LRP5 to maintain the mammary stem cell pool.

EXAMPLE 3

LRP5 Expression in the Mammary Glands of Wild-type and Lrp5-null Mice as Well as MMTV-Wnt1 Transgenic Mice

Methods for immunohistochemistry for Lrp5 expression: Wild-type and Lrp5-null (Lrp5-/-, negative control) female mammary glands of congenic B6 mice and mammary glands of MMTV-Wnt1 transgenic mice (Tsukamoto A S et al. *Cell* 1988, 55:619-625) were isolated and fixed in 4% paraformaldehyde in PBS at 4° C. overnight. The mammary glands were then embedded in paraffin and cut at a thickness of 5 µm. The sections were deparaffinized and rehydrated. Immunohistochemistry for LRP5 was performed using rabbit polyclonal anti-mouse antibody G171V at a dilution of 1:5000. The localization of the primary antibody was identified by biotinylated anti-rabbit IgG, amplified with ABC reagent and visualized by 3,3'-diaminobenzidine (DAB) (Vector laboratories). The sections were counterstained with hematoxyline.

Results: FIG. 7 shows a section of mammary gland immunohistochemistry of a wild-type B6 mouse. As can be seen in FIG. 7, Lrp5 is expressed on the cellular surface of a small

fraction of mammary ductal cells. The arrow indicates a representative cell with positive staining (brown). The tissue was counterstained with hematoxylin. Hence, cells that lack Lrp5 expression are blue. Some LRP5 staining can also be observed in the stroma surrounding the mammary ducts. We quantified the percentage of LRP5 positive cells per mammary ducts and found 5.6% (standard deviation 2.8%) of the ductal cells to be LRP5 positive.

As expected, no ductal cells from Lrp5-null mice stained positive for LRP5.

Immunohistochemical staining of mammary glands of MMTV-Wnt1 transgenic mice showed a similar pattern of staining as the wild-type B6 mice described above except that a higher percentage (18.4%) of LRP5 positive ductal cells was found with MMTV-Wnt1 transgenic mice. This further supports that LRP5 is a stem cell marker. The stem cell population is increased in MMTV-Wnt1 mice (Shackleton M et al. Nature 2006, 439:84-88).

EXAMPLE 4

Lrp5 Expression in Breast Cancer Cells can Serve as a Prognostic Marker

The data of a published microarray gene expression study (Van de Vijver et al. N Engl J Med. 2002, 347:1999-2009, which is herein incorporated by reference in its entirety) that included clinical outcome for many breast cancer patients were downloaded using the software Oncomine and LRP5 expression pattern was analyzed. We found that the population of breast cancer patients who still have cancer (either the original cancer or recurrence) or have died at the 5 year time point from first diagnosis expresses a higher level of LRP5 in the tumor cells at the mRNA level (the median level of expression) than the population of breast cancer patients who are cancer-free at the 5 year time point from first diagnosis (FIG. 8). Further, the population of breast cancer patients with metastasized cancer (within 5 years of initial diagnosis) expresses a higher level of LRP5 in the tumor cells at the mRNA level (the median level of expression) than the population of breast cancer patients who are metastasis-free (within 5 years of initial diagnosis) (FIG. 9). Therefore, LRP5 can serve as a prognostic marker for breast cancer.

Although the invention has been described in connection with specific embodiments, it is understood that the invention is not limited to such specific embodiments but encompasses all such modifications and variations apparent to a skilled artisan that fall within the scope of the appended claims.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 4

<210> SEQ ID NO 1
<211> LENGTH: 5224
<212> TYPE: DNA
<213> ORGANISM: homo sapiens

<400> SEQUENCE: 1

atgggggccg tcctgaggag cctcctggcc tgcagcttct gtgtgctcct gagagcggcc 60
cctttgttgc tttatgcaaa cagacggac ttgcgattgg ttgatgctac aaatggcaaa 120
gagaatgcta cgattgtagt tggaggcttg gaggatgcag ctgcggtgga ctttgtgttt 180
agtcatggct tgatatactg gagtgatgtc agcgaagaag ccattaaacg aacagaattt 240
```

aacaaaactg	agagtgtgca	gaatgttgtt	gtttctggat	tattgtcccc	cgatgggctg	300
gcatgtgatt	ggcttggaga	aaaattgtac	tggacagatt	ctgaaactaa	tcggattgaa	360
gtttctaatt	tagatggatc	tttacgaaaa	gttttatttt	ggcaagagtt	ggatcaaccc	420
agagctattg	ccttagatcc	ttcaagtggg	ttcatgtact	ggacagactg	gggagaagtg	480
ccaaagatag	aacgtgctgg	aatggatggt	tcaagtcgct	tcattataat	aaacagtgaa	540
atttactggc	caaatggact	gactttggat	tatgaagaac	aaaagcttta	ttgggcagat	600
gcaaaactta	atttcatcca	caaatcaaat	ctggatggaa	caaatcggca	ggcagtggtt	660
aaaggttccc	ttccacatcc	ttttgccttg	acgttatttg	aggacatatt	gtactggact	720
gactggagca	cacactccat	tttggcttgc	aacaagtata	ctggtgaggg	tctgcgtgaa	780
atccattctg	acatcttctc	tcccatggat	atacatgcct	tcagccaaca	gaggcagcca	840
aatgccacaa	atccatgtgg	aattgacaat	gggggttgtt	cccatttgtg	tttgatgtct	900
ccagtcaagc	ctttttatca	gtgtgcttgc	cccactgggg	tcaaactcct	ggagaatgga	960
aaaacctgca	aagatggtgc	cacagaatta	ttgcttttag	ctcgaaggac	agacttgaga	1020
