a2 United States Patent

US008233493B2

(10) Patent No.: US 8,233,493 B2

Ma et al. 45) Date of Patent: Jul. 31, 2012
(54) PACKET ROUTER HAVING IMPROVED (56) References Cited
PACKET CLASSIFICATION
U.S. PATENT DOCUMENTS
(75) Inventors: Yadi Ma, Madison, WI (US); Suman 7,095,715 B2* 82006 Buckmanetal. 370/230
Banerjee, Madison, WI (US); Cristian 7,193,997 B2* 3/2007 Van Lunteren et al. 370/392
: 7,274,700 B2* 9/2007 Jinetal.cccooevvrenenn. 370/392
Estan, Madison, W1 (US) 7424018 B2* 9/2008 Gallatin et al. 370/389
(73) Assignee: Wisconsin Alumni Research OTHER PUBLICATIONS
Foundation, Madison, WI (US) Singh, Sumeet, et al., Packet Classification Using Multidimensional
Cutting, SIGCOMM’03, Aug. 25-29, 2003 Karlsruhe Germany,
(*) Notice: Subject to any disclaimer, the term of this ACM, New York, New York, USA.
patent is extended or adjusted under 35 .o .
U.S.C. 154(b) by 394 days. cited by examiner
] Primary Examiner — Ayaz Sheikh
(21) Appl. No.: 12/555,462 Assistant Examiner — Blanche Wong
(22) Filed: Sep. 8, 2009 (74) Attorney, Agent, or Firm — Boyle Fredrickson, S.C.
: .8,
57 ABSTRACT
(65) Prior Publication Data A computer-implemented method for classifying received
US 2010/0067535 Al Mar. 18, 2010 packets using a hardware cache of evolving rules and a soft-
ware cache having an original rule set. The method including
Related U.S. Application Data receiving a packet, processing the received packet through a
hardware-based packet classifier having at least one evolving
(60) Provisional application No. 61/095,216, filed on Sep. rule to identify at least one cache miss packet, and processing
8, 2008, provisional application No. 61/097,406, filed the cache miss packet through a software based packet clas-
on Sep. 16, 2008. sifier including an original rule set. Processing the cache miss
packet includes determining whether to expand at least one of
(51) Int.ClL the at least one evolving rules in the hardware-based packet
HO4L 1228 (2006.01) classifier based on the cache miss packet. The determination
HO4L 12/56 (200 6.01) includes determining whether an evolving rule has both the
’ same action and lies entirely within one of the rule of the
(52) US.ClL oot 370/401 original rule set.
(58) Field of Classification Search 370/401

See application file for complete search history.

13 Claims, 10 Drawing Sheets

100

103

CACHE MANAGER
(SOFTWARE) ORIGINAL RULE SET
130 120
INCOMING HYPER RULE CACHE CACHE MISS CFLLAEEIEQ%IEJN
PACKETS (HARDWARE) PACKETS SOFTWARE)
101 102 104
— — — 105
|
CLASSIFIED
PACKETS

US 8,233,493 B2

Sheet 1 of 10

Jul. 31, 2012

U.S. Patent

L1INJVd T1N4

\

€01
T 914 SLINOVd
a3i41SSv10
h
GOT - =
70T c01
(CoymLios) SITHOV (FUYMAUYH)
SSIN IHOVD FHOVD TN ¥3dAH

0ct
13S 31NY TWYNIDINO

A

00
SLINOVd
ONINOINI

001

OET
(JUVMLA0S)
YIDYNYIN IHOVO

U.S. Patent Jul. 31, 2012 Sheet 2 of 10 US 8,233,493 B2

LSS

060 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

ST

FIG. 2A

U.S. Patent Jul. 31, 2012 Sheet 3 of 10 US 8,233,493 B2

050 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

FIG. 2B

US 8,233,493 B2

Sheet 4 of 10

Jul. 31, 2012

U.S. Patent

¢ 94

N
—
<
(@]

6T vI €1 ¢ 11 0l 6 8 [L 9 §

-

Gy O N W IO D N

(o]
—

\\\\\\\\R\

—
i

1

1

1
AN
—

US 8,233,493 B2

Sheet 5 of 10

Jul. 31, 2012

U.S. Patent

61 ¥1 € ¢ 11 0 6 8 [9 §

(V]
—
(w]

