a2 United States Patent

Allen et al.

US008417919B2

US 8,417,919 B2
Apr. 9,2013

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

@
(22)

(65)

(60)

(1)
(52)

(58)

ASSIGNING DIFFERENT SERIALIZATION
IDENTIFIER TO OPERATIONS ON
DIFFERENT DATA SET FOR EXECUTION IN
RESPECTIVE PROCESSOR IN
MULTI-PROCESSOR SYSTEM

Inventors: Matthew Allen, Madison, WI (US);
Gurindar S. Sohi, Madison, WI (US)

Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 685 days.

Appl. No.: 12/543,354

Filed: Aug. 18,2009
Prior Publication Data
US 2010/0070740 Al Mar. 18, 2010

Related U.S. Application Data

Provisional application No. 61/096,574, filed on Sep.
12, 2008.

Int. CI.

GOGF 15/16 (2006.01)

U.S. CL

USPC e 712/30;712/216
Field of Classification Search None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS
7,895,328 B2* 2/2011 Eibachetal. ... 709/226

OTHER PUBLICATIONS

Allen, Matthew D., et al., Serialization Sets: A Dynamic Depen-
dence-Based Parallel Execution Model, Technical Report #1644,
Aug. 2008, pp. 1-10, Computer Sciences Department, University of
Wisconsin-Madison, Madison, Wisconsin, USA.

Allen, Matthew D., et al., Metadata-Based Parallelization of Pro-
gram, Aug. 10, 2007, Computer Sciences Department, University of
Wisconsin-Madison, Madison, Wisconsin, USA.

Rinard, Martin C., The Design, Implementation and Evaluation of
Jade: A Portable, Implicitly Parallel Programming Language, A Dis-
seration Submitted to the Department of Computer Science and the
Committee on Graduate Studies of Stanford University in Partial
Fulfillment of the Requirements for the Degree of Doctor of Philoso-
phy, Sep. 1994, Palo, Alto, CA, USA.

* cited by examiner

Primary Examiner — Kenneth Kim
(74) Attorney, Agent, or Firm — Boyle Fredrickson S.C.

(57) ABSTRACT

A method of dynamic parallelization in a multi-processor
identifies potentially independent computational operations,
such as functions and methods, with a serializer that assigns a
computational operation to a serialization set and a processor
based on assessment of the data that the computational opera-
tion will be accessing upon execution.

28 Claims, 14 Drawing Sheets

/-10

~87

39

NuN
\w

L, 136

12a 12b 23
A] 14~]
14
18
[/3
e HR B /
12¢ 12d ¥ I_/
30
A] 14~]
14 30 .,
16J 20" .\h_

U.S. Patent Apr. 9, 2013 Sheet 1 of 14 US 8,417,919 B2

10
122 12b 23
1/I__—_"'l 4~]
4
18
/3
Tt T —r” /
l2c led L +-87
30
A U~ — e
14 30 | =T
- 36
167 20 == 1
22 33

U.S. Patent Apr. 9, 2013 Sheet 2 of 14 US 8,417,919 B2

—20

26— 26.1

26 —~— 26.2

FIG. 2

U.S. Patent Apr. 9, 2013 Sheet 3 of 14 US 8,417,919 B2

18
28 N
Ny \/!sz

26~ 26.12 301
26~ 26.21

30.2
26~ 26.22
26~ 26.13

30.3
26—~ 26.23

- —— e
—_-——— L

FIG. 3

U.S. Patent Apr. 9, 2013 Sheet 4 of 14

[-18
/'__/—_’/
26—~ 26.1
26 —~— 26.2
SERIALIZER }—36
4—47
SERIALIZER }—36
32.2 337
447
- o~

US 8,417,919 B2

U.S. Patent Apr. 9, 2013 Sheet 5 of 14 US 8,417,919 B2

w
o
—
w
o
no

il

w
!\)
w

12a
\ 12¢ 124
P e T . -
32.11
28—
32.12
32.21 26.12
26.22
32.22
26.23
32.13
32.23
ya /
18—
30.1 30.2 30.3
S () () '
22) 74 30 74 30 74 30

FIG. 5

U.S. Patent Apr. 9, 2013 Sheet 6 of 14 US 8,417,919 B2

CINPUT PROGRAM 39

SPAWN DELEGATE
THREADS

——41

IDENTIFY POTENTIALLY
INDEPENDENT COMPUTATIONAL |—42
OPERATIONS

y

DETERMINE APPROPRIATE
SERIALIZER FOR EACH 43
POTENTIALLY INDEPENDENT
COMPUTATIONAL OPERATION

REPLACE POTENTIALLY
INDEPENDENT COMPUTATION }—44
OPERATION WITH COMPUTATION
PROXY INCLUDING SERIALIZER

C)UTPUT PROGRA@f45

FIG. 6

U.S. Patent Apr. 9, 2013 Sheet 7 of 14 US 8,417,919 B2

______ B

PROGRAM THREAD: 50

(" BEGIN PROGRAM)

51~ SPAWN DELEGATE
THREADS

52
) 57
DELEGATE THREAD READS |
COMPUTATIONAL OPERATION AND
TS INPUTS FROM QUEUE [

EXECUTE COMPUTATION
PROXY IN PROGRAM THREAD

93

R

EXECUTE SERIALIZER TQ
COMPUTE SERIALIZATION SET
IDENTIFIER

1
1
1
1
)
1
1
I
]
1
L}
}
1
)
1
}
1
}
1
}
)
}
1
94
] 54 |
L}
}
)
)
}
1
I
]
I
1
{
L}
}
1
1
1
}
1
}
)
I
-4

DATA ACCESS
MATCHES SERIALIZATION
SET IDE?NTIFIER

IDENTIFY QUEUE ASSOCIATED
WITH SERIALIZATION SET
IDENTIFIER

55

INSERT COMPUTATIONAL OPERATION
AND ITS INPUTS INTO QUEUE

56

60

DELEGATE THREAD EXECUTES
COMPUTATIONAL OPERATION

COMPUTATIONAL
OPERATION
IN_QUEUE

SYNCHRONI-
ZATION

SYNCHRONI-
ZATION

COMPUTATION
PROXY

NEXT
ACT7ION

PROGRAM THREAD
62~ SYNCHRONIZES
WITH DELEGATE
THREADS

63
NO PROGRAM ™_NO

COMPLETE
YES]

64
~ TERMINATE PROGRAM)

FIG. 7

US 8,417,919 B2

Sheet 8 of 14

Apr.9,2013

U.S. Patent

Ye—1l| 97
PeT—1
vE—|| 97
T
Y€l 97
qcT—"

8 Ol

US 8,417,919 B2

Sheet 9 of 14

Apr.9,2013

U.S. Patent

6 9l

.\)\)’\

i

(GES “TTTT) AXOUd “MVN¥QHLIM

—ct

(00E$ ‘EEEE) AXO¥d LIS0d3d

—c€

(0093 ‘zzee) AX0¥d 11S0d3d

—ct

(92 ‘TTIT) AXOMd MYYQHLIM

~—ct

(0002$ ‘€EEE) AXOUd LNNOJIVMIN

~—Ct

(0G$ ‘2222) AXO¥d “MYYAHLIM

P2l Eri azl
A
06$+—0/ 0001$ +0/ ooomwllom
¢lec+—01 MI+~—0/ eeEE—0/
MYYQHLIM+—9¢ 1150430 4+—9¢ INNOOYMINS—9¢
009$~4—0/ Ge$4—0/ 00€$4—0/
¢Ci~4—0L Ml 4—0/ EeeE4—0/
11S0d3d4—92 MYHAHLIM 4—092 11S0d3d4—9¢
GE$4—0/
IT4—0L
MYHAHLIM 4—9¢
/ 6E rf adog f e6g
>
N N
/ \ N
//

—cC¢€

(000T$ 'TITT) AXO¥d 11S0d3a

~—¢t

0

S ——

—

U.S. Patent Apr. 9, 2013 Sheet 10 of 14 US 8,417,919 B2

38
26
N A
ACCOUNT # SERIALIZATION SET
SERIALIZER IDENTIFIER
T ~— T~—or1
74 0 x 1000
26 ACCOUNT 1111 30
\ BALANCE $5000
72

COMPUTATIONAL 74—~ 0 x 2000
OPERATION —)L. ACCOUNT 2222 | o0

BALANCE $480

74— 0 x 3000

ACCOUNT 3333 | __3q
BALANCE $2200

FIG. 10

U.S. Patent Apr. 9, 2013 Sheet 11 of 14 US 8,417,919 B2

OBJECT 35
6™~ proTOTYPE .