cgcatttctt	tggatacacc	agattttaca	gacattgttc	tgcagttaga	agacatccgt	1080
catgccattg	ccatagatta	cgatcctgtg	gaaggctaca	tctactggac	tgatgatgaa	1140
gtgagggcca	tacgccgttc	atttatagat	ggatctggca	gtcagtttgt	ggtcactgct	1200
caaattgccc	atcctgatgg	tattgctgtg	gactgggttg	cacgaaatct	ttattggaca	1260
gacactggca	ctgatcgaat	agaagtgaca	aggctcaatg	ggaccatgag	gaagatcttg	1320
atttcagagg	acttagagga	accccgggct	attgtgttag	atcccatggt	tgggtacatg	1380
tattggactg	actggggaga	aattccgaaa	attgagcgag	cagctctgga	tggttctgac	1440
cgtgtagtat	tggttaacac	ttctcttggt	tggccaaatg	gtttagcctt	ggattatgat	1500
gaaggcaaaa	tatactgggg	agatgccaaa	acagacaaga	ttgaggttat	gaatactgat	1560
ggcactggga	gacgagtact	agtggaagac	aaaattcctc	acatatttgg	atttactttg	1620
ttgggtgact	atgtttactg	gactgactgg	cagaggcgta	gcattgaaag	agttcataaa	1680
cgaagtgcag	agagggaagt	gatcatagat	cagctgcctg	acctcatggg	cctaaaggct	1740
acaaatgttc	atcgagtgat	tggttccaac	ccctgtgctg	aggaaaacgg	gggatgtagc	1800
catctctgcc	tctatagacc	tcagggcctt	cgctgtgctt	gccctattgg	ctttgaactc	1860
atcagtgaca	tgaagacctg	cattgtccca	gaggetttee	ttttgttttc	acggagagca	1920
gatatcagac	gaatttctct	ggaaacaaac	aataataatg	tggctattcc	actcactggt	1980
gtcaaagaag	cttctgcttt	ggattttgat	gtgacagaca	accgaattta	ttggactgat	2040
atatcactca	agaccatcag	cagageettt	atgaatggca	gtgcactgga	acatgtggta	2100
gaattegget	tagattatcc	agaaggcatg	gcagtagact	ggcttgggaa	gaacttgtac	2160
tgggcagaca	caggaacgaa	tcgaattgag	gtgtcaaagt	tggatgggca	gcaccgacaa	2220
gttttggtgt	ggaaagacct	agatagtece	agageteteg	cgttggaccc	tgccgaagga	2280
tttatgtatt	ggactgaatg	gggtggaaaa	cctaagatag	acagagetge	aatggatgga	2340
agtgaacgta	ctaccttagt	tccaaatgtg	gggcgggcaa	acggcctaac	tattgattat	2400
gctaaaagga	ggctttattg	gacagacctg	gacaccaact	taatagaatc	ttcaaatatg	2460
cttgggctca	accgtgaagt	tatagcagat	gacttgcctc	atccttttgg	cttaactcag	2520
taccaagatt	atatctactg	gacggactgg	agccgacgca	gcattgagcg	tgccaacaaa	2580

accagtggcc	aaaaccgcac	catcattcag	ggccatttgg	attatgtgat	ggacatcctc	2640
gtctttcact	catctcgaca	gtcagggtgg	aatgaatgtg	cttccagcaa	tgggcactgc	2700
tcccacctct	gcttggctgt	gccagttggg	ggttttgttt	gtggatgccc	tgcccactac	2760
tctcttaatg	ctgacaacag	gacttgtagt	gctcctacga	ctttcctgct	cttcagtcaa	2820
aagagtgcca	tcaaccgcat	ggtgattgat	gaacaacaga	gccccgacat	catccttccc	2880
atccacagcc	ttcggaatgt	ccgggccatt	gactatgacc	cactggacaa	gcaactctat	2940
tggattgact	cacgacaaaa	catgatccga	aaggcacaag	aagatggcag	ccagggcttt	3000
actgtggttg	tgagctcagt	tccgagtcag	aacctggaaa	tacaacccta	tgacctcagc	3060
attgatattt	acagccgcta	catctactgg	acttgtgagg	ctaccaatgt	cattaatgtg	3120
acaagattag	atgggagatc	agttggagtg	gtgctgaaag	gcgagcagga	cagacctcga	3180
gccattgtgg	taaacccaga	gaaagggtat	atgtatttta	ccaatcttca	ggaaaggtct	3240
cctaaaattg	aacgggctgc	tttggatggg	acagaacggg	aggteetett	tttcagtggc	3300
ttaagtaaac	caattgcttt	agcccttgat	agcaggctgg	gcaagctctt	ttgggctgat	3360
tcagatctcc	ggcgaattga	aagcagtgat	ctctcaggtg	ctaaccggat	agtattagaa	3420
gactccaata	tcttgcagcc	tgtgggactt	actgtgtttg	aaaactggct	ctattggatt	3480
gataaacagc	agcaaatgat	tgaaaaaatt	gacatgacag	gtcgagaggg	tagaaccaaa	3540
gtccaagctc	gaattgccca	gcttagtgac	attcatgcag	taaaggagct	gaaccttcaa	3600
gaatacagac	agcacccttg	tgctcaggat	aatggtggct	gttcacatat	ttgtcttgta	3660
aagggggatg	gtactacaag	gtgttcttgc	cccatgcacc	tggttctact	tcaagatgag	3720
ctatcatgtg	gagaacctcc	aacatgttct	cctcagcagt	ttacttgttt	cacgggggaa	3780
attgactgta	tccctgtggc	ttggcggtgc	gatgggttta	ctgaatgtga	agaccacagt	3840
gatgaactca	attgtcctgt	atgctcagag	teccagttee	agtgtgccag	tgggcagtgt	3900
attgatggtg	ccctccgatg	caatggagat	gcaaactgcc	aggacaaatc	agatgagaag	3960
aactgtgaag	tgctttgttt	aattgatcag	ttccgctgtg	ccaatggtca	gtgcattgga	4020
aagcacaaga	agtgtgatca	taatgtggat	tgcagtgaca	agtcagatga	actggattgt	4080
tatccgactg	aagaaccagc	accacaggcc	accaatacag	ttggttctgt	tattggcgta	4140
attgtcacca	tttttgtgtc	tggaactgta	tactttatct	gccagaggat	gttgtgtcca	4200
cgtatgaagg	gagatgggga	aactatgact	aatgactatg	tagttcatgg	accagcttct	4260
gtgcctcttg	gttatgtgcc	acacccaagt	tctttgtcag	gatetettee	aggaatgtct	4320
cgaggtaaat	caatgatcag	ctccctcagt	atcatggggg	gaagcagtgg	acccccctat	4380
gaccgagccc	atgttacagg	agcatcatca	agtagttctt	caagcaccaa	aggcacttac	4440
ttccctgcaa	ttttgaaccc	tccaccatcc	ccagccacag	agcgatcaca	ttacactatg	4500
gaatttggat	attcttcaaa	cagtccttcc	actcataggt	catacagcta	caggccatat	4560
agctaccggc	actttgcacc	ccccaccaca	ccctgcagca	cagatgtttg	tgacagtgac	4620
tatgctccta	gtcggagaat	gacctcagtg	gcaacagcca	agggctatac	cagtgacttg	4680
aactatgatt	cagaacctgt	gcccccacct	cccacacccc	gaagccaata	cttgtcagca	4740
gaggagaact	atgaaagctg	cccaccttct	ccatacacag	agaggagcta	ttctcatcac	4800
ctctacccac	cgccaccctc	tccctgtaca	gactcctcct	gaggagggc	cctcctcctc	4860
tgactgcctc	caacgtaaaa	atgtaaatat	aaatttggtt	gagatetgga	gggggggagg	4920
gagctattag	agaaggatga	ggcagaccat	gtacagttaa	aattataaaa	tggggtaggg	4980

		_		_											agcaga	5040
tttgc	ctgo	tt g	gtgc	cataa	aa aq	gttt	gtata	a aaa	aaaa	attt	gta	ctaa	aag 1	tttta	attttt	5100
gcaaa	acta	aa t	acad	caaaq	gc at	geet	taaa	a cco	cagto	gaag	caa	ctga	gta (caaaq	ggaaac	5160
aggaa	ataa	ita a	aagg	catca	ac to	gacca	aggaa	a tat	ctg	ggct	ttai	tgai	tac (caaaa	aaaaaa	5220