7

+++++++F

'n

(=]
N
N

\\\\\\\\\\

+
+
1
1 1
1
! 1
1
! i
1 7
' i
1 1
1 1

||||||||||||||| +

OT'%)1d

Sy 00 N W K S M AN

11

¢t

d¢ Ol

US 8,233,493 B2

Sheet 6 of 10

Jul. 31, 2012

U.S. Patent

6T ¢v1 €1 ¢1 T Of

4

—

o

I

\\ 61z

(€'7)4d

+ + +m.n.”.\|ovm

(01'M1d

\
\\\\\\\\\\

(=)

GO 0O ™~ W W g o0 o~ -

T

¢l

3¢ Ol

US 8,233,493 B2

Sheet 7 of 10

Jul. 31, 2012

U.S. Patent

€ 9Ol
0ET YIDYNVN FHOYD
GIE 0I¢ GIE OIf GIE 0If
we L) /) /)
| 71 < I < Z
A 3 3
144! ooml\ 70T 01 on

US 8,233,493 B2

Sheet 8 of 10

Jul. 31, 2012

U.S. Patent

¥ 9|4 oz
(0'7'2'9'2) HIAYIH
13%0Vd QIAEDY
o\@ okzw @# @: W\s w@ MU\G W\S
N 7Y N MEE 7Y N 7Y
9y 9y 9y 9y
9y 4y 9y o | | o 9y
0y T ey vy ad
oY 2y 7Y -y
(201 (1001 (€2 (-0 (€2 (O (g2t (1-0)
sr-enl @-enl ar-e| are| un| vl €0l (€0
|
[I00N 100

U.S. Patent Jul. 31, 2012 Sheet 9 of 10 US 8,233,493 B2

START
505
500
ROOT NODE
EXAMINATION
510
COMPARE MATCH LEAF NODE P?é“,ﬁ"&?é
ID TO CONFLICT ID}«—] IDENTIFICATION —
EVOLVING RULE
240 515 520
APPROVE COMPARED
PROPOSED
EVOLVING RULE PROPOSED
e EVOLVING RULE ID
— 922
DETERMINE
OVERLAP |—
FIG. 5 =
UPDATE CONFLICT COMPARE
_ ID ACTIONS
530 526
DETERMINE IF
UPDATE PROPOSED RULE
| MATCHING ID ENTIRELY WITHIN }—
532 CURRENT RULE
528

U.S. Patent Jul. 31, 2012 Sheet 10 of 10 US 8,233,493 B2

600

/0 DEVICE
SYSTEM E.G., STORAGE [~ 606
100 DEVICE

MEMORY —4{— 604

602—~- PROCESSOR [=

FIG. ©

US 8,233,493 B2

1
PACKET ROUTER HAVING IMPROVED
PACKET CLASSIFICATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 61/095,216 filed Sep. 8, 2008 and U.S. Pro-
visional Application No. 61/097,406, filed Sep. 16, 2008,
hereby incorporated by reference in its entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with United States government
support awarded by the following agencies:

NSF 0627102, 0520152 and 0639434

The United States government has certain rights in this
invention.

BACKGROUND

The present application relates to a system and method for
packet classification. More specifically, the present applica-
tion relates to a system and method implementing packet
classification using a continuously updated cache of evolving
rules.

Data packets received at a router input port are classified to
determine an action to be performed on the packet. The action
may include forwarding the packet, routing the packet to a
particular application, providing expedited delivery of the
packet, discarding the packet, etc. Packet classification is
needed for services that require the capability to distinguish
and isolate traffic (i.e., packets) in different flows for suitable
processing. Exemplary services include packet filter, for
example denying all packets from a known source, policy
routing, for example routing all voice over IP traffic over a
separate ATM network, traffic rate limiting, for example
ensuring that any one source does not overload the network,
etc. To implement the services, a packet classifier implements
a series of rules that determine the action(s) to be taken for a
packet based on header fields included in the packet.

A packet classifier matches several fields in the packet
header of an incoming packet against a set of predefined rules.
Exemplary fields include possible values of source and des-
tination addresses, protocol fields, port numbers, etc. If all of
the header fields associated with the packet match the corre-
sponding ranges of a rule, the packet is considered to obey the
rule and the action associated with the rule will be performed
for that packet. For a specific packet, more than one rule can
match the packet.