78

INSTANCE_NUMBER=1 J| INSTANCE_NUMBER= 2 J| INSTANCE_NUMBER= 3
AN AN L

(((
82 82 82

INSTANTIATED OBJECTS

FIG. 11a

U.S. Patent Apr. 9, 2013 Sheet 12 of 14 US 8,417,919 B2

CLASS
36
SERIALIZATION SET | /
IDENTIFIER (ss_id) 87
| _}—76
81
/ N\
) /
ss_id ss_id ss_id
k38 K38 k38

FIG. 11b

US 8,417,919 B2

Sheet 13 of 14

Apr.9,2013

U.S. Patent

pel
009$4—0L
¢éce+—0L
11S0430y—9¢

4
92$4+—01
I +—-0.
MYHQHLIM t—9¢

qct 4/

00€$4—0/
£EEEN—0/
MYHQHLIMS—97

¢l Ol

e e ™™

(€€EE) FONVIVE 139 ~9¢

() llvM ~88

(EEEE) AXOHd HONAS [—+8

(00E$ ‘EEEE) AXOMd "LIS0dIA |~2z¢

£6EE4—0/
HONAS—958
~—06
\-o6¢ \-gee \-ege
N—

(009¢ ‘22¢2) AXO¥d LIS0d3A [—z€

(923 'TITT) AXO¥d MVYQHLIM —z¢

l\l./\\‘/\\

U.S. Patent Apr. 9, 2013 Sheet 14 of 14 US 8,417,919 B2

22N 39.1 f—

28~ 39.4

39.6
39.2

39.7 39.12

39.11

! |
1207 347 %3 -l

FIG. 13

US 8,417,919 B2

1
ASSIGNING DIFFERENT SERIALIZATION
IDENTIFIER TO OPERATIONS ON
DIFFERENT DATA SET FOR EXECUTION IN
RESPECTIVE PROCESSOR IN
MULTI-PROCESSOR SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority from previously filed U.S.
Provisional Patent Application Ser. No. 61/096,574 filed on
Sep. 12, 2008 hereby incorporated by reference in its entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with United States government
support awarded by the following agencies:

NSF 0311572, 0702313 and 0551401

The United States government has certain rights in this
invention.

BACKGROUND

The present invention relates to the implementation and
execution of programs for multi-processor computers and in
particular to a software system providing improved parallel-
ization of programs.

Improvements in software performance have been realized
primarily through the use of improved processor designs.
Such performance improvements have the advantage of being
completely transparent to the program generator (for
example, a human programmer, compiler, or other program
translator). However, achieving these benefits depends on the
continuing availability of improved processors.

Parallelization offers another avenue for software perfor-
mance improvement by dividing the execution of a software
program into multiple components that can run simulta-
neously on a multi-processor computer. As more perfor-
mance is required, more processors may be added to the
system, ideally resulting in attendant performance improve-
ment. However, generating parallel software is very difficult
and costly. Accordingly, parallelization has traditionally been
relegated to niche markets that can justify its extravagant
costs.

Recently, technological forces have limited further perfor-
mance improvements that can be efficiently realized for indi-
vidual processors. For this reason, computer manufacturers
have turned to designing processors composed of multiple
cores, each core comprising circuitry (e. g., a CPU) necessary
to independently perform arithmetic and logical operations.
In many cases, the cores also support multiple execution
contexts, allowing more than one program to run simulta-
neously on a single core (these cores are often referred to as
multi-threaded cores and should not be confused with the
software programming technique of multi-threading). A core
is typically associated with a cache and an interconnection
network allowing the sharing of common memory among the
cores. These multi-core processors implement a multi-pro-
cessor on a single chip. Due to the shift toward multi-core
processors, parallelization is supplanting improved processor
performance as the primary method for improving software
performance.

Improved execution speed of a program using a multi-
processor computer depends on the ability to divide a pro-
gram into portions that may be executed in parallel on the
different processors. Parallel execution in this context

20

25

30

35

40

45

50

55

60

65

2

requires identifying portions of the program that are indepen-
dent such that they do not simultaneously operate on the same
data. While parallel applications are already common for
certain domains, such as servers and scientific computation,
the advent of multi-core processors increases the need for all
types of software to implement parallel execution to realize
increased performance.

Many current programs are written using a sequential pro-
gramming model, expressed as a series of steps operating on
data. This model provides a simple, intuitive programming
interface because, at each step, the generator of the program
(for example, the programmer, compiler, and/or some other
form of translator) can assume the previous steps have been
completed and the results are available for use. However, the
implicit dependence between each step obscures possible
independence among instructions needed for parallel execu-
tion. To statically parallelize a program written using the
sequential programming model, a compiler must analyze all
possible inputs to different portions of the program to estab-
lish their independence. Such automatic static parallelization
works for programs which operate on regularly structured
data, but has proven difficult for general programs.

One method of producing programs that may run in paral-
lel is for a programmer to explicitly parallelize the program
by dividing it into multiple threads which are designed and
expected to execute independently. Creating such a multi-
threaded program is a difficult procedure, since any access to
shared data must be carefully synchronized to ensure mutual
exclusion such that only one thread at a time may access the
shared data. Failure to properly synchronize access to shared
data can result in a condition called a data race, where the
outcome of a computation depends on the interleaving of the
operations of multiple processors on the same data. Identify-
ing and reproducing data races are complicated by the fact
that multithreaded program execution is non-deterministic;
that is, for a given input, the program may produce different
results, depending on the scheduling decisions made by the
hardware and system software. Thus, programming with
threads remains significantly more difficult and error prone
than sequential programming.

BRIEF SUMMARY

The present applicants have recognized that many of the
difficulties in correctly generating and executing parallel pro-
grams may be overcome using a mechanism that maintains
sequential program semantics while implementing a dynamic
parallel execution of independent computations in a manner
that reduces the likelihood of data races. The present appli-
cation describes a system and method for identifying poten-
tial independence among the computational operations con-
stituting a program, coupled with a mechanism to
opportunistically parallelize independent computations as
they manifest during program execution. The mechanism
ensures sequential program semantics via serialization,
where all computational operations on a particular data item,
such as a data structure or object, are performed in the same
order they are encountered in the program. The likelihood of
data race errors is reduced, since each individual data item is
operated on by at most one processor at a time. Because the
present application describes maintaining orderings between
related computations and parallelizes independent computa-
tions, it produces deterministic parallel execution, signifi-
cantly improving the predictability of parallel program
execution over traditional multi-threading techniques.

In one embodiment, the program generator identifies
potentially independent computational operations in the pro-

US 8,417,919 B2

3

gram, and replaces them with computation proxies, which
identify a serialization set for the computational operation
during the compilation, interpretation, or execution of the
program. The computation proxy for a computational opera-
tion uses code provided by the program generator, called a
serializer, to compute serialization sets where all operations
on the same data item are assigned to the same serialization
set, while operations on distinct data items are preferably
spread across different serialization sets. The serialization set
is represented by the serialization set identifier, which may be
a number or any other representation identifying the serial-
ization set. The computation proxy inserts the computational
operation and its inputs into an ordered communication struc-
ture, e.g., a queue, such that all members of a given set are
assigned to the same structure. Although the ordered commu-
nication structure may be any type of communication struc-
ture, we refer to the structure as a queue herein to describe an
exemplary embodiment. A number of delegate threads, run-
ning on the processors in the system, remove computational
operations from the queues and execute them on behalf of the
program thread. Operations in a given serialization set are
executed by no more than one delegate thread at a time, so that
operations on a particular data item (which are assigned to the
same serialization set) are operated on by at most one proces-
sor at a time. The serialization property is effected by the
combination of: the assignment of operations on a particular
data element to a single serialization set; inserting all opera-
tions in the same serialization set into the same ordered
queue; and processing the operations in a given serialization
set by a single delegate thread in the order they were inserted
into the ordered queue. Parallel execution may be achieved by
executing computational operations in different serialization
sets simultaneously using multiple processors in a multi-
processor system.