aaaa																5224
<210><211><211><212><213>	LE TY	NGTH PE:	I: 16 PRT	515	sar	oiens	3									
<400>	> SE	QUEN	ICE :	2												
Met G 1	3lu	Ala	Ala	Pro 5	Pro	Gly	Pro	Pro	Trp 10	Pro	Leu	Leu	Leu	Leu 15	Leu	
Leu I	Leu	Leu	Leu 20	Ala	Leu	Càa	Gly	Сув 25	Pro	Ala	Pro	Ala	Ala 30	Ala	Ser	
Pro L	Leu	Leu 35	Leu	Phe	Ala	Asn	Arg 40	Arg	Asp	Val	Arg	Leu 45	Val	Asp	Ala	
Gly G	3ly 50	Val	Lys	Leu	Glu	Ser 55	Thr	Ile	Val	Val	Ser 60	Gly	Leu	Glu	Asp	
Ala A	Ala	Ala	Val	Asp	Phe 70	Gln	Phe	Ser	Lys	Gly 75	Ala	Val	Tyr	Trp	Thr 80	
Asp V	/al	Ser	Glu	Glu 85	Ala	Ile	Lys	Gln	Thr 90	Tyr	Leu	Asn	Gln	Thr 95	Gly	
Ala A	Ala	Val	Gln 100	Asn	Val	Val	Ile	Ser 105	Gly	Leu	Val	Ser	Pro	Asp	Gly	
Leu A	Ala	Cys	Asp	Trp	Val	Gly	Lys 120	Lys	Leu	Tyr	Trp	Thr 125	Asp	Ser	Glu	
Thr A	Asn L30	Arg	Ile	Glu	Val	Ala 135	Asn	Leu	Asn	Gly	Thr 140	Ser	Arg	Lys	Val	
Leu F 145	Phe	Trp	Gln	Asp	Leu 150	Asp	Gln	Pro	Arg	Ala 155	Ile	Ala	Leu	Asp	Pro 160	
Ala H	His	Gly	Tyr	Met 165	Tyr	Trp	Thr	Asp	Trp 170	Gly	Glu	Thr	Pro	Arg 175	Ile	
Glu A	Arg	Ala	Gly 180	Met	Asp	Gly	Ser	Thr 185	Arg	Lys	Ile	Ile	Val 190	Asp	Ser	
Asp I	[le	Tyr 195	Trp	Pro	Asn	Gly	Leu 200	Thr	Ile	Asp	Leu	Glu 205	Glu	Gln	Lys	
Leu I	Tyr 210	Trp	Ala	Asp	Ala	Lys 215	Leu	Ser	Phe	Ile	His 220	Arg	Ala	Asn	Leu	
Asp 0	31y	Ser	Phe	Arg	Gln 230	Lys	Val	Val	Glu	Gly 235	Ser	Leu	Thr	His	Pro 240	
Phe A	Ala	Leu	Thr	Leu 245	Ser	Gly	Asp	Thr	Leu 250	Tyr	Trp	Thr	Asp	Trp 255	Gln	
Thr A	Arg	Ser	Ile 260	His	Ala	Сув	Asn	Lys 265	Arg	Thr	Gly	Gly	Lys 270	Arg	Lys	
Glu I	[le	Leu 275	Ser	Ala	Leu	Tyr	Ser 280	Pro	Met	Asp	Ile	Gln 285	Val	Leu	Ser	
Gln G	Glu 290	Arg	Gln	Pro	Phe	Phe 295	His	Thr	Arg	СЛа	Glu 300	Glu	Asp	Asn	Gly	
Gly 0 305	Cys	Ser	His	Leu	Cys 310	Leu	Leu	Ser	Pro	Ser 315	Glu	Pro	Phe	Tyr	Thr 320	

-continued

35

36

												COII	CIII	ieu	
Сув	Ala	Cys	Pro	Thr 325	Gly	Val	Gln	Leu	Gln 330	Asp	Asn	Gly	Arg	Thr 335	Cys
Lys	Ala	Gly	Ala 340	Glu	Glu	Val	Leu	Leu 345	Leu	Ala	Arg	Arg	Thr 350	Asp	Leu
Arg	Arg	Ile 355	Ser	Leu	Asp	Thr	Pro 360	Asp	Phe	Thr	Asp	Ile 365	Val	Leu	Gln
Val	Asp 370	Asp	Ile	Arg	His	Ala 375	Ile	Ala	Ile	Asp	Tyr 380	Asp	Pro	Leu	Glu
Gly 385	Tyr	Val	Tyr	Trp	Thr 390	Asp	Asp	Glu	Val	Arg 395	Ala	Ile	Arg	Arg	Ala 400
Tyr	Leu	Asp	Gly	Ser 405	Gly	Ala	Gln	Thr	Leu 410	Val	Asn	Thr	Glu	Ile 415	Asn
Asp	Pro	Asp	Gly 420	Ile	Ala	Val	Asp	Trp 425	Val	Ala	Arg	Asn	Leu 430	Tyr	Trp
Thr	Asp	Thr 435	Gly	Thr	Asp	Arg	Ile 440	Glu	Val	Thr	Arg	Leu 445	Asn	Gly	Thr
Ser	Arg 450	Lys	Ile	Leu	Val	Ser 455	Glu	Asp	Leu	Asp	Glu 460	Pro	Arg	Ala	Ile
Ala 465	Leu	His	Pro	Val	Met 470	Gly	Leu	Met	Tyr	Trp 475	Thr	Asp	Trp	Gly	Glu 480
Asn	Pro	Lys	Ile	Glu 485	Сув	Ala	Asn	Leu	Asp 490	Gly	Gln	Glu	Arg	Arg 495	Val
Leu	Val	Asn	Ala 500	Ser	Leu	Gly	Trp	Pro 505	Asn	Gly	Leu	Ala	Leu 510	Asp	Leu
Gln	Glu	Gly 515	Lys	Leu	Tyr	Trp	Gly 520	Asp	Ala	Lys	Thr	Asp 525	Lys	Ile	Glu
Val	Ile 530	Asn	Val	Asp	Gly	Thr 535	Lys	Arg	Arg	Thr	Leu 540	Leu	Glu	Asp	Lys
Leu 545	Pro	His	Ile	Phe	Gly 550	Phe	Thr	Leu	Leu	Gly 555	Asp	Phe	Ile	Tyr	Trp 560
Thr	Asp	Trp	Gln	Arg 565	Arg	Ser	Ile	Glu	Arg 570	Val	His	ГЛа	Val	Lys 575	Ala
Ser	Arg	Asp	Val 580	Ile	Ile	Asp	Gln	Leu 585	Pro	Asp	Leu	Met	Gly 590	Leu	Lys
Ala	Val	Asn 595	Val	Ala	Lys	Val	Val 600	Gly	Thr	Asn	Pro	605 605	Ala	Asp	Arg
Asn	Gly 610	Gly	Cys	Ser	His	Leu 615	Cys	Phe	Phe	Thr	Pro 620	His	Ala	Thr	Arg
Сув 625	Gly	Cys	Pro	Ile	Gly 630	Leu	Glu	Leu	Leu	Ser 635	Asp	Met	Lys	Thr	Сув 640
Ile	Val	Pro	Glu	Ala 645	Phe	Leu	Val	Phe	Thr 650	Ser	Arg	Ala	Ala	Ile 655	His
Arg	Ile	Ser	Leu 660	Glu	Thr	Asn	Asn	Asn 665	Asp	Val	Ala	Ile	Pro 670	Leu	Thr
Gly	Val	Lys 675	Glu	Ala	Ser	Ala	Leu 680	Asp	Phe	Asp	Val	Ser 685	Asn	Asn	His
	690	_		_		Ser 695		-			700				
Asn 705	Gly	Ser	Ser	Val	Glu 710	His	Val	Val	Glu	Phe 715	Gly	Leu	Asp	Tyr	Pro 720
Glu	Gly	Met	Ala	Val 725	Asp	Trp	Met	Gly	Lys 730	Asn	Leu	Tyr	Trp	Ala 735	Asp
Thr	Gly	Thr	Asn	Arg	Ile	Glu	Val	Ala	Arg	Leu	Asp	Gly	Gln	Phe	Arg

			740					745					750		
Gln	Val	Leu 755	Val	Trp	Arg	Asp	Leu 760	Asp	Asn	Pro	Arg	Ser 765	Leu	Ala	Leu
Asp	Pro 770	Thr	Lys	Gly	Tyr	Ile 775	Tyr	Trp	Thr	Glu	Trp 780	Gly	Gly	Lys	Pro
Arg 785	Ile	Val	Arg	Ala	Phe 790	Met	Asp	Gly	Thr	Asn 795	CAa	Met	Thr	Leu	Val 800
Asp	Lys	Val	Gly	Arg 805	Ala	Asn	Asp	Leu	Thr 810	Ile	Asp	Tyr	Ala	Asp 815	Gln
Arg	Leu	Tyr	Trp 820	Thr	Asp	Leu	Asp	Thr 825	Asn	Met	Ile	Glu	Ser 830	Ser	Asn
Met	Leu	Gly 835	Gln	Glu	Arg	Val	Val 840	Ile	Ala	Asp	Asp	Leu 845	Pro	His	Pro
Phe	Gly 850	Leu	Thr	Gln	Tyr	Ser 855	Asp	Tyr	Ile	Tyr	Trp 860	Thr	Asp	Trp	Asn
Leu 865	His	Ser	Ile	Glu	Arg 870	Ala	Asp	Lys	Thr	Ser 875	Gly	Arg	Asn	Arg	Thr 880
Leu	Ile	Gln	Gly	His 885	Leu	Asp	Phe	Val	Met 890	Asp	Ile	Leu	Val	Phe 895	His
Ser	Ser	Arg	Gln 900	Asp	Gly	Leu	Asn	Asp 905	Cys	Met	His	Asn	Asn 910	Gly	Gln
CÀa	Gly	Gln 915	Leu	Cys	Leu	Ala	Ile 920	Pro	Gly	Gly	His	Arg 925	Cys	Gly	Cya
Ala	Ser 930	His	Tyr	Thr	Leu	Asp 935	Pro	Ser	Ser	Arg	Asn 940	CAa	Ser	Pro	Pro
Thr 945	Thr	Phe	Leu	Leu	Phe 950	Ser	Gln	ГÀз	Ser	Ala 955	Ile	Ser	Arg	Met	Ile 960
Pro	Asp	Asp	Gln	His 965	Ser	Pro	Asp	Leu	Ile 970	Leu	Pro	Leu	His	Gly 975	Leu
Arg	Asn	Val	980 Lys	Ala	Ile	Asp	Tyr	Asp 985	Pro	Leu	Asp	ГÀз	Phe 990	Ile	Tyr