Accordingly, rules may be ranked by priority, such that the
action associated with the highest rank rule will be performed
for the packet.

Packet classification across multiple header fields may be a
processor intensive operation. Packet classification algo-
rithms are inherently limited by the tradeoff between memory
usage and classification speed. A hardware based classifica-
tion, such as Ternary Content Addressable Memory (TCAM),
where the rule matching speed is considerably faster, has
traditionally been used to the perform classification because
of this limitation. However, hardware based classification is
more expensive and consumes both more physical space and
more power compared to packet classification algorithms.
This is a significant disadvantage for mobile computing
devices.

20

25

30

35

40

45

50

55

60

65

2

A “smart rule cache” that combines simple hardware and
software has been used to provide a balance between the
speed of hardware and the low expense of software. The
hardware consists of a small on-chip cache, large enough to
store one or more evolving rules, along with some simple
logic to match incoming packets against the stored rules. The
software component consists of algorithms by which the rules
in the cache continuously evolve in response to changes in
incoming traffic pattern.

Smart rule caches utilizes evolving rules that are semanti-
cally consistent with an original rule set meaning that packets
classified using the evolving rules will be classified the same
as they would under the original rule set. Smart rule caches
generally include a small set of evolving rules. To maintain
the small number of rules, a single evolving rule can overlap
several rules of the original rule set, so long as the evolving
rules remain semantically consistent. Evolving rules must be
continually verified over the entire original rule set to ensure
that they remain semantically consistent. One limitation for
smart rules cache performance is the time required to re-
compute the cached rules.

What is needed is a system and method for providing
efficient packet classification that reduces the costs associated
with evolving the cached rule set using an efficient smart rule
caching system and method.

SUMMARY OF THE INVENTION

The present application is directed to a packet classifica-
tion scheme similar to a smart rule cache but that requires that
each evolving rule has both the same action and lies entirely
within one of the rule of the original rule set. This difference
allows the use of fasting cache updating using faster search-
ing algorithms and conflict resolution. The smart rule cache is
further configured to implement cache updating and rule veri-
fication using a HyperCuts decision tree and an algorithm for
checking the HyperCuts tree to determine whether an
expanded rule conflicts with the semantics of the original
rules set.

The present application describes a computer-imple-
mented method for classifying received packets using a hard-
ware cache of evolving rules and a software cache having an
original rule set. The method including receiving a packet,
processing the received packet through a hardware-based
packet classifier having at least one evolving rule to identify at
least one cache miss packet, and processing the cache miss
packet through software based packet classifier including an
original rule set. Processing the cache miss packet includes
determining whether to expand at least one of the at least one
evolving rules in the hardware-based packet classifier based
on the cache miss packet. The determination includes deter-
mining whether an evolving rule has both the same action and
lies entirely within one of the rules of the original rule set.

These particular objects and advantages may apply to only
some embodiments falling within the claims, and thus do not
define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a computer-implemented system for performing
packet classification using a hardware based cache and a
software based cache, according to an exemplary embodi-
ment;

FIGS. 2A-E are graphical representations of a rule set with
four rules shown in Table-1 in graphical form and an evolving
rule set constructed using a hype rule cache, according to an
exemplary embodiment;

US 8,233,493 B2

3

FIG. 3 is a graphical representation of two data structures
used by the cache manager to maintain the evolving rules,
according to an exemplary embodiment;

FIG. 41s a graphical representation of a search of a decision
tree based on a received sample packet header, according to
an exemplary embodiment;

FIG. 5 is a graphical representation of a computer-imple-
mented method for checking expanded rules for conflict
using the packet classification system having a hyper rule
cache, according to an exemplary embodiment; and

FIG. 6 is a high level block diagram of a general purpose
computer suitable for use in performing the functions
described herein, according to an exemplary embodiment.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

The present invention broadly discloses a method and
apparatus for classifying packets. The present invention pro-
vides packet classification by using a “hyper rule” cache for
storing a small number of rules that will evolve in accordance
with defined properties based on the characteristics of the
incoming traffic. The hyper rule cache is configured to require
each evolving rule to have both the same action and lie
entirely within one of the rules of the original rule set as
described in further detail below.

Referring now to FIG. 1, a system 100 for performing
packet classification is shown, according to an exemplary
embodiment. In one embodiment, the system 100 contains a
hardware-based hyper rule cache 102, a software-based full
packet classifier 105, a cache manager 130, and an original
rule set 120, comprising a set of classification rules.