According to one exemplary embodiment, the present
application provides a method of operation executing a pro-
gram on a multi-processor computer with shared memory.
The method identifies in the program a plurality of computa-
tional operations accessing sets of data in shared memory,
where different computational operations can write to the
same data elements during execution of the program. Next, a
serialization set identifier is assigned to multiple given com-
putational operations, said serialization set identifier for the
each given computational operation based on the set of data
accessed by the given computational operation when the
given computational operation is executed. The computa-
tional operations are then assigned to different processors of
the multi-processor computer for execution based on differ-
ent serialization set identifiers of the computational opera-
tions.

It is thus one feature of at least one embodiment of the
invention to provide a simple method of exploiting fine grain
parallelization in common sequential programs in which dif-
ferent computational operations may write to the same data.

The method may further assign the computational opera-
tions to different ordered communication structures based on
the different serialization set identifiers of the computational
operations and read for execution, computational operations
from the ordered communication structures by difterent pro-
cessors of the multi-processor computer such that a single
ordered communication structures is read by only a single
processor at a given time.

It is thus one feature of at least one embodiment of the
invention to provide a simple mechanism for assembling
parallel threads, on-the-fly during execution of the program,
using queues or the like.

20

25

30

35

40

45

50

55

60

65

4

The method may further identify within the program at
least one synchronization point with respect to at least one
given set of data and control the assignment of computational
operations to the different processors such that all assigned
and uncompleted computational operations writing the at
least one given set of data are completed by the synchroniza-
tion point.

It is thus one feature of at least one embodiment of the
invention to permit resynchronization of the multiple proces-
sors by command as may be required for effective execution
of'standard programs when parallel operation is not indicated
or when new allocation of parallel program structures may be
warranted.

This synchronization may include the step of embedding
within the program at the synchronization point a synchroni-
zation operation causing further assigning of computational
operations to different processors to cease until a processor
receiving a synchronization operation reports completion of
the synchronization operation. A synchronization operation
may be associated with a serialization set identifier and
assigned to a processor of the multi-processor computer
based on the serialization set identifier.

It is thus one feature of at least one embodiment of the
invention to provide a simple method of resynchronizing a
parallelized program using synchronization operations that
may be assigned like computational operations.

The method may further monitor access of the shared
memory by different processors executing the computational
operations and detect conflicting access of a given set of data
when the given set of data is accessed by processors associ-
ated with different serialization set identifiers.

It is thus one feature of at least one embodiment of the
invention to permit the pre-emptive detection of errors in the
parallelization process to improve the opportunities to seek
parallelization of program code.

The monitoring may mark memory blocks accessed by a
computational operation with the serialization set identifier
for the computational operation and the detecting detects
when a serialization set identifier associated with a pending
write to the memory block differs from the marked serializa-
tion set identifier of the memory block.

It is thus one feature of at least one embodiment of the
invention to provide a simple mechanism for detecting errors
in parallelization by monitoring memory accesses such as
may readily exploit existing hardware memory monitoring
technologies.

The serialization set identifier may be a mapping of
addresses of the set of data accessed by the computational
operation to serialization set identifiers. Alternatively, the
serialization set identifier may be a mapping of an instance
number for a set of data accessed by the computational opera-
tion to serialization set identifiers. According to another alter-
native, the set of data accessed by computational operation
may be computed from variables in the environment and the
serialization set identifier may be a mapping of variables in
the environment to serialization set identifiers.

It is thus one feature of at least one embodiment of the
invention to accommodate multiple methods of allocating
different computational operations to a serialization set using
data easily available at run-time.

These particular features and advantages may apply to only
some embodiments falling within the claims and thus do not
define the scope of the invention. The following description
and figures illustrate a preferred embodiment of the invention.
Such an embodiment does not necessarily represent the full
scope of the invention, however. Furthermore, some embodi-
ments may include only parts of a preferred embodiment.

US 8,417,919 B2

5

Therefore, reference must be made to the claims for interpret-
ing the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified representation of a multi-processor
system including four processors and suitable for implemen-
tation of the present application;

FIG. 2 is a simplified representation of a program com-
posed of instructions grouped into computational operations;

FIG. 3 is a linear representation of the dynamic execution
of computational operations accessing various data elements,
each dynamic execution executing a particular data set based
on the changing inputs provided to the computational opera-
tion during its execution;

FIG. 4 is a simplified representation of a program modified
with computation proxies of the present application;

FIG. 5 is a linear representation of the dynamic execution
of'the modified program of the present application, executing
computation proxies in the program thread which assign
execution of a computational operation to a delegate thread
running on another processor such that the data sets accessed
by the computational operations are each accessed by at most
a single delegate thread;

FIG. 6 is a flow chart of an embodiment of the present
application showing the principal steps for modifying the
program to use the present application;

FIG. 7 is a flow chart of an embodiment of the present
application showing the principal steps for executing the pro-
gram;

FIG. 8 is a process flow diagram of the present application
showing the principal steps of the program thread executing
computation proxies identifying the serialization set identi-
fier, the program thread inserting computational operations
into ordered communication structures, and delegate threads
removing computational operations from the queues and
executing them on behalf of the program thread.

FIG. 9 is an example application program parallelized per
an embodiment of the present application into queues asso-
ciated with different processors;

FIG. 10 is a flow diagram illustrating an exemplary com-
putation of a serialization set identifier for an example appli-
cation program;

FIG. 11a is a flow diagram depicting software objects
using instantiation numbers for the generation of serialization
set identifiers;

FIG. 115 is a diagram of a library providing support code
for the program execution as library elements, possibly
including pre-defined serializers, class specifications (i.e.,
object prototypes), and code to implement delegate threads;

FIG. 12 is a flow diagram similar to that of FIG. 9 showing
the use of synchronization functions for synchronizing pro-
gram and delegate threads; and

FIG. 13 is a diagram of threads communicating via ordered
communication structures implementing a work sharing sys-
tem capable of combining nested parallelism in accordance
with one embodiment of the present invention.

DETAILED DESCRIPTION

Referring now to FIG. 1, a multi-processor system 10 may
include, for example, four processors 12a-12d each associ-
ated with a local memory 14 and communicating on a inter-
connection network structure 16 with shared memory 18. It
will be understood that the present application applies to
cases where the local memory 14 and shared memory 18 are
managed automatically by hardware (i.e., local memory 14 is

20

25

30

35

40

45

50

55

60

65

6

a cache), as well as cases where software must explicitly
perform transfers among shared memory 18 and local memo-
ries 14. It will be further understood that shared memory 18
may in turn be a cache communicating with additional exter-
nal memory (not shown). Each of the processors 12 may also
communicate with common control circuitry 23 providing
coordination of the processors 12 as is understood in the art.
Although the preferred embodiment of the present applica-
tion is described with respect to a multi-processor imple-
mented as separate processors communicating with shared
memory, it will be understood that the term multi-processor
includes any type of computer system providing multiple
execution contexts, including, but not limited to systems
composed of multi-threaded processors, multi-core proces-
sors, heterogeneous computational units, or any combination
thereof.

The shared memory 18 may hold a static program 20 pre-
pared or modified according to an embodiment of the present
invention as will be described and program data 22 accessed
via the program 20 during execution. Shared memory 18 may
further include runtime library 87 possibly providing class
specifications (i.e., object prototypes) 35, pre-defined serial-
izers 36, ordered communication structures (e.g., queues) 39,
and code to implement the runtime operations of delegate
threads 34, described in further detail hereinbelow.

Referring now to FIG. 2, the static program 20 may include
a set of instructions 24 implementing computational opera-
tions 26 (depicted as first function 26.1 and second function
26.2), which may exhibit independence. Although static pro-
gram 20 is shown and described herein with reference to a
sequential program, it should be understood that the
described system and method would also be useful for paral-
lelization of sequential, multi-threaded, partly parallel, and/
or other types and combinations of types of programs. In an
exemplary embodiment, the computational operations 26
may be a function (also known as a procedure or method),
typically accepting arguments and producing values. Collec-
tion of instructions 24 into computational operations 26 may
be implemented by the programmer or may be implicit in the
use of pre-programmed functions in runtime library 87. Other
embodiments may use other computational operations, such
as loop iterations, superblocks, hyperblocks, paths, or any
other grouping of instructions into computational operations.