Trp	Val	Asp 995	Gly	Arg	Gln	Asn	Ile 1000		s Ar	g Al	a Ly:	10		sp G	ly Thr
Gln	Pro 1010		e Val	L Leu	ı Thr	Ser 101		eu S∙	er G	ln G	ly G:	ln . 020	Asn 1	Pro .	Asp
Arg	Gln 1025		His	a Asp	Leu	103		le A	sp I	le T	yr Se	er . 035	Arg '	Thr	Leu
Phe	Trp 1040		r Cys	Glu	ı Ala	104		en T	hr I	le A	sn Va 10	al :	His 1	Arg	Leu
Ser	Gly 1055		ı Ala	a Met	: Gly	7 Val		al L	eu A	rg G	ly As	sp . 065	Arg 1	Asp	Lys
Pro	Arg 1070		a Ile	e Val	l Val	. Ası 10		la G	lu A	rg G	ly Ty 10	yr 080	Leu '	Tyr	Phe
Thr	Asn 1085		Glr	n Asp	Arg	109		la L	ys I	le G	lu Ai	rg . 095	Ala	Ala	Leu
Asp	Gly 1100		r Glu	ı Arç	g Glu	ι Va:		eu Pl	he Ti	hr Tl	hr G:	ly 110	Leu :	Ile .	Arg
Pro	Val 1115		a Leu	ı Val	l Val	. Asp		∍n Tl	hr L	eu G	ly Ly 1:	ys 125	Leu 1	Phe	Trp
Val	Asp 1130		a Asp	Let	ı Lys	113		le G	lu S	er C	ys A: 1:	∍p 140	Leu :	Ser	Gly
Ala	Asn 1145	-	g Let	ı Thi	. Leu	115		sp A	la A	sn I	le Va 1:	al 1	Gln 1	Pro	Leu

Gly	Leu 1160	Thr	Ile	Leu	Gly	Lys 1165	His	Leu	Tyr	Trp	Ile 1170	Asp	Arg	Gln
Gln	Gln 1175	Met	Ile	Glu	Arg	Val 1180	Glu	Lys	Thr	Thr	Gly 1185	Asp	Lys	Arg
Thr	Arg 1190	Ile	Gln	Gly	Arg	Val 1195	Ala	His	Leu	Thr	Gly 1200	Ile	His	Ala
Val	Glu 1205	Glu	Val	Ser	Leu	Glu 1210	Glu	Phe	Ser	Ala	His 1215	Pro	Cys	Ala
Arg	Asp 1220	Asn	Gly	Gly	Cys	Ser 1225	His	Ile	Cys	Ile	Ala 1230	Lys	Gly	Asp
Gly	Thr 1235	Pro	Arg	Cys	Ser	Cys 1240	Pro	Val	His	Leu	Val 1245	Leu	Leu	Gln
Asn	Leu 1250	Leu	Thr	Cys	Gly	Glu 1255	Pro	Pro	Thr	CAa	Ser 1260	Pro	Asp	Gln
Phe	Ala 1265	Cys	Ala	Thr	Gly	Glu 1270	Ile	Asp	Cys	Ile	Pro 1275	Gly	Ala	Trp
Arg	Cys 1280	Asp	Gly	Phe	Pro	Glu 1285	Cys	Asp	Asp	Gln	Ser 1290	Asp	Glu	Glu
Gly	Cys 1295	Pro	Val	Сув	Ser	Ala 1300	Ala	Gln	Phe	Pro	Cys 1305	Ala	Arg	Gly
Gln	Cys 1310	Val	Asp	Leu	Arg	Leu 1315	Arg	Сув	Asp	Gly	Glu 1320	Ala	Asp	Cys
Gln	Asp 1325	Arg	Ser	Asp	Glu	Val 1330	Asp	Сув	Asp	Ala	Ile 1335	Сув	Leu	Pro
Asn	Gln 1340	Phe	Arg	Cys	Ala	Ser 1345	Gly	Gln	Cys	Val	Leu 1350	Ile	Lys	Gln
Gln	Cys 1355	Asp	Ser	Phe	Pro	Asp 1360	Càa	Ile	Asp	Gly	Ser 1365	Asp	Glu	Leu
Met	Cys 1370	Glu	Ile	Thr	Lys	Pro 1375	Pro	Ser	Asp	Asp	Ser 1380	Pro	Ala	His
	1370					1375								
Ser	1370 Ser 1385	Ala	Ile	Gly	Pro	1375 Val 1390	Ile	Gly	Ile	Ile	1380 Leu	Ser	Leu	Phe
Ser Val	1370 Ser 1385 Met 1400	Ala Gly	Ile Gly	Gly Val	Pro Tyr	1375 Val 1390 Phe 1405	Ile Val	Gly Cys	Ile Gln	Ile Arg	1380 Leu 1395 Val	Ser Val	Leu Cys	Phe Gln
Ser Val Arg	1370 Ser 1385 Met 1400 Tyr 1415	Ala Gly Ala	Ile Gly Gly	Gly Val Ala	Pro Tyr Asn	1375 Val 1390 Phe 1405 Gly 1420	Ile Val Pro	Gly Cys Phe	Ile Gln Pro	Ile Arg His	1380 Leu 1395 Val 1410 Glu	Ser Val Tyr	Leu Cys Val	Phe Gln Ser
Ser Val Arg Gly	1370 Ser 1385 Met 1400 Tyr 1415 Thr 1430	Ala Gly Ala Pro	Ile Gly Gly His	Gly Val Ala Val	Pro Tyr Asn Pro	1375 Val 1390 Phe 1405 Gly 1420 Leu 1435	Ile Val Pro Asn	Gly Cys Phe	Ile Gln Pro Ile	Ile Arg His Ala	1380 Leu 1395 Val 1410 Glu 1425 Pro	Ser Val Tyr Gly	Leu Cys Val Gly	Phe Gln Ser
Ser Val Arg Gly	1370 Ser 1385 Met 1400 Tyr 1415 Thr 1430 His 1445	Ala Gly Ala Pro	Ile Gly Gly His	Gly Val Ala Val Phe	Pro Tyr Asn Pro	1375 Val 1390 Phe 1405 Gly 1420 Leu 1435 Gly 1450	Ile Val Pro Asn Ile	Gly Cys Phe Phe	Ile Gln Pro Ile Cys	Ile Arg His Ala Gly	1380 Leu 1395 Val 1410 Glu 1425 Pro 1440 Lys	Ser Val Tyr Gly Ser	Leu Cys Val Gly Met	Phe Gln Ser Ser
Ser Val Arg Gly Gln Ser	1370 Ser 1385 Met 1400 Tyr 1415 Thr 1430 His 1445 Ser 1460	Ala Gly Ala Pro Gly Val	Ile Gly Gly His Pro	Gly Val Ala Val Phe Leu	Pro Tyr Asn Pro Thr	1375 Val 1390 Phe 1405 Gly 1420 Leu 1435 Gly 1450 Gly 1465	Ile Val Pro Asn Ile Gly	Gly Cys Phe Phe Ala	Ile Gln Pro Ile Cys Gly	Ile Arg His Ala Gly	1380 Leu 1395 Val 1410 Glu 1425 Pro 1440 Lys 1455 Val	Ser Val Tyr Gly Ser Pro	Leu Cys Val Gly Met	Phe Gln Ser Ser Met
Ser Val Arg Gly Gln Ser	1370 Ser 1385 Met 1400 Tyr 1415 Thr 1430 His 1445 Ser 1460 Arg 1475	Ala Gly Ala Pro Gly Val	Ile Gly Gly His Pro Ser	Gly Val Ala Val Phe Leu Val	Pro Tyr Asn Pro Thr Met	1375 Val 1390 Phe 1405 Gly 1420 Leu 1435 Gly 1465 Gly 1465	Ile Val Pro Asn Ile Gly Ala	Gly Cys Phe Phe Ala Arg	Ile Gln Pro Ile Cys Gly Ser	Ile Arg His Ala Gly Gly Ser	1380 Leu 1395 Val 1410 Glu 1425 Pro 1440 Lys 1455 Val 1470 Ser	Ser Val Tyr Gly Ser Pro	Leu Cys Val Gly Met Leu Ser	Phe Gln Ser Ser Met Tyr Ser
Ser Val Arg Gly Gln Ser Asp	1370 Ser 1385 Met 1400 Tyr 1415 Thr 1430 His 1445 Ser 1460 Arg 1475 Lys 1490	Ala Gly Ala Pro Gly Val Asn Ala	Ile Gly Gly His Pro Ser His	Gly Val Ala Val Phe Leu Val	Pro Tyr Asn Pro Thr Met Thr	1375 Val 1390 Phe 1405 Gly 1420 Leu 1435 Gly 1450 Gly 1465 Gly 1480 Pro 1495	Ile Val Pro Asn Ile Gly Ala Pro	Gly Cys Phe Phe Ala Arg Ser Ile	Ile Gln Pro Ile Cys Gly Ser Leu	Ile Arg His Ala Gly Gly Ser Asn	1380 Leu 1395 Val 1410 Glu 1425 Pro 1440 Lys 1455 Val 1470 Ser 1485 Pro	Ser Val Tyr Gly Ser Pro	Leu Cys Val Gly Met Leu Ser	Phe Gln Ser Ser Tyr Ser Ser