Hyper rule cache 102 may be a cache implemented in a
parallel TCAM memory to provide parallel cache matching.
Cache 102 may be configured to contain a small number of
cache entries each entry storing an evolving rule. Specifically,
each cache entry may be a register storing the evolving rule
and logic for matching incoming packets against the evolving
rule, such as logic for matching one or more rule fields with
one or more packet header fields. The TCAM may be
designed to allow processing and matching each incoming
packet to a rule in parallel.

The software-based full packet classifier 105 may be
implemented in software and executed by a computer proces-
sor implementing system 100. The full packet classifier 105
may be configured to receive packets that were not classifi-
able using cache 102 and to classify these packets in accor-
dance with original rule set 120. Original rule set 120 is
generally a large set of rules that contains more rules for
classifying packets than a stored in cache 102. An exemplary
rule set and its usage in operation is described below with
reference to F1G. 2. Because of the larger number of rules and
because these rules are generally checked serially, classitying
packets using full packet classifier 105 is generally a more
processor intensive and time consuming operation.

Cache manager 130 is software for managing the evolving
rules stored in cache 102. In accordance with the present
system, cache manager 130 is configured to evolve and man-
age the evolving rules stored in cache 102 as will be discussed
in further detail hereinbelow.

In operation, incoming packets 101 are processed by rule
cache 102 for high speed, hardware based packet classifica-
tion. Hyper rule cache 102 is configured to either identify the
packet as a cache miss packet 104 to classify the packet as a
cache hit packet 103 and to provide an action to be taken on
the packet based on a cache hit. In one embodiment, the
incoming packet 101 may be compared to all cache entries in

20

25

30

35

40

45

50

55

60

65

4

cache 102 simultaneously. Accordingly, the cache entries are
compared to the incoming packet in parallel and simulta-
neously report their result. To provide the parallel compari-
son, the parallel outputs of the cache entries may be provided
to a bitwise OR logic gate to yield a final output of the rule
cache. Since the number of cache entries is limited to a small
number, hyper rule cache 102 matching may be implemented
relatively quickly using a small TCAM which is more power
efficient. Accordingly, hyper rule cache 102 separates suc-
cessfully classified packets 103 from unclassified packets 104
(i.e., cache miss packets).

Cache miss packets 104 are forwarded to software based
full packet classifier 105 which may identify some of the
cache miss packets 104 using the original rule set 120. The
full-fledged packet classifier 105 is only used in the event of
cache misses, i.e., where the rules stored in the hyper rule
cache are not able to properly classify the received packets
101. Although not shown, packet classifier 105 may also
produce unclassifiable packets.

Cache miss packets 104, or a sampling thereof, are also
provided to cache manager 130 to determine whether the
rules stored in cache 102 should be updated to reduce the
number of cache miss packets 104 being generated. Cache
updates to the hyper rule cache 102 can be performed by
re-writing the register entries in cache 102 that are carrying
the evolving rules. More specifically, to evolve the rules to
capture missed packets, the cache manager samples missed
packets 104 since these packets may indicate that the rules
stored in cache 102 may need to be changed based on a
change in the characteristics of incoming packets 101. Reduc-
ing cache misses reduces the workload on the full packet
classifier 105, which in turn may shorten packet classification
delays.

Cache hit packets may also be sampled. In a sample inter-
val, if a packet is a cache miss, it may be sampled immedi-
ately; else if it is a cache hit, cache manager 130 may check
the next packet. Independent of whether this packet is a hit or
miss, it is sampled. So when sampling, if two consecutive
packets are cache hit, then the second one is sampled. Cache
manager 130 may be configurable to control how often to
sample a cache hit packet.

Referring now to FIGS. 2A-2F, a graphical representation
of an exemplary original rule set and an example of how
evolving rules are generated based on cache miss packets 104
is shown. All of FIGS. 2A-2F illustrate the original rule set
with four rules shown in Table-1 in graphical form 200. Each
of FIGS. 2A-2F illustrates an exemplary generation of an
evolving rule set as new packets are received and compared to
the rule set of Table 1.