During execution of the original program 20 (run-time), as
shown in FIG. 3, the computational operations 26.1 and 26.2
may be repeatedly executed, typically with different inputs,
following a program execution thread 28 determined dynami-
cally based on the execution of other parts of the program 20.
Following the program execution thread 28, the computa-
tional operations 26.1 and 26.2 realize multiple dynamic
executions (depicted as executions 26.11, 26.12, 26.21,
26.22, 26.13 and 26.23). During each execution, functions
26.1 and 26.2 may write to data sets 30 of data 22 of memory
18. Different executions of functions 26.1 and 26.2 with
different arguments may cause the writing to different data
sets (depicted as data sets 30.1, 30.2, 30.3).

The present application is particularly applicable where the
data sets 30 are disjoint (non-overlapping). Disjoint data sets
can be implemented in some programming languages by
encapsulating the sets of data into different structures or
objects. For languages that cannot provide such an embodi-
ment, run-time bounds-checking code can be added to com-
putational operations 26.1 and 26.2 to ensure that only a
single data set is accessed, as is understood in the art. Note
that the disjoint nature of data sets applies to data that may be
written. Read-only data may be freely accessed in a shared
manner by computational operations 26. For example, a pro-

US 8,417,919 B2

7

grammer might create a data structure with two fields: fieldA
and fieldB. If fieldA is written by the computational opera-
tions, then reads or writes to that field must only be performed
by operations in the same serialization set. If fieldB is not
written by any of the computational operations, then it would
be acceptable for operations in any serialization set to read
fieldB, because data races errors cannot occur without a write.

Referring now to FIGS. 4, 5, 6, 7 and 8, one exemplary
embodiment of program 20 employing a number of func-
tional blocks that may be flexibly executed using combina-
tions of hardware and software is shown and described. For
clarity, one possible allocation of these functional elements
will be described; however this description should not be
considered limiting with respect to alternative embodiments.

Referring now to FIG. 4, a program 20, stored in memory
18, is modified according to an exemplary embodiment of the
present invention by replacing at least some of the computa-
tional operations 26 with a computation proxy 32 (shown as
computation proxies 32.1 and 32.2, each computation proxy
including a serializer 36) that cause the computational opera-
tions 26 to be executed on additional processors 12 in the
system is shown.

Referring now to FIG. 5, the program execution thread 28
is shown sequentially executing the computational proxies 32
which assign computational operations 26 to ordered com-
munication structures 39.1, 39.2, 39.3, in this example, each
associated with one of the delegate threads 34.1, 34.2, 34.3,
running on additional processors 12b-124 in the system. In
this embodiment, the computational operations are assigned
to the various delegate threads 34 so that each data set 30 is
written to, or written to and read, by no more than one del-
egate thread 34 running on an additional processor 12. Advan-
tageously, the overall execution time of program 20 may be
reduced by overlapping execution of the computational
operations 26.

Referring now to FIG. 6, the operation of the present inven-
tion may be implemented by modifying the program 20, using
the program generator. First, as indicated by process block 41,
the program 20 may be modified to spawn a number of del-
egate threads 34 on additional processors 12 in a multi-pro-
cessor system. Spawning delegate threads includes creating
the new threads and providing code implementing the actions
of the delegate threads as described in further detail below.

A second step 42 may be implemented to identify poten-
tially independent computational operations 26. Identifica-
tion of potentially independent computations is done by the
program generator, based on an understanding of the purpose
and context of the computational operations 26. This under-
standing may be based on programmer knowledge, program-
mer annotations, static analysis, dynamic profiling, or other
techniques to discover program behavior.

A step 43 may be implemented to specify a serializer 36 for
the computational operation 26. According to one exemplary
embodiment, serializer 36 groups computational operations
26 that access a common data set 30 together and attempts to
separate computational operations 26 that access distinct data
sets 30 by assigning the first group with a common serializa-
tion set identifier and assigning the latter group with different
serialization set identifiers. According to the exemplary
embodiment, a group of computational operations that access
the same data is called a serialization set 38 (shown generally
in FIG. 8). For simplicity, the serialization set 38 and the
serialization set identifier identifying the serialization set 38
will be designated henceforth by the same number. There may
be many possible serializers that group computational opera-
tions 26 that access a common data set 30, so the program
generator may need to consider several criteria to select a

20

25

30

35

40

45

50

55

60

65

8

serializer 36 that provides performance improvement when
the software is executed. These criteria may include: the
computational burden incurred by the serializer 36, since the
computation proxy 32 must execute faster than the computa-
tional operation 26 it replaces to improve program perfor-
mance; and the number of different serialization sets 38 iden-
tified by the serializer 36, since a greater number of
serialization sets 38 may indicate more opportunities for par-
allel execution. The serializer 36 may be selected by the
program generator based on its knowledge of the purpose and
context of the computational operations 26; it may be selected
adaptively by executing the program using a variety of dif-
ferent serializers 36 and choosing the one providing the great-
est performance advantage; or some other technique for
choosing a serializer given the selection criteria.

Generally, the serializer 36 dynamically associates a seri-
alization set identifier with a computational operation 26 to
reflect dependences as determined by the input data to the
program.

According to one exemplary embodiment, the serializer 36
may be composed of a plurality of instructions, inserted into
the computation proxy 32, or enclosed in a function that is
called by the computation proxy. These instructions may be
the machine instructions suitable for direct execution by a
processor 12, or statements in a higher-level computer lan-
guage which may be translated by a compiler or interpreter
into machine instructions.

Determining whether two computational operations 26
access the same or different data sets 30 is generally deter-
mined after the code making up the computational operations
is generated, since the determination depends on the inputs to
the program and the resulting dynamic execution. Thus, the
serializer 36 typically computes the serialization set identifier
sometime after program generation, such as during the com-
pilation, interpretation, or execution of the program. Impor-
tantly, however, the serialization set identifier is computed
only after the location of the data that will be written by the
computational operation during execution has been resolved
based on at least partial execution of the program, and is not
computed statically before any execution of the program.

The implementation of serializer 36 may depend on the
requirements of the particular software, as described in the
example below, but there are several embodiments that are
generally useful for the case where the data sets 30 are stored
in non-overlapping or disjoint memory regions, such as soft-
ware data structures or objects 80. The first embodiment of a
serializer 36 may compute the starting address of the data
element and use this as the serialization set identifier 38.
Because the data sets 30 are disjoint, the starting address
provides a unique serialization set identifier 38 for the data
set, so that no two data sets are mapped to the same identifier.

The second embodiment of a serializer 36 for data struc-
tures or objects 80 stored in non-overlapping memory regions
is the use of an instance number 82. Referring now to FIG.
11a, a typical embodiment of a software object 80 employs a
class specification 76 (e.g., an object or structure prototype)
that may be instantiated 78 into multiple instances 80 during
execution of the program execution thread 28. Each instance
80 may be assigned an instance number 82 that increases as
each new object 80 is instantiated and as is understood in the
art. The instance number 82 may be used to derive the seri-
alization set identifier 38 by the serializer 36, for example, by
a one-to-one mapping between unique serialization set iden-
tifiers 38 and instance numbers. Thus, for example, each
instance of a given object may be given a different unique
serialization set identifier 38 based on an expectation that the

US 8,417,919 B2

9

data written by the different instances of the object will be to
different, disjoint locations in memory.

Referring now to FIG. 114, in a third embodiment, a runt-
ime library 87 provides an interface to get or set the serial-
ization set identifier 38 of each data structure or object 80
forming all or part of a computational operation 26. The
serializer 36, which may also be provided by the library 87, in
this case just returns the value of the serialization set identifier
38 (in this case instance number 82) associated with the data
structure or object 80, for example, using an interface (such as
an object methods 81) associated with the data structure or
class specification 76. This allows the program generator to
use pre-written serializer 36 associated with a library 87 to
directly specify serialization set identifiers that reflect the
dependences between computational operations 26, as deter-
mined by the data accessed by the computational operations
as well as the input data to the program. This embodiment
may be advantageous, because it does not require the serial-
ization set identifier to be recomputed at the execution of
every computational operation (merely accessed). Note that
while this embodiment allows the serialization set identifier
for a given data structure or object to be changed at any point
during the dynamic execution of the program, to avoid data
race errors it may be necessary to ensure that all computa-
tional operations 26 associated with the previous serialization
set identifier 38 have completed via synchronization as will
be described hereinbelow.