Ser Val Arg Gly Gln Ser Asp Thr	1370 Ser 1385 Met 1400 Tyr 1415 Thr 1430 His 1445 Ser 1460 Arg 1475 Lys 1490 Ala 1505	Ala Gly Ala Pro Gly Val Asn Ala	Ile Gly Gly His Pro Ser His Thr	Gly Val Ala Val Phe Leu Val Leu Pro	Pro Tyr Asn Pro Thr Met Thr Tyr Ser	1375 Val 1390 Phe 1405 Gly 1420 Leu 1435 Gly 1450 Gly 1465 Cly 1465 Leu 1510	Ile Val Pro Asn Ile Gly Ala Pro	Gly Cys Phe Phe Ala Arg Ser Ile Asn	Ile Gln Pro Ile Cys Gly Ser Leu Met	Ile Arg His Ala Gly Gly Ser Asn	1380 Leu 1395 Val 1410 Glu 1425 Pro 1440 Lys 1455 Val 1470 Ser 1485 Pro 1500 Met	Ser Val Tyr Gly Ser Pro Pro	Leu Cys Val Gly Met Leu Ser Pro	Phe Gln Ser Ser Met Tyr Ser Ser

-continued Asp Ser Asp Tyr Ser Ala Ser Arg Trp Lys Ala Ser Lys Tyr Tyr 1550 1555 1560 Leu Asp Leu Asn Ser Asp Ser Asp Pro Tyr Pro Pro Pro Pro Thr 1570 1565 1575 Pro His Ser Gln Tyr Leu Ser Ala Glu Asp Ser Cys Pro Pro Ser 1580 1585 1590 Pro Ala Thr Glu Arg Ser Tyr Phe His Leu Phe Pro Pro Pro Pro 1595 1600 1605 Ser Pro Cys Thr Asp Ser Ser 1610 1615 <210> SEQ ID NO 3 <211> LENGTH: 5166 <212> TYPE: DNA <213> ORGANISM: mus musculus <400> SEQUENCE: 3 60 gecegaggeg ggageaagag gegeegggag eegegaggat eeacegeege egegegee atggagcccg agtgagcgcg cggcgctccc ggccgccgga cgacatggaa acggcgccga 120 cccgggcccc tccgccgccg ccgccgccgc tgctgctgct ggtgctgtac tgcagcttgg teccegeege ggeeteaceg etectgttgt ttgccaaceg eegggatgtg eggetagtgg 240 atgccggcgg agtgaagctg gagtccacca ttgtggccag tggcctggag gatgcagctg ctgtagactt ccagttctcc aagggtgctg tgtactggac agatgtgagc gaggaggcca tcaaacaqac ctacctqaac caqactqqaq ctqctqcaca qaacattqtc atctcqqqcc 420 480 tegtgteace tgatggeetg geetgtgaet gggttggeaa gaagetgtae tggaeggaet ccqaqaccaa ccqcattqaq qttqccaacc tcaatqqqac qtcccqtaaq qttctcttct 540 ggcaggacet ggaccageca agggccattg ceetggatee tgcacatggg tacatgtact 600 ggactgactg gggggaagca ccccggatcg agcgggcagg gatggatggc agtacccgga 660 720 agateattgt agaeteegae atttactgge ceaatggget gaecategae etggaggaae aqaaqctqta ctqqqccqat qccaaqctca qcttcatcca ccqtqccaac ctqqacqqct 780 cetteeggea gaaggtggtg gagggeagee teacteacce tittgeeetg acactetetg 840 qqqacacact ctactqqaca qactqqcaqa cccqctccat ccacqcctqc aacaaqtqqa 900 caggggagca gaggaaggag atccttagtg ctctgtactc acccatggac atccaagtgc 960 tgagccagga gcggcagcct cccttccaca caccatgcga ggaggacaac ggtggctgtt 1020 cccacctgtg cctgctgtcc ccgagggagc ctttctactc ctgtgcctgc cccactggtg 1080 tgcagttgca ggacaatggc aagacgtgca agacaggggc tgaggaagtg ctgctgctgg 1140 ctcggaggac agacctgagg aggatctctc tggacacccc tgacttcaca gacatagtgc 1200 tgcaggtggg cgacatccgg catgccattg ccattgacta cgatcccctg gagggctacg 1260 1320 tgtactggac cgacgatgag gtgcgggcta tccgcagggc gtacctagat ggctcaggtg 1380 cgcagacact tgtgaacact gagatcaatg accccgatgg cattgctgtg gactgggtcg cccggaacct ctactggaca gatacaggca ctgacagaat tgaggtgact cgcctcaacg 1440

1500

1560

1680

gcacctcccg aaagatcctg gtatctgagg acctggacga accgcgagcc attgtgttgc

accetgtgat gggcetcatg tactggacag actgggggga gaaccecaaa atcgaatgeg

ccaacctaga tgggagagat cggcatgtcc tggtgaacac ctcccttggg tggcccaatg

qactqqcct qqacctqcaq qaqqqcaaqc tqtactqqqq qqatqccaaa actqataaaa

tcgaggtgat	caacatagac	gggacaaagc	ggaagaccct	gcttgaggac	aagctcccac	1740
acatttttgg	gttcacactg	ctgggggact	tcatctactg	gactgactgg	cagagacgca	1800
gtattgaaag	ggtccacaag	gtcaaggcca	gtcgggatgt	catcattgat	caactccccg	1860
acctgatggg	actcaaagcc	gtgaatgtgg	ccaaggttgt	cggaaccaac	ccatgtgcgg	1920
atggaaatgg	agggtgcagc	catctgtgct	tcttcacccc	acgtgccacc	aagtgtggct	1980
gccccattgg	cctggagctg	ttgagtgaca	tgaagacctg	cataatccct	gaggccttcc	2040
tggtattcac	cagcagagcc	accatccaca	ggateteeet	ggagactaac	aacaacgatg	2100
tggctatccc	actcacgggt	gtcaaagagg	cctctgcact	ggactttgat	gtgtccaaca	2160
atcacatcta	ctggactgat	gtcagcctca	agacgatcag	ccgagccttc	atgaatggga	2220
gctcagtgga	gcacgtgatt	gagtttggcc	tcgactaccc	tgaaggaatg	gctgtggact	2280
ggatgggcaa	gaacctctat	tgggcggaca	cagggaccaa	caggattgag	gtggcccggc	2340
tggatgggca	gttccggcag	gtgcttgtgt	ggagagacct	tgacaacccc	aggtetetgg	2400
ctctggatcc	tactaaaggc	tacatctact	ggactgagtg	gggtggcaag	ccaaggattg	2460
tgcgggcctt	catggatggg	accaattgta	tgacactggt	agacaaggtg	ggccgggcca	2520
acgacctcac	cattgattat	gccgaccagc	gactgtactg	gactgacctg	gacaccaaca	2580
tgattgagtc	ttccaacatg	ctgggtcagg	agcgcatggt	gatagctgac	gatetgeeet	2640
acccgtttgg	cctgactcaa	tatagcgatt	acatctactg	gactgactgg	aacctgcata	2700
gcattgaacg	ggcggacaag	accagtgggc	ggaaccgcac	cctcatccag	ggtcacctgg	2760
acttcgtcat	ggacatcctg	gtgttccact	cctcccgtca	ggatggcctc	aacgactgcg	2820
tgcacagcaa	tggccagtgt	gggcagctgt	gcctcgccat	ccccggaggc	caccgctgtg	2880
gctgtgcttc	acactacacg	ctggacccca	gcagccgcaa	ctgcagcccg	ccctccacct	2940
tettgetgtt	cagccagaaa	tttgccatca	gccggatgat	ccccgatgac	cageteagee	3000
cggaccttgt	cctacccctt	catgggctga	ggaacgtcaa	agccatcaac	tatgacccgc	3060
tggacaagtt	catctactgg	gtggacgggc	gccagaacat	caagagggcc	aaggacgacg	3120
gtacccagcc	ctccatgctg	acctctccca	gccaaagcct	gagcccagac	agacagccac	3180
acgacctcag	cattgacatc	tacagccgga	cactgttctg	gacctgtgag	gccaccaaca	3240
ctatcaatgt	ccaccggctg	gatggggatg	ccatgggagt	ggtgcttcga	ggggaccgtg	3300
acaagccaag	ggccattgct	gtcaatgctg	agcgagggta	catgtacttt	accaacatgc	3360
aggaccatgc	tgccaagatc	gagcgagcct	ccctggatgg	cacagagcgg	gaggtcctct	3420
tcaccacagg	cctcatccgt	cccgtggccc	ttgtggtgga	caatgctctg	ggcaagctct	3480