In operation, cache manager 130 continually seeks to
improve cache hit performance by placing the pertinent rules
into the hyper rule cache 102 and/or dynamically evolving the
rules already in the hyper rule cache in response to cache miss
packets 104 and in view of the contents of the original rule set
120. The evolution of the rules stored in a rule cache may be
performed by cache manager 130 based on received packets
that resulted in cache misses. To provide an example of how
rule evolution is implemented, Table 1 is an illustrative
example of an exemplary original full rule set having 4 rules
related to identifying packets 101 based on their packet head-
ers. The rules shown in Table 1 include two fields: F, and F,;
and two actions permit and deny. This simplified original rule
set may be used, for example, in a packet filtering operation.

US 8,233,493 B2

5
TABLE 1

Simple Rule Set

Rule F, F, Action
RO 1-8 5-12 Permit
R1 6-12 3-9 Permit
R2 2-10 1-7 Permit
R3 0-15 0-12 Deny

In Table 1, fields F, and F, may be fields which can be
compared to the values stored in first and second packet
header fields, respectively, to determine whether the packet
satisfies the rule. The packet header fields may contain any
type of information including, but not limited to, a source
address, a destination address, a packet size, a packet type,
etc. In this example, any packet having a first header field
value between the range of 1 and 8 and a second header field
value between the range of 5 and 12 would match rule RO and
the action “Permit” would be performed. Although ranges
and numbers are used, it should be understood that the rules
that use discrete values and any type of information to per-
form the matching operation. In this packet filtering example,
a “Permit” action dictates that the packet is to be delivered to
its destination address. In contrast, a “Deny” action dictates
that the packet should be filtered and will not be delivered.

The rules in the original rule set may be ranked in order of
priority such that an incoming packet 101 is matched to the
first satisfied rule in the rule set. A packet may satisfy multiple
rules; for example a packet with header fields 6 and 4 would
match both RO and R1, but would be matched to the highest
priority rule in the rule set, in this case RO.

Referring to graphical representation 200, the two fields,
F, and F,, are represented along X- and Y-axes, respectively.
The boxes 211, 212, 213 and 214 delineate the ranges of
packet headers that will result in a match to rules R0, R1, R2
and R3, respectively. The boxes 211, 212 and 213 correspond
to rules associated with a first action, Permit while the shaded
box 214 corresponds to a rule with a second action, Deny. The
boxes in FIG. 2 are further “stacked” in order of priority, i.e.,
since rule RO is the highest priority rule, corresponding box
211 is shown in the foreground, while for rule R4, the lowest
priority rule, corresponding box 214 is shown farthest into the
background.

Referring also to FIG. 1, in operation, cache manager 130
constructs evolving rules based on the received packets that
match most of the traffic volume instead of caching rules
exactly as specified in the original rule set. For example,
instead of caching rules RO, R1, R2 and R3, cache manager
130 may cache newly formed evolving rules. All evolved
rules are based on the rule set represented by boxes 211-214,
but may not be identical to any rule in the rule set. Moreover,
the evolved rules may further evolve over time to reflect
changing patterns in incoming traffic. The process of modi-
fying rules or creating new rules to reflect changes in traffic
pattern is referred to as rule evolution. FIGS. 2A-2F illustrate
an example of evolving rule generation, each FIGure repre-
senting a newly received packet and the corresponding
changes to the evolving rules.

Cache manager 130 is configured to construct evolving
rules in a hyper rule cache 102 in accordance with five prop-
erties that all evolving rules are required to satisfy. Evolving
rules in accordance with these properties may result in a
larger evolving rule set in comparison with a traditional smart
rule cache as described below with reference to FIG. 2E.
However, constraining rule evolution according to these
properties combines the benefits of a smart rule cache while

20

25

30

35

40

45

50

55

60

65

6

also allowing faster cache updating using a HyperCuts deci-
sion tree as described below with reference to FIGS. 4 and 5.

The evolving rules in hyper rule cache 102 are required to
satisty five properties. First, each evolving rule represents a
d-dimensional hypercube, which is referred to as the defini-
tion region of the rule. For the rule shown in Table 1, each
evolving rule is shown and described herein as a 2-dimen-
sional hypercube for simplicity, however, one of ordinary
skill in the art would recognize that that a true rule may be
represented as a closed, convex figure represent a rule space.

Second, each evolving rule is associated with a single
action that is semantically consistent with the original rule
set. For example, in Table 1, any evolving rule set based on the
original rule set of rules RO-R2 would be associated with the
Permit action, while an evolving rule associated with original
rule R3 would be associated with the Deny action.