While, in general, the goal of the serializer 36 is to map
computational operations 26 that access distinct data sets 30
to different serialization sets 38, there may be cases where it
is desirable to map certain computational operations 26 on
distinct data sets 30 to the same serialization sets 38 to ensure
affinity between the operations. Modern processors often
achieve better performance when operating on data with spa-
tial locality, i.e., data that is located in close proximity, rather
than spread throughout memory. Furthermore, cache-coher-
ent multiprocessors divide memory into blocks or lines com-
prising multiple memory locations, and enforce the invariant
that only one processor may modify a block at a time. When
multiple processors 12 operate on distinct data sets 30 co-
located in a cache line, performance may be degraded through
the false-sharing effect, because multiple processors cannot
simultaneously modify distinct data elements stored in a
single cache line. By assigning multiple computational
operations 26 on distinct data sets 30 to the same serialization
set, the program generator may improve performance via
spatial locality effects and avoid performance loss due to
false-sharing effects. Thus, the use of distinct serialization
sets to indicate independence between computational opera-
tions 26 can be extended from the strict independence of
distinct data sets 30 to broader sources of independence
including, but not limited to, performance-related indepen-
dence.

The serializer 36 may directly compute the identity of the
serialization set 38, or it may rely on a serialization function
associated with the computational operation 26 or the data
sets 30. Typically, when the computational operation 26 is a
function not specifically associated with a data set 30, the
serialization function will be a function whose arguments
may include some or all of the arguments passed to the com-
putational operation 26. In this instance, the serialization set
identifier may be computed as previously described. Besides
arguments passed to the computational operation 26, the seri-
alizer 36 may also use the values of any variables present in
the environment (the set of all variables used by the program
20 and their assigned values at that point in the program 20) to
compute the serialization set identifier. When the computa-

20

25

30

35

40

45

50

55

60

65

10

tional operation 26 is implicitly related to a data set 30, e.g.
where the data element is an object in the sense of object-
oriented programming, and the computational operation 26 is
a method or function associated with that particular object,
the object may have associated with it a specific serialization
method that ensures that invocations of different methods
associated with that object are all mapped to the same serial-
ization set 38. The specific form of the serializer 36 is deter-
mined by the program generator when a particular computa-
tional operation 26 is replaced with a computation proxy 32 in
a third step 44.

Step 44 replaces the computational operation 26 with a
computation proxy 32, which performs the necessary actions
to send the computational operation 26 to a delegate thread 34
for execution. The components of the computation proxy 32
are described in the context of its execution below. The result-
ant output program is provided in a step 45.

Referring now to FIG. 7, in an exemplary embodiment, a
flow chart 50 depicts steps in the execution of the modified
program 20 comprising the actions of the program thread 28
and the delegate threads 34 (represented by one example). In
one exemplary embodiment, the actions performed to orches-
trate the parallel execution of the program 20 are imple-
mented by a plurality of functions in a runtime library made
available to the program generator. By providing this func-
tionality in a runtime library, the program generator may
specify the program 20, identifying potentially independent
computational operations 26 and specitying serializers 36,
and the actions needed to achieve parallel execution are then
carried out by the runtime library during program compila-
tion, execution, or interpretation, without further intervention
from the program generator.

At afirst step 51, the program thread 28 spawns the desired
number of delegate threads 34. Program thread 28 also estab-
lishes the ordered communication structures 39, shown in
FIGS. 5 and 8, needed to communicate the computational
operations and their inputs to the delegate threads. Once the
delegate threads 34 and ordered communication structures 39
are established, the program thread 28 then executes the code
for the program thread until it reaches a computation proxy
32.

Referring again to FIG. 4, the computation proxy 32 may
be composed of three components executed in the program
thread 28 in a step 52. A first component is the serializer 36,
which, as previously described, generates a serialization set
identifier based on an assessment of the data accessed by the
computational operation 26 in a step 53.

A second component of the computation proxy 32 is code
37 to determine an address or number providing identification
of'an ordered communication structure 39, shown as a queue
for the purposes of explanation, associated with the serializa-
tion set 38 in a step 54. Although ordered communication
structure 39 may be any type of communication structure, we
will describe structure 39 with reference to a queue to
describe an exemplary embodiment. The structure 39 is con-
figured to implement the communication between program
thread 28 and delegate threads running on additional proces-
sors 12 that will execute the computational operations 26 on
behalf of the program thread 28. The computational opera-
tions 26 comprising the membership of a serialization set may
be assigned to the same queue to maintain sequential execu-
tion semantics, i.e., program ordering of the computational
operations 26 on the data sets 30.

The exact number of queues may vary, but will generally be
greater than or equal to one, and less than or equal to the
number of serialization sets 38. One embodiment employs a
number of queues equal to the number of delegate threads

US 8,417,919 B2

11

running in the multi-processor system 10, which may be
equal to one less than the number of processors 12. More
generally, the exact number of ordered communication struc-
tures 39 may vary, depending on the implementation of the
runtime library. In a simple embodiment, there may be one
ordered communication structure 39 between the program
thread 28 and delegate threads 34. In another embodiment,
there may be an ordered communication structure 39 for each
serialization set, where one end of the ordered communica-
tion structure 39 is accessed by the program thread 28, and the
other end is accessed by a delegate thread 34. In this embodi-
ment, access to the ordered communication structure by a
delegate thread 34 may be scheduled according to existing
task scheduling techniques, so long as access to the ordered
communication structure 39 is granted to only a single del-
egate thread at any given time.

A third component of the computation proxy 32 is code 47
to effect the insertion into the ordered communication struc-
ture 39 of the necessary information for execution of the
computational operation 26 in a step 55. This information
typically includes the identity of the computational operation
26 and its inputs. The identity of the computational operation
may be in the form of a handle, the address of the computa-
tional operation, a function pointer, a method pointer, or other
means for identification. If the computational operation 26 is
a function, the inputs may be the arguments to the function.
These inputs may identify the data set 30 to be operated on or
that may be computed during the execution of the computa-
tional operation 26. If the computational operation 26 is a
method in an object-oriented style program, the inputs may
also include the address of the object with which the method
is associated. Following execution of the computation proxy,
a determination is made in a step 56 whether the next opera-
tion is another computation proxy, in which case, steps 52-55
are repeated, or a synchronization operation, processed as
described below.

At the conclusion of the computation proxy 32, the struc-
ture 39 contains sufficient information for another processor
12 to execute the computational operation 26 in a step 57.
Each structure 39 may be associated with at most one delegate
thread running on processors 125-12d at any given time.
Another delegate thread may be run on processor 12q if the
program thread 28 does not utilize all of its resources. In one
embodiment, the delegate threads remove and execute the
computational operations 26 from the queue 39 using the
inputs also supplied in an ordered queue, in a manner to
ensure the ordering of computational operations 26 in the
same serialization set 38 is maintained as determined by the
program thread 28. In some embodiments, the delegate
threads may change the ordering of execution of the items in
the queue so long as operations on any particular serialization
set 38 are performed in serial order as determined by the
program thread. Note that each structure 39 is accessed by at
most one processor 12 at a time, and that the members of a
particular serialization set 38 are mapped to no more than one
structure 39. Further, since all computational operations on a
particular data set 30 are mapped to the same serialization set,
no data set 30 may be operated on by more than one processor
12. Accordingly, the probability of data race errors is reduced.

Referring now to FIGS. 9 and 10, an exemplary program 20
is shown including a series of banking transactions forming
computational operations 26 for depositing money, with-
drawing money, creating a new account, or checking an
account balance. Each of these computational operations 26
may be simple functions accepting arguments 70, in this case
an account number (e.g. 1111, 2222, 3333) and a dollar
amount (e.g., $1000, $50, $2000). Based on the argument and

20

25

30

35

40

45

55

60

65

12

the particular function of the computational operation 26, the
computational operation 26 may access 72 different data sets
30 to change account balances. This example describes func-
tions that may be implemented in an online banking system
responding to instructions by multiple remote users. The
example should be understood to be an illustrative example of
an embodiment of the present invention, rather than a practi-
cal embodiment of a banking system.