tctgggtgga	tgccgaccta	aagcgaatcg	aaagctgtga	cctctctggg	gccaaccgcc	3540
tgaccctgga	agatgccaac	atcgtacagc	cagtaggtct	gacagtgctg	ggcaggcacc	3600
tctactggat	cgaccgccag	cagcagatga	tcgagcgcgt	ggagaagacc	actggggaca	3660
agcggactag	ggttcagggc	cgtgtcaccc	acctgacagg	catccatgcc	gtggaggaag	3720
tcagcctgga	ggagttctca	gcccatcctt	gtgcccgaga	caatggcggc	tgctcccaca	3780
tctgtatcgc	caagggtgat	ggaacaccgc	gctgctcgtg	ccctgtccac	ctggtgctcc	3840
tgcagaacct	gctgacttgt	ggtgagcctc	ctacctgctc	ccctgatcag	tttgcatgta	3900
ccactggtga	gatcgactgc	atccccggag	cctggcgctg	tgacggcttc	cctgagtgtg	3960
ctgaccagag	tgatgaagaa	ggctgcccag	tgtgctccgc	ctctcagttc	ccctgcgctc	4020
gaggccagtg	tgtggacctg	cggttacgct	gcgacggtga	ggccgactgc	caggatcgct	4080

-continued

Cigatgaa	gc taa	etgega	at go	etgto	etgto	tg:	ccaa	tca	gtto	cggt	gc a	accaç	gegge	c 41	40
agtgtgtc	ct cat	caagca	aa ca	agtgt	gact	cct	tece	cga	ctgt	gate	jat 🤄	gggto	tgat	g 42	00
agctcatg	tg tgaa	atca	ac aa	agcca	accct	cto	gatga	cat	ccca	agccc	ac a	agcaç	gtgcc	a 42	60
ttgggccc	gt cati	ggtat	c at	cct	etecc	tet	tegt	cat	ggg	9999	jtc 1	tactt	tgto	t 43:	20
gccagcgt	gt gate	gtgcca	ag co	gctac	cacaç	999	gccag	tgg	gcc	ettte	ecc (cacga	gtat	g 43	80
ttggtgga	ge ecct	catg	eg ed	ctctc	caact	tca	tago	ccc	aggt	ggat	ca (cagca	cggt	c 44	40
ccttccca	gg cat	ccgt	gc aç	gcaaç	gteeç	j tga	tgag	ctc	cato	gagco	tg (gtggg	99999	jc 45	00
gcggcagc	gt gcc	ecteta	at ga	accgo	gaato	acç	gtcac	tgg	ggc	ctcat	cc a	agcaç	gatag	jt 45	60
ccagcaca	aa ggc	cacact	ta ta	atccg	gccga	tco	tgaa	ccc	acco	ccgt	cc (ccggc	caca	ıg 46:	20
acccctct	ct cta	caacgt	g ga	acgto	gtttt	att	cttc	agg	cago	ccgg	jcc a	accgo	taga	ac 46	80
catacagg	cc cta	egtcat	t co	gaggt	atgg	g cad	cccc	aac	aaca	eccgt	gc a	agcac	agat	g 47	40
tgtgtgac	ag tga	ctacaç	gc ac	ccagt	cgct	gga	agag	cag	caaa	atact	ac (ctgga	acttg	ja 481	00
attcggac	tc aga	cccta	ac co	cccc	ecego	cca	cccc	cca	cago	cagt	ac (ctato	etgca	ıg 48	60
aggacagc	tg ccca	accct	ca co	caggo	cacto	, aga	ıggag	tta	ctg	cacc	tc 1	ttccc	gccc	c 49	20
caccgtcc	cc ctg	cacgga	ac to	egted	ctgad	cto	ggcc	gtc	caco	cggc	cc t	tgata	geete	c 49	80
ctgtaaat	at ttt!	aaata	at ga	aacaa	aagga	ı aaa	atat	att	ttat	gatt	ta a	aaaaa	itaaa	t 50	40
ataattgg	ga ttti	taaca	aa gt	gaga	aaato	j tga	igcgg	tga	aggg	ggtgg	gc a	agggo	tggg	ja 51	00
aaactttg	ta cagi	ggaga	aa aa	atatt	tata	aad	ttaa	ttt	ttta	aaac	at a	aaaaa	aaaa	ia 51	60
aaaaaa														51	66
<210> SEC <211> LEC <212> TYC <213> ORC	NGTH: 1 PE: PR1	611	musc	culus	3										
<211> LE <212> TY	NGTH: 1 PE: PR1 GANISM:	.611 ' mus	musc	culus	ŧ										
<211> LEX <212> TYX <213> OR	NGTH: 1 PE: PRI GANISM:	.611 mus 4				Pro	Pro 10	Pro	Pro	Pro	Pro	Pro 15	Leu		
<211> LE <212> TY <213> OR <400> SE Met Glu	NGTH: 1 PE: PR1 GANISM: QUENCE: Thr Ala	.611 mus 4 4 Pro 5	Thr	Arg	Ala		10					15			
<211> LE <212> TY <213> OR <400> SE Met Glu 1 Leu Leu	NGTH: 1 PE: PRI GANISM: QUENCE: Thr Ala Leu Vai	mus 4 Pro 5	Thr Tyr	Arg Cys	Ala Ser	Leu 25	10 Val	Pro	Ala	Ala	Ala 30	15 Ser	Pro		
<211> LE <212> TY <213> OR <400> SE Met Glu 1 Leu Leu	NGTH: 1 PE: PRT GANISM: QUENCE: Thr Al: Leu Va. 20 Leu Pho 35	mus 4 A Pro 5 L Leu	Thr Tyr Asn	Arg Cys Arg	Ala Ser Arg 40	Leu 25 Asp	10 Val Val	Pro Arg	Ala Leu	Ala Val 45	Ala 30 Asp	15 Ser Ala	Pro Gly		
<211> LE: <212> TY: <213> OR: <400> SE: Met Glu 1 Leu Leu Leu Leu Gly Val	NGTH: 1 PE: PRT GANISM: QUENCE: Thr Al: Leu Va: 20 Leu Pho: 35	mus 4 A Pro 5 Leu Ala Ala Glu	Thr Tyr Asn Ser	Arg Cys Arg Thr 55	Ala Ser Arg 40	Leu 25 Asp Val	10 Val Val Ala	Pro Arg Ser	Ala Leu Gly 60	Ala Val 45 Leu	Ala 30 Asp Glu	15 Ser Ala Asp	Pro Gly Ala		
<211> LE: <212> TY <213> OR: <400> SE: Met Glu 1 Leu Leu Leu Leu Gly Val 50 Ala Ala	NGTH: 1 PE: PRT GANISM: QUENCE: Thr Al: Leu Va: 20 Leu Pho 35 Lys Leu Val Asp	mus 4 A Pro 5 Leu Ala Glu D Phe	Thr Tyr Asn Ser Gln 70	Arg Cys Arg Thr 55 Phe	Ala Ser Arg 40 Ile Ser	Leu 25 Asp Val Lys	10 Val Val Ala Gly	Pro Arg Ser Ala 75	Ala Leu Gly 60 Val	Ala Val 45 Leu Tyr	Ala 30 Asp Glu Trp	Ser Ala Asp	Pro Gly Ala Asp		
<211> LE: <212> TY: <213> OR: <400> SE: Met Glu 1 Leu Leu Leu Gly Val 50 Ala Ala 65	NGTH: 1 PE: PRT GANISM: QUENCE: Thr Ala Leu Va. 20 Leu Pho 35 Lys Leu Val Asp Glu Glu	mus 4 A Pro 5 Leu Leu Phe 1 Ala 85	Thr Tyr Asn Ser Gln 70 Ile	Arg Cys Arg Thr 55 Phe	Ala Ser Arg 40 Ile Ser	Leu 25 Asp Val Lys	Val Val Ala Gly Tyr 90	Pro Arg Ser Ala 75 Leu	Ala Leu Gly 60 Val	Ala Val 45 Leu Tyr	Ala 30 Asp Glu Trp	15 Ser Ala Asp Thr	Pro Gly Ala Asp 80 Ala		
<211> LE <212> TY <213> OR <400> SE Met Glu 1 Leu Leu Leu Leu Gly Val 50 Ala Ala 65 Val Ser Ala Ala Ala Ala Ala Ala	NGTH: IPPE: PRTGANISM: QUENCE: Thr Al: Leu Va. 20 Leu Pho 35 Lys Leu Val Asp Glu Glu Gln Ass 100	mus 4 4 Pro 5 Leu E Ala 1 Glu Phe 1 Ala 85	Thr Tyr Asn Ser Gln 70 Ile	Arg Cys Arg Thr 55 Phe Lys	Ala Ser Arg 40 Ile Ser Gln	Leu 25 Asp Val Lys Thr	Val Val Ala Gly Tyr 90 Leu	Pro Arg Ser Ala 75 Leu Val	Ala Leu Gly 60 Val Asn Ser	Ala Val 45 Leu Tyr Gln Pro	Ala 30 Asp Glu Trp Thr	15 Ser Ala Asp Thr Gly 95 Gly	Pro Gly Ala Asp 80 Ala Leu		