Referring now to FIG. 10, an operation for replacing a
computational operation 26 with a computation proxy 32
containing a serializer 36 which generates a serialization set
identifier 38 for the computational operation 26 is shown,
according to an exemplary embodiment. In the simplest
example, the program generator writes instructions of the
serializer 36 with knowledge of the purpose and operation of
the computational operation 26. Because computation proxy
32 containing the serializer may be inserted at the original
location of the computational operation 26, in a preferred
embodiment, it may use as inputs the same information that
would be available to computational operation 26. In particu-
lar, when the computational operation 26 is a function, the
arguments to the function can be used to compose an appro-
priate serializer. In some cases, it may be useful to also utilize
data that is not used by the computational operation 26, but is
readily available in the environment of this operation. Using
as inputs some combination of the inputs to computational
operation 26 and other data available at that point in the
program execution, the specified serializer 36 is used to
deduce the proper serialization set for the computational
operation 26.

In general, any of a variety of techniques may be used for
creating the serializer 36 so long as the technique generates a
single serialization set identifier 38 for a particular data set 30.
As shown in FIG. 10, one embodiment for generating a seri-
alization set identifier 38 uses the argument of account num-
ber to identify a particular memory address holding the
account in the same manner as done by the computational
operation 26. Accordingly, for example, the serializer 36 may
make a call to a function for identifying a pointer to the
account data structure. In this example, the pointer may reveal
a data set 30 beginning at address 0x2000 related to the
particular account argument 70. This address 0x2000 may
then be used as the serialization set identifier 38. Using this
identifier ensures that all operations on a particular bank
account data set 30 will be mapped to the same serialization
set.

In general, using the starting address of disjoint data sets 30
will generate a correct serialization set identifier, and thus
represents a good strategy for computing serialization set
identifiers when this starting address is readily available. In
the current example, a disadvantage with determining a seri-
alization set identifier 38 based on the accessed data sets 30 is
that it requires the computational burden of calling a function
to identify the address of the data structure. In this case, the
burden may be comparable to that of the instructions of the
computational operation 26 itself. Accordingly, an alternative
for the address of the data set 30 may be found in the argument
70 of the account number itself. Here the program generator
uses knowledge that there is a one-to-one correspondence
between the account numbers and the account data structures,
i.e. there is only one account number for each data structure.
In this case, a serialization set identifier of 2222 is used.

An arbitrary range of serialization set identifiers 38 may be
used so that there is no limit to the amount of independence
that is exposed. After the serializer 36 executes and computes
the serialization set identifier 38, the computation proxy 32
uses this identifier to map the computational operation 26 to

US 8,417,919 B2

13

a queue 39. Multiple serialization identifiers may map to a
single queue 39, but a single serialization identifier should not
map to more than one queue 39. If the serialization set iden-
tifier is a number, one embodiment may use a very simple
queue mapping that takes the modulus of the serialization set
identifier 38 and the number of queues 39. Various functions,
such as hash functions, may also be applied to the serializa-
tion identifier to increase the likelihood of evenly distributing
computational operations among the available queues.

Referring again to FIG. 9, using the latter serialization
approach coupled with a simple modulus with the number of
queues, a first function “DEPOSIT (1111, $1000)” (instruct-
ing that the account balance in account 1111 be increased by
$1000) is sent to structure 395 based on a serialization set
identifier of 1111 determined from the account number and
mapped to structure 395 (1111 mod 3=1) associated with
processor 1256. A succeeding operation “WITHDRAW (2222,
$50)” (instructing that the account balance in account 2222 be
reduced by $50) is sent to structure 39¢ (2222 mod 3=2)
associated with processor 12¢ and so forth. The queues 39
collect operations 26 related to common serialization sets
ensuring that their operations are executed in sequential pro-
gram order. In addition, by collecting operations related to
common data sets 30 improved memory caching may be
obtained.

The queues 39 serve at least three purposes. First, they
communicate computational operations 26 and input values
to the delegate threads running on additional processors 12.
Second, the use of ordered queues ensures that the computa-
tional operations 26 are processed by the delegate threads in
a consistent order, ensuring the desired sequential program
semantics. Third, they allow continuous utilization of the
processors 12 and help the system tolerate bursts of compu-
tational operations assigned to the same sequential delegate
thread. Note that while the exemplary embodiment is
described in terms of a simple set of ordered queue, any
communication structure that preserves the ordering of
operations on a particular data element may be used.

For the sake of simplicity, our example shows the number
of queues 39 to be equal to the number of additional proces-
sors 12 in the system, and each queue is accessed by a single
processor. A larger number of queues 39 than processors 12
may be used to establish a finer granularity of assignment of
operations to processors 12. Also, a single structure 39 need
not be tied to a single processor 12 for the duration of the
program. As long as operations are consumed from a queue
by no more than one processor at a time, the probability of
data race errors is reduced. This property may be ensured
using processor synchronization primitives to establish
mutual exclusion on the queues 39 as is understood in the art.
Combining multiple queues 39 with dynamic assignment of
queues 39 to processors 12 may be used to provide dynamic
load balancing of execution of the computational operations
by the delegate threads running on these processors. In some
embodiments, the queues 39 may be augmented so that del-
egate threads that finish all work in a particular structure 39
can steal work from other queues in a manner that preserves
the ordering of computational operations 26 on data sets 30.

A combination of the properties reduces the likelihood that
the operations of delegate threads running on processors 12
create data-race errors. First, operations on a particular data
set 30 are mapped to a single serialization set 38. Second, all
members of a given serialization set are inserted into a single
queue 39. Third, each queue is accessed by at most one
delegate thread 34 at a time. Thus, as the delegate threads 34
running on processors 12 execute the operations collected

20

25

30

35

40

45

50

55

60

65

14

within the queues 39, they may directly access memory 18 for
writing and reading values without concern for conflicts.

As we have described, the proposed system and method
employs mechanisms to ensure sequential program semantics
and reduces the likelihood of data race errors. These mecha-
nisms define precise orderings on all computations performed
on related data. As a result, running a correct program
employing the present serialization system and method
results in deterministic execution; that is, the result of the
program depends only on its input, and not on the scheduling
of events during an execution of the program. This predict-
ability leads to programs that are significantly easier to
develop, debug, and maintain than traditional multi-threaded
programs.

Referring now to FIGS. 10 and 5, in a process block 51, all
access to data sets 30 by a computational operation 26 may
cause arecording in a tag 74, the serialization set identifier 38
of the accessing computational operation 26. Thus, for
example in FIG. 5, execution 26.11 of function 26.1 accessing
dataset 30.1, would record its serialization set identifier in the
tag 74 at the time of that access. The previous value of the tag
74 is compared to this current value and if they do not match,
an error condition may be raised, because two different seri-
alization sets, assumed to be data independent, are not data
independent since they are accessing the same data sets 30.
This serialization error may be reported or may be used in a
speculative system to take action on a mis-speculated com-
putational operation, e.g., squashing.

Referring again to FIG. 7, the independence of two com-
putational operations 26 is determined principally by a deter-
mination that their data sets 30 are disjoint in a step 58.
Accordingly, improved parallelism may be obtained by using
memory structures, for example container objects or struc-
tured variables, that serve to separate data sets 30 to different
executions of a computational operation. Thus, for example,
amemory structure may be used to provide separated account
information in the above example. If the data sets 30 are
disjoint, the delegate thread 34 executes the computational
operation in a step 60. Ifnot, an error condition is identified in
a step 59. A determination is made in a step 61 whether the
next operation is another computation proxy, in which case,
steps 57-60 are repeated, or a synchronization operation,
processed as described below.

Using the present system and method, the default state for
these programs is sequential execution, and independent
operations 26 are dynamically identified for parallel execu-
tion. When an operation 26 on a data set 30 is sent to another
processor 12 for execution, this new processor effectively
becomes the owner of data set 30, and the program thread 28
must not operate on this data structure to minimize creating
data race errors. A mechanism is needed to safely reclaim the
ability to modify a given data structure, or to completely
resume sequential execution for portions of the program that
do not contain independent operations.