<211> LE <212> TY <213> OR <400> SE Met Glu 1 Leu Leu Leu Leu Gly Val 50 Ala Ala 65 Val Ser Ala Ala Ala Ala Ala Ala	NGTH: 1 PE: PRT GANISM: QUENCE: Thr Ala Leu Va. 20 Leu Phe 35 Lys Leu Val Asp Glu Glu Gln Asn 100 Asp Tri	mus 4 4 Pro 5 Leu Leu Phe 1 Ala 85 1 Ile D Val	Thr Tyr Asn Ser Gln 70 Ile Val	Arg Cys Arg Thr 55 Phe Lys Ile	Ala Ser Arg 40 Ile Ser Gln Ser Lys 120	Leu 25 Asp Val Lys Thr Gly 105 Leu	10 Val Val Ala Gly Tyr 90 Leu	Pro Arg Ser Ala 75 Leu Val	Ala Leu Gly 60 Val Asn Ser	Ala Val 45 Leu Tyr Gln Pro Asp 125	Ala 30 Asp Glu Trp Thr Asp 110 Ser	Ser Ala Asp Thr Gly 95 Gly Glu	Pro Gly Ala Asp 80 Ala Leu		

His Gly Tyr Met Tyr Trp Thr Asp Trp Gly Glu Ala Pro Arg Ile Glu 165 \$170\$

Arg	Ala	Gly	Met 180	Asp	Gly	Ser	Thr	Arg 185	Lys	Ile	Ile	Val	Asp 190	Ser	Asp
Ile	Tyr	Trp 195	Pro	Asn	Gly	Leu	Thr 200	Ile	Asp	Leu	Glu	Glu 205	Gln	Lys	Leu
Tyr	Trp 210	Ala	Asp	Ala	Lys	Leu 215	Ser	Phe	Ile	His	Arg 220	Ala	Asn	Leu	Asp
Gly 225	Ser	Phe	Arg	Gln	Lув 230	Val	Val	Glu	Gly	Ser 235	Leu	Thr	His	Pro	Phe 240
Ala	Leu	Thr	Leu	Ser 245	Gly	Asp	Thr	Leu	Tyr 250	Trp	Thr	Asp	Trp	Gln 255	Thr
Arg	Ser	Ile	His 260	Ala	Cys	Asn	Lys	Trp 265	Thr	Gly	Glu	Gln	Arg 270	Lys	Glu
Ile	Leu	Ser 275	Ala	Leu	Tyr	Ser	Pro 280	Met	Asp	Ile	Gln	Val 285	Leu	Ser	Gln
Glu	Arg 290	Gln	Pro	Pro	Phe	His 295	Thr	Pro	Cha	Glu	Glu 300	Asp	Asn	Gly	Gly
305 CAa	Ser	His	Leu	CAa	Leu 310	Leu	Ser	Pro	Arg	Glu 315	Pro	Phe	Tyr	Ser	Сув 320
Ala	Сла	Pro	Thr	Gly 325	Val	Gln	Leu	Gln	330 330	Asn	Gly	ГÀз	Thr	Сув 335	Lys
Thr	Gly	Ala	Glu 340	Glu	Val	Leu	Leu	Leu 345	Ala	Arg	Arg	Thr	Asp 350	Leu	Arg
Arg	Ile	Ser 355	Leu	Asp	Thr	Pro	Asp 360	Phe	Thr	Asp	Ile	Val 365	Leu	Gln	Val
Gly	Asp 370	Ile	Arg	His	Ala	Ile 375	Ala	Ile	Asp	Tyr	380 38p	Pro	Leu	Glu	Gly
Tyr 385	Val	Tyr	Trp	Thr	390	Asp	Glu	Val	Arg	Ala 395	Ile	Arg	Arg	Ala	Tyr 400
Leu	Asp	Gly	Ser	Gly 405	Ala	Gln	Thr	Leu	Val 410	Asn	Thr	Glu	Ile	Asn 415	Asp
Pro	Asp	Gly	Ile 420	Ala	Val	Asp	Trp	Val 425	Ala	Arg	Asn	Leu	Tyr 430	Trp	Thr
Aap	Thr	Gly 435	Thr	Asp	Arg	Ile	Glu 440	Val	Thr	Arg	Leu	Asn 445	Gly	Thr	Ser
Arg	Lys 450	Ile	Leu	Val	Ser	Glu 455	Asp	Leu	Asp	Glu	Pro 460	Arg	Ala	Ile	Val
Leu 465	His	Pro	Val	Met	Gly 470	Leu	Met	Tyr	Trp	Thr 475	Asp	Trp	Gly	Glu	Asn 480
Pro	ГÀа	Ile	Glu	Сув 485	Ala	Asn	Leu	Asp	Gly 490	Arg	Asp	Arg	His	Val 495	Leu
Val	Asn	Thr	Ser 500	Leu	Gly	Trp	Pro	Asn 505	Gly	Leu	Ala	Leu	Asp 510	Leu	Gln
Glu	Gly	Lys 515	Leu	Tyr	Trp	Gly	Asp 520	Ala	Lys	Thr	Asp	Lys 525	Ile	Glu	Val
Ile	Asn 530	Ile	Asp	Gly	Thr	535	Arg	Lys	Thr	Leu	Leu 540	Glu	Asp	Lys	Leu
Pro 545	His	Ile	Phe	Gly	Phe 550	Thr	Leu	Leu	Gly	Asp 555	Phe	Ile	Tyr	Trp	Thr 560
Asp	Trp	Gln	Arg	Arg 565	Ser	Ile	Glu	Arg	Val 570	His	Lys	Val	Lys	Ala 575	Ser
Arg															

Val	Asn	Val 595	Ala	Lys	Val	Val	Gly 600	Thr	Asn	Pro	CÀa	Ala 605	Asp	Gly	Asn
Gly	Gly 610	Cys	Ser	His	Leu	Сув 615	Phe	Phe	Thr	Pro	Arg 620	Ala	Thr	Lys	Cys
Gly 625	Cys	Pro	Ile	Gly	Leu 630	Glu	Leu	Leu	Ser	Asp 635	Met	Lys	Thr	Cys	Ile 640
Ile	Pro	Glu	Ala	Phe 645	Leu	Val	Phe	Thr	Ser 650	Arg	Ala	Thr	Ile	His 655	Arg
Ile	Ser	Leu	Glu 660	Thr	Asn	Asn	Asn	Asp 665	Val	Ala	Ile	Pro	Leu 670	Thr	Gly
Val	Lys	Glu 675	Ala	Ser	Ala	Leu	Asp 680	Phe	Asp	Val	Ser	Asn 685	Asn	His	Ile
Tyr	Trp 690	Thr	Asp	Val	Ser	Leu 695	Lys	Thr	Ile	Ser	Arg 700	Ala	Phe	Met	Asn
Gly 705	Ser	Ser	Val	Glu	His 710	Val	Ile	Glu	Phe	Gly 715	Leu	Asp	Tyr	Pro	Glu 720
Gly	Met	Ala	Val	Asp 725	Trp	Met	Gly	Lys	Asn 730	Leu	Tyr	Trp	Ala	Asp 735	Thr
Gly	Thr	Asn	Arg 740	Ile	Glu	Val	Ala	Arg 745	Leu	Asp	Gly	Gln	Phe 750	Arg	Gln
Val	Leu	Val 755	Trp	Arg	Asp	Leu	Asp 760	Asn	Pro	Arg	Ser	Leu 765	Ala	Leu	Asp
Pro	Thr 770	Lys	Gly	Tyr	Ile	Tyr 775	Trp	Thr	Glu	Trp	Gly 780	Gly	Lys	Pro	Arg
Ile 785	Val	Arg	Ala	Phe	Met 790	Asp	Gly	Thr	Asn	Сув 795	Met	Thr	Leu	Val	Asp 800
ГÀа	Val	Gly	Arg	Ala 805	Asn	Asp	Leu	Thr	Ile 810	Asp	Tyr	Ala	Asp	Gln 815	Arg
Leu	Tyr	Trp	Thr 820	Asp	Leu	Asp	Thr	Asn 825	Met	Ile	Glu	Ser	Ser 830	Asn	Met
Leu	Gly	Gln 835	Glu	Arg	Met	Val	Ile 840	Ala	Asp	Asp	Leu	Pro 845	Tyr	Pro	Phe
Gly	Leu 850	Thr	Tyr	Ser	Asp	Tyr 855	Ile	Tyr	Trp	Thr	Asp 860	Trp	Asn	Leu	His
Ser 865	Ile	Glu	Arg	Ala	Asp 870	Lys	Thr	Ser	Gly	Arg 875	Asn	Arg	Thr	Leu	Ile 880
Gln	Gly	His	Leu	Asp 885	Phe	Val	Met	Asp	Ile 890	Leu	Val	Phe	His	Ser 895	Ser
Arg	Gln	Asp	Gly 900	Leu	Asn	Asp	Cys	Val 905	His	Ser	Asn	Gly	Gln 910	Сув	Gly
Gln	Leu	Cys 915	Leu	Ala	Ile	Pro	Gly 920	Gly	His	Arg	Сув	Gly 925	Сув	Ala	Ser
His	Tyr 930	Thr	Leu	Asp	Pro	Ser 935	Ser	Arg	Asn	Сув	Ser 940	Pro	Pro	Ser	Thr
Phe 945	Leu	Leu	Phe	Ser	Gln 950	Lys	Phe	Ala	Ile	Ser 955	Arg	Met	Ile	Pro	Asp 960
Asp	Gln	Leu	Ser	Pro 965	Asp	Leu	Val	Leu	Pro 970	Leu	His	Gly	Leu	Arg 975	Asn
Val	Lys	Ala	Ile 980	Asn	Tyr	Asp	Pro	Leu 985	Asp	Lys	Phe	Ile	Tyr 990	Trp	Val
Asp	Gly	Arg 995	Gln	Asn	Ile	Lys	Arg		a Lys	a Asl) Asl	9 Gly		nr G	ln Pro
Ser	Met	Let	ı Th	r Se:	r Pro	Se:	r G	ln Se	er Le	eu Se	er Pi	ro I	Asp A	Arg (Gln

					-
_	cc	n'	 ın	11	മർ

	1010					1015					1020			
Pro	His 1025	Asp	Leu	Ser	Ile	Asp 1030	Ile	Tyr	Ser	Arg	Thr 1035	Leu	Phe	Trp
Thr	Cys 1040	Glu	Ala	Thr	Asn	Thr 1045	Ile	Asn	Val	His	Arg 1050	Leu	Asp	Gly
Asp	Ala 1055	Met	Gly	Val	Val	Leu 1060	Arg	Gly	Asp	Arg	Lys 1065	Pro	Arg	Ala
Ile	Ala 1070	Val	Asn	Ala	Glu	Arg 1075	Gly	Tyr	Met	Tyr	Phe 1080	Thr	Asn	Met
Gln	Asp 1085	His	Ala	Ala	ГÀа	Ile 1090	Glu	Arg	Ala	Ser	Leu 1095	Asp	Gly	Thr
Glu	Arg 1100	Glu	Val	Leu	Phe	Thr 1105	Thr	Gly	Leu	Ile	Arg 1110	Pro	Val	Ala
Leu	Val 1115	Val	Asp	Asn	Ala	Leu 1120	Gly	Lys	Leu	Phe	Trp 1125	Val	Asp	Ala
Asp	Leu 1130	Lys	Arg	Ile	Glu	Ser 1135	Asp	Leu	Ser	Gly	Ala 1140	Asn	Arg	Leu
Thr	Leu 1145	Glu	Asp	Ala	Asn	Ile 1150	Val	Gln	Pro	Val	Gly 1155	Leu	Thr	Val
Leu	Gly 1160	Arg	His	Leu	Tyr	Trp 1165	Ile	Asp	Arg	Gln	Gln 1170	Gln	Met	Ile
Glu	Arg 1175	Val	Glu	Lys	Thr	Thr 1180	Gly	Asp	Lys	Arg	Thr 1185	Arg	Val	Gln
Gly	Arg 1190	Val	Thr	His	Leu	Thr 1195	Gly	Ile	His	Ala	Val 1200	Glu	Glu	Val
Ser	Leu 1205	Glu	Glu	Phe	Ser	Ala 1210	His	Pro	Сув	Ala	Arg 1215	Asp	Asn	Gly
Gly	Cys 1220	Ser	His	Ile	Cha	Ile 1225	Ala	Lys	Gly	Asp	Gly 1230	Thr	Pro	Arg
Càa	Ser 1235	CÀa	Pro	Val	His	Leu 1240	Val	Leu	Leu	Gln	Asn 1245	Leu	Leu	Thr
Cys	Gly 1250	Glu	Pro	Pro	Thr	Cys 1255	Ser	Pro	Asp	Gln	Phe 1260	Ala	Cys	Thr
Thr	Gly 1265	Glu	Ile	Asp	Cys	Ile 1270	Pro	Gly	Ala	Trp	Arg 1275	CAa	Asp	Gly
Phe	Pro 1280	Glu	CAa	Ala	Asp	Gln 1285	Ser	Asp	Glu	Glu	Gly 1290	CAa	Pro	Val
Cys	Ser 1295	Ala	Ser	Gln	Phe	Pro 1300	Cys	Ala	Arg	Gly	Gln 1305	CAa	Val	Asp
Leu	Arg 1310	Leu	Arg	Сув	Asp	Gly 1315	Glu	Ala	Asp	Càa	Gln 1320	Asp	Arg	Ser
Asp	Glu 1325	Ala	Asn	Сув	Asp	Ala 1330	Val	Cys	Leu	Pro	Asn 1335	Gln	Phe	Arg
CAa	Thr 1340	Ser	Gly	Gln	Cha	Val 1345	Leu	Ile	Lys	Gln	Gln 1350	CAa	Asp	Ser
Phe	Pro 1355	Asp	CÀa	Ala	Asp	Gly 1360	Ser	Asp	Glu	Leu	Met 1365	CÀa	Glu	Ile
Asn	Lys 1370	Pro	Pro	Ser	Asp	Asp 1375	Ile	Pro	Ala	His	Ser 1380	Ser	Ala	Ile
Gly	Pro 1385	Val	Ile	Gly	Ile	Ile 1390	Leu	Ser	Leu	Phe	Val 1395	Met	Gly	Gly
Val	Tyr 1400	Phe	Val	Cys	Gln	Arg 1405	Val	Met	CÀa	Gln	Arg 1410	Tyr	Thr	Gly

Ala	Ser 1415	Gly	Pro	Phe	Pro	His 1420	Glu	Tyr	Val	Gly	Gly 1425	Ala	Pro	His
Val	Pro 1430	Leu	Asn	Phe	Ile	Ala 1435	Pro	Gly	Gly	Ser	Gln 1440	His	Gly	Pro
Phe	Pro 1445	Gly	Ile	Pro	Сув	Ser 1450	Lys	Ser	Val	Met	Ser 1455	Ser	Met	Ser
Leu	Val 1460	Gly	Gly	Arg	Gly	Ser 1465	Val	Pro	Leu	Tyr	Asp 1470	Arg	Asn	His
Val	Thr 1475	Gly	Ala	Ser	Ser	Ser 1480	Ser	Ser	Ser	Ser	Thr 1485	Lys	Ala	Thr
Leu	Tyr 1490	Pro	Pro	Ile	Leu	Asn 1495	Pro	Pro	Pro	Ser	Pro 1500	Ala	Thr	Asp
Pro	Ser 1505	Leu	Tyr	Asn	Val	Asp 1510	Val	Phe	Tyr	Ser	Ser 1515	Gly	Ser	Pro
Ala	Thr 1520	Ala	Arg	Pro	Tyr	Arg 1525	Pro	Tyr	Val	Ile	Arg 1530	Gly	Met	Ala
Pro	Pro 1535	Thr	Thr	Pro	CAa	Ser 1540	Thr	Asp	Val	CAa	Asp 1545	Ser	Asp	Tyr
Ser	Thr 1550	Ser	Arg	Trp	Lys	Ser 1555	Ser	Lys	Tyr	Tyr	Leu 1560	Asp	Leu	Asn
Ser	Asp 1565	Ser	Asp	Pro	Tyr	Pro 1570	Pro	Pro	Pro	Thr	Pro 1575	His	Ser	Gln
Tyr	Leu 1580	Ser	Ala	Glu	Asp	Ser 1585	-	Pro	Pro	Ser	Pro 1590	Gly	Thr	Glu
Arg	Ser 1595	Tyr	CAa	His	Leu	Phe 1600	Pro	Pro	Pro	Pro	Ser 1605	Pro	CÀa	Thr
Asp	Ser 1610	Ser												

We claim:

1. A method for enriching a population of mammary cells or mammary tumor cells for somatic mammary stem cells or mammary tumor stem cells, the method comprising the steps of:

obtaining a population of mammary cells or mammary tumor cells containing one or more somatic mammary stem cells or mammary tumor stem cells;

contacting said population of mammary cells or mammary tumor cells with an anti-low density lipoprotein receptor-related protein 5 (LRP5) antibody; and

selecting cells that bind to the antibody.

- 2. The method of claim 1, wherein the population of mammary cells or mammary tumor cells is a population of human, mouse, or rat cells.
- 3. The method of claim 1, wherein the population of mammary cells or mammary tumor cells is a population of mouse cells
- **4.** The method of claim **1**, wherein the mammary cell population comprises at least 70% of the total mammary epithelial cell population of a mammary gland.
- 5. The method of claim 1, wherein the antibody is attached to a solid matrix.
- **6**. The method of claim **1**, wherein cells that bind to the antibody are selected by flow cytometry.

7. The method of claim 6, wherein the cells are selected from the top 10% or higher of the total mammary epithelial cell population from a mammary gland in terms of LRP5 expression.

54

- **8**. The method of claim **7**, wherein the cells are selected from the top 6% or higher of the total mammary epithelial cell population from a mammary gland in terms of LRP5 expression.
- 9. The method of claim 1, wherein the method is for enriching a population of mammary cells for somatic mammary stem cells.
- 10. The method of claim 9 further comprising the step of contacting said population of mammary cells with an antibody against a cell surface marker for cells selected from endothelial cells, hematopoietic cells, and stromal cells wherein cells that bind to the anti-LRP5 antibody but not the antibody against the cell surface marker for cells selected from endothelial cells, hematopoietic cells, and stromal cells are selected.
- 11. The method of claim 9, wherein at least 1% of the selected cells are somatic mammary stem cells.
- 12. The method of claim 9, wherein at least 5% of the selected cells are mammary stem cells.

* * * * *