Referring now to FIGS. 7 and 12, at times it is therefore
necessary to synchronize the various computational opera-
tions 26 stored in the ordered communication structures 39
and executing on the different processors 125, 12¢, and 12d in
astep 62. Synchronization in this context refers to the mecha-
nism for waiting until computational operations 26 associated
with a given serialization set identifier 38 for data set 30 have
completed execution. This requires ensuring there are no
remaining computational operations 26 associated with the
particular serialization set 38 in the ordered communication
structures 39, or executing in a delegate thread 34 on a pro-
cessor 12.

US 8,417,919 B2

15

There are several possible embodiments of the synchroni-
zation operation. The synchronization operation may be per-
formed by the introduction of a synchronization function 86
that is sent by the program thread 28 using a synchronization
proxy 84 that transfers the synchronization function 86 to a
delegate thread 34 running on a processor 12 via a queue 39 in
the same fashion that computation proxies transfer other
computational operations. The synchronization function 86
causes the program thread to wait, for example, using a wait
function 88 for the queue 39 associated with the serialization
set 38 of the data set 30 to empty, ensuring there are no
outstanding operations on that data element. The synchroni-
zation function 86 then notifies the program thread 28, with a
notification message 90 or the like, that it may continue
execution, safely accessing the desired data set 30. Note that
because the structure 39 may contain other operations, this
synchronization method may cause the program thread to
wait longer than is strictly necessary.

This synchronization operation may alternatively be
implemented by incorporating into each data set 30 a counter
that is used to track the number of outstanding computational
operations 26. Each time the program thread executes a com-
putation proxy 32, it increments the counter for the corre-
sponding data set 30. Each time the delegate thread completes
an operation, it decrements the counter. The program thread,
upon reaching the synchronization operation, will then wait
until this counter reaches zero, indicating all outstanding
operations on the desired data set 30 have completed, before
continuing execution. If a single ordered communication
structure 39 is used for each delegate thread 34, this embodi-
ment may be advantageous because the program thread 28
waits only as long as it takes for outstanding operations 26 on
the desired data set 30 to complete, and does not wait on
additional operations 26 on other data sets 30 that happen to
be assigned to the same ordered communication structure 39.

For an embodiment which uses a separate ordered commu-
nication structure 39 for each serialization set identifier 38,
synchronization may be simply performed by associating a
flag with the ordered communication structure that indicates
the empty state. When the program thread 28 places a com-
putational operation 26 in the ordered communication struc-
ture 39, it may set this flag to non-empty. When a delegate
thread 34 finishes executing the last computational operation
26 from the ordered communication structure 39, it may set
this flag to empty. Since the program thread 28 and a delegate
thread 34 may attempt to simultaneously modify this flag,
changing the value of this flag may require the use of a lock or
nonblocking synchronization, as is understood in the art.

In addition to synchronizing the program thread 28 with a
particular serialization set 38, it may also be useful to syn-
chronize the program thread 28 with respect to all outstanding
computational operations 26. During phases where program
execution is operating in parallel, most data structures that
may be modified are operated on in private by the program
thread or a single delegate thread, but some other data may be
fixed as read-only and safely accessed by both the program
thread and all delegate threads. As different phases of the
program execute, different partitioning of the program data
sets 30 into read-only and privately-modifiable may be
required. Thus a mechanism is required to ensure that all
outstanding computational operations using a particular par-
titioning have completed before commencing parallel execu-
tion using a different partitioning.

To synchronize the program thread 28 with all delegate
threads 34, the program thread 28 may send synchronization
functions 86 to all delegate threads, and then wait for a mes-
sage 90 from each. This indicates that all outstanding com-

10

20

25

30

35

40

45

50

55

60

16

putational operations 26 have completed, allowing the pro-
gram thread 28 to return to sequential execution, or to resume
parallel execution using a different partitioning of the data
sets 30.

In another embodiment of the synchronization of program
thread 28 with all delegate threads 34, an additional counter
may be used to track the overall number of outstanding com-
putational operations 26 among all delegate threads. This
counter is incremented by the program thread 28 during each
computation proxy 32, and decremented by the delegate
threads 34 upon completion of each computational operation.
When the program thread 28 reaches the synchronization
operation, it waits until this counter reaches zero, indicating
that all outstanding computational operations 26 have com-
pleted.

Referring again to FIG. 7, following synchronization in
step 62, a determination is made in a step 63 whether the
program is complete. If not, processing of the computation
operations continues. If so, the program terminates in a step
64.

Although the exemplary embodiment consists of a single
division of computational operations 26 into serialization sets
associated with different delegate threads 34, each serializa-
tion set may be further divided into more serialization sets.
Parallel execution of data divided in such a hierarchical fash-
ion is known as nested parallelism by practitioners of the art,
and may be advantageous for certain programs. The use of
nested parallelism allows for very natural expression of recur-
sive algorithms, which typically use a “divide-and-conquer”
approach that repeatedly subdivides a particular computation
on a set of data into multiple, similar computations. The
presence of nested parallelism in the computational opera-
tions 26 may also be advantageous for scheduling the opera-
tions onto threads, as it reveals a range of granularities in the
computation. This allows the scheduler to select the granu-
larity of computational operations 26 best suited to the capa-
bilities of the multi-processor system 10, e.g., by using finer
granularities to achieve higher degrees of parallel execution,
or by using coarser granularities to reduce overheads associ-
ated with scheduling.

FIG. 13 depicts a simple extension of the exemplary
embodiment capable of supporting multiple subdivisions of
computational operations 26 into serialization sets 38. In this
embodiment, each delegate thread 34 is augmented with mul-
tiple, additional ordered communication structures 39 con-
nected to the program thread 28 and each of the other delegate
threads 34. Thus in this embodiment, each thread 28, 34 is
connected to each other thread 28, 34 via an ingoing and
outgoing ordered communication structure 39, and the only
distinction between the program thread 28 and the delegate
threads 34 is that the program thread 28 is the thread which
initially is running the program 20. Each of the threads 28, 34
draws computational operations 26 from the ingoing ordered
communication structures 39 to which it is connected in an
alternating fashion, and executes them. These computational
operations 26 may in turn break into further computational
operations each associated with its own serializer. These fur-
ther computational operations may be spread among a
thread’s outgoing communication structures 39 according to
the serialization set identifiers produced by the serializers to
allow parallel execution by the other threads 28, 34. Such an
arrangement of threads and communication structures repre-
sents a simple implementation of work sharing (also known
as work dealing), as is understood in the art.

Such an embodiment may combine the benefits of using
serialization sets, i.e., reducing the probability of data races
and nondeterministic behavior, with the benefits of using

US 8,417,919 B2

17

nested parallelism. This is achieved by applying the serial-
ization sets mechanism at each level of the nested parallel
computational operations 26—generating a serialization set
identifier 38 based on the data sets 30 accessed by the opera-
tion; assigning the operation to an ordered communication
structure 39 such that computational operations 26 are
assigned to no more than one ordered communication struc-
ture 39; and ensuring that a synchronization function 86 is
used for a particular serialization set identifier 38 whenever a
computation of a more shallow nesting level may access data
associated with that serialization set and there may still be
outstanding computational operations 26 associated with that
serialization set identifier 38. The latter requirement may be
met by having the synchronization function 86 for a given
serialization set 38 synchronize with each further subdivision
of the data into serialization sets.

The present application contemplates a library of functions
particularly suited for parallelization. These functions may
include serializers 36 or templates for functions implement-
ing the serializer. The library may include parallel data struc-
tures that include the necessary processor synchronization
primitives for safe concurrent execution by the program
thread and delegate threads.

The serialization sets of the present application may be
used to complement speculative multithreading and hardware
transactional memory. These techniques provide support (via
hardware, software, or a combination of both) to roll back
execution of computations when they violate data depen-
dences. Serialization sets could be used to reduce dependence
violations by placing dependent computations in the same
speculative thread or transaction. Alternatively, hardware
support for speculation or transactions may be used to apply
serialization sets in a speculative fashion, by marking com-
putational operations with data they are likely to manipulate,
and rolling back the execution when they violate this assump-
tion.

It should be observed that the invention includes, but is not
limited to, a novel structural combination of conventional
computer processing components and computer hardware
and software that may be embodied in a computer-readable
medium, and not in particular detailed configurations thereof.
Generally, the invention can be implemented flexibly in soft-
ware, firmware, hardware, and combinations of these as will
be appreciated by those of ordinary skill in the art. Further, the
invention is not limited to the particular embodiments
depicted in the exemplary embodiments, but should be con-
strued in accordance with the language in the claims.

We claim:
1. A method of executing a program on a multi-processor
computer with shared memory, the program comprised at
least in part of computational operations of program instruc-
tions wherein data accessed by at least one computational
operation affects data written by at least one other computa-
tional operation, the method comprising the steps of:
identifying in the program a plurality of computational
operations accessing sets of data in shared memory;

assigning serialization set identifiers to multiple given
computational operations so that computational opera-
tions that do not operate on the same data are assigned
different serialization set identifiers; and

using the assignment of serialization set identifiers to con-

trol which processor of the multi-processor system
executes which computational operation so that the
computational operations with the same assigned seri-
alization set identifier execute on a same processor of the
multi-processor computer.

20

25

30

35

40

45

50

55

60

65

18

2. The method of claim 1 further including the steps of:

assigning the computational operations to different

ordered communication structures based on the different
serialization set identifiers of the computational opera-
tions;

reading for execution, computational operations from the

ordered communication structures by different proces-
sors of the multi-processor computer such that a single
ordered communication structures is read by only a
single processor at a given time.

3. The method of claim 1 further including the steps of:

identifying within the program at least one synchronization

point with respect to at least one given set of data;
detecting execution of the program to the synchronization
point;
upon the detection, controlling the assignment of compu-
tational operations to the different processors such that
all assigned and uncompleted computational operations
writing the at least one given set of data are completed by
the synchronization point before further execution ofthe
program past the synchronization point.
4. The method of claim 3, including the step of embedding
within the program at the synchronization point a synchroni-
zation operation causing further assigning of computational
operations to different processors to cease until a processor
receiving the synchronization operation reports completion
of the synchronization operation.
5. The method of claim 4 wherein a synchronization opera-
tion is associated with a serialization set identifier and
assigned to a processor of the multi-processor computer
based on the serialization set identifier.
6. The method of claim 1 further including the steps of:
monitoring access of the shared memory by different pro-
cessors executing the computational operations; and

detecting conflicting access of a given set of data when the
given set of data is accessed by processors associated
with different serialization set identifiers.

7. The method of claim 6, wherein the monitoring marks
memory blocks accessed by a computational operation with
the serialization set identifier for the computational operation
and the detecting detects when a serialization set identifier
associated with a pending write to the memory block differs
from the marked serialization set identifier of the memory
block.

8. The method of claim 1, wherein the sets of data are stored
at addresses in memory and wherein the serialization set
identifier is a mapping of an address of the set of data accessed
by the computational operation to a serialization set identifier.

9. The method of claim 1, wherein the sets of data are
identified by an instance number and wherein the serializa-
tion set identifier is a mapping of an instance number for a set
of data accessed by the computational operation to a serial-
ization set identifier.

10. The method of claim 1, wherein the set of data accessed
by computational operations may be computed from vari-
ables in a run-time environment of the program and wherein
the serialization set identifier is a mapping of variables in the
run-time environment to serialization set identifiers.

11. The method of claim 1, wherein the computational
operations are implemented using computation proxies
replacing the computational operations in the program.

12. The method of claim 11, wherein the computation
proxies include instructions for deriving the serialization set
identifier for the replaced computational operation.

US 8,417,919 B2

19

13. The method of claim 1 wherein computational opera-
tions for a serialization set identifier associated with a given
processor are not simultaneously associated with any other
processor.

14. The method of claim 1 wherein the computational
operation is selected from the group consisting of: program
functions and program object methods.

15. A multi-processor computer comprising:

multiple processors;

ashared memory communicating with the multiple proces-
sors and holding a program providing computational
operations of program instructions wherein the data
accessed by at least one computational operation affects
the data written by at least one other computational
operation;

a serializer configured to identify a serialization set iden-
tifier for a given computational operation based on the
set of data to be accessed by the given computational
operation so that computational operations that do not
operate on the same data are assigned different serial-
ization set identifiers; and

an assigner receiving the identification of a given compu-
tational operation and the given identified serialization
set identifier for the given computational operation and
using the given serialization set identifier to assign the
given computational operation to a processor so that
computational operations having the same serialization
set identifier are assigned for execution to a same pro-
Ccessor.

16. The multi-processor computer of claim 15 wherein the
serializer is a set of instructions inserted into the program and
is associated with a computational operation.

17. The multi-processor computer of claim 15 wherein the
assigner includes at least one ordered communication struc-
ture configured to receive computational operations from a
first processor so that the computational operations may be
drawn from the ordered communication structure by one or
more second processors associated with the serialization set
identifier of the computational operation.

18. The multi-processor computer of claim 15, further
including a memory monitor recording a serialization set
identifier of a current computational operation accessing a
memory block, and further including an error detector indi-
cating an error when a previous serialization set identifier
recorded for a memory block differs from the current serial-
ization set identifier.

19. A parallelizing program fixed in a computer readable
medium and executable on an electronic computer in con-
junction with an application program, the application pro-
gram having a plurality of computational operations access-
ing sets of data in shared memory during execution of the
computational operations, where different computational
operations may write to the same data elements during execu-
tion of the program, the parallelizing program executing on
the electronic computer to:

demarcate in the application program a plurality of com-
putational operations accessing sets of data during
execution of a computational operation;

generate a serialization set identifier for each execution of
a computational operation so that computational opera-
tions that do not operate on the same data are assigned
different serialization set identifiers; and

using the assignment of serialization set identifiers to con-
trol which processor of the multi-processor system
executes which computational operation so that compu-
tational operations having the same serialization set
identifier are assigned for execution to a same processor.

20

20. The program of claim 19 wherein the parallelizing
program executes during at least one of compilation, inter-
pretation and execution of the application program.

21. A method of executing a program on a multi-processor

5 computer with shared memory comprising the steps of:
identifying in the program a plurality of computational
operations accessing sets of data in shared memory;
designating within the program at least one synchroniza-
tion point with respect to at least one given set of data;
0 assigning serialization set identifiers to multiple given
computational operations so that computational opera-
tions that do not operate on the same data are assigned
different serialization set identifiers; and
detecting execution of the program to the synchronization
15 point;

using the assignment of serialization set identifiers to con-
trol which processor of the multi-processor system
executes which computational operation so that the
computational operations with the same assigned seri-

20 alization set identifier execute on a same processor of of
the multi-processor computer for execution such that all
assigned and uncompleted computational operations
writing the at least one given set of data are completed by
the synchronization point before further execution ofthe

25 program past the synchronization point.

22. The method of claim 21, including the step of embed-
ding within the program at the synchronization point a syn-
chronization operation causing further assigning of compu-
tational operations to different processors to cease until a

30 processor receiving the synchronization operation reports

completion of the synchronization operation.

23. The method of claim 22 wherein a synchronization
operation is associated with a serialization set identifier and
assigned to a processor of the multi-processor computer

35 based on the serialization set identifier.

24. A method of executing a computer program in parallel
on different processors, the program when executed on a
single processor following a serial execution order in an
accessing of variables by computational operations of the

40 program, the method comprising the steps of:

(1) linking computational operations within the program to
serializer routines executing before the computational
operations in the serial execution order; wherein the
serializer routines map computational operations among

45 different serialization sets during execution of the pro-
gram, so that computational operations that do not oper-
ate on the same data are mapped to different serialization
set identifiers;

(2) enrolling two computational operations to a same

50 ordered communication structure when the serializer
routines for the two computational operations map to the
same serialization set, the enrolling writing data to the
ordered communication structure scheduling the
enrolled computational operation for execution; and

55 (3) executing the computational operations in a given
ordered communication structure according to their
order of enrollment.

25. The method of claim 24 wherein multiple computa-
tional operations co-existing within an ordered communica-

60 tion structure are executed by a same processor.

26. The method of claim 24 wherein the computational
operations are object methods and the serialization sets are
based on instantiation numbers of objects of the object meth-
ods.

65 27. The method of claim 24, wherein the data are stored at

addresses in memory and wherein the serialization sets are
based on at least one address of the data.

—

US 8,417,919 B2
21

28. The method of claim 24, wherein the data accessed by
computational operations may be determined in a run-time
environment of the program and wherein the serialization sets
are based on variables as determined in the run-time environ-
ment. 5

22

	Bibliography
	Abstract
	Drawings
	Description
	Claims