Third, each sample packet in the sliding window data struc-
ture 300 is assigned to one evolving rule that matches it. The
weight of each evolving rule, stored in each node of data
structure 305, is defined to be its number of assigned data
packets. These properties are consistent with the properties
traditionally used for smart rule caches.

The above listed properties are common to both the hyper
rule cache 102 of the present invention and smart rules
caches. However, the fourth and fifth properties are unique to
hyper rule caches. The fourth property requires that evolving
rules either have the same action or are non-overlapping. This
property guarantees that the ordering of evolving rules in rule
cache 102 is not important. For example, when a packet
arrives, cache manager 130 determines an evolving rule to be
expanded (if the rule exists). Suppose two existing evolving
rules rl and r2 could be expanded without confliction. Cache
manager 130 may expand evolving rule r1; or rule r2. There-
fore, cache manager 130 may place each evolving rule in an
arbitrary cache entry.

The fifth property requires that each evolving rule lies
entirely inside a single one of'the rules in the original rule set.
For example, cache manager 130 defines an evolving rule r to
be{[1,,h,], 1, h,], ..., [l,h,]} wherel and h, are lower and
higher bounds on filed i, O<=i<=d. Cache manager 130
defines an original rule R in the rule set to be {[L,, H,], [L,,
], ...,[L,H,}. Similarly L, and H;, are lower and higher
bounds on filed i, O<=i<=d. Cache manager 130 determine
that r lies entirely inside R if for each i (0<=i<=d),
L,<=l,<=h,<=H,. In a hyper rule cache, if an evolving rule
overlaps with multiple rules in the original rule set, and these
rules have the same action, the evolving rule should lie
entirely inside one of these rules. Otherwise, if these rules
have different actions, the evolving rule should lie entirely
inside the highest priority rule that it matches.

As shown in FIG. 2A, when a first packet labeled P1 and
having header fields of (4, 10), arrives, there is no evolving
rule existing and P1 becomes the first evolving rule 220
created by cache manager 130. The first evolving rule 220
will state that all packets having the header of (4, 10) will have
the action Permit. This rule is entirely within the original rule
set for the first action represented by boxes 211-213. Note that
all packets that do not match the current cached rules need to
be matched against the original set of rules in the packet
classifier such that rules stored in the hyper rule cache 102 are
semantically consistent with the original rule set 120 of the
full packet classifier 105 such that a packet being classified
using rules cache 102 will be associated with the same action
as the packet would be matched with if it were being identi-
fied using the full packet classifier 105 and original rule set
120.

US 8,233,493 B2

7

Referring now to FIG. 2B, a second packet labeled P2 and
having header (7, 7) is received having the same action as first
evolving rule 220. Accordingly, cache manager 130 attempts
to expand the first evolving rule 220. Since the expanded rule
220, stating that all packets having the header of (4-7, 7-10)
will have the action Permit does not conflict with the seman-
tics of the original rule set (i.e., it is still within boxes 211-
213), the first evolving rule can be expanded as shown in FIG.
2B.

Referring now to FIG. 2C, a third packet labeled P3 and
having header (9, 4) is received having the same action as the
first evolving rule. However, a proposed evolving rule 222 is
found to conflict with the properties requiring that all evolv-
ing rules are consistent with the original rule set. Specifically,
the first evolving rule 220 cannot be expanded based on the
third packet P3 since an evolving rule associating with the
first action with all packets having the header (4-9, 4-10)
would conflict with the original rule set 120 (i.e., in FIG. 2C,
the resultant proposed evolving rule 222 for this evolving rule
would include a shaded area portion 224 associated with the
deny action). Accordingly, rather than expanding the first
evolving rule 220, cache manager 130 forms a second evolv-
ing rule 230 stating that all packets having the header of (10,
4) will be permitted.

Referring now to FIG. 2D, a fourth packet labeled P4 and
having header (11, 6), is received having the same action as
the first evolving rule. Cache manager 130 will attempt to
evolve the highest priority rule to match the newly received
packet. However, for packet P4, similar to packet P3, a pro-
posed evolving rule 232 is found to conflict with the proper-
ties requiring that all evolving rules are consistent with the
original rule set. Specifically, the first evolving rule 220 can-
not be expanded based on the fourth packet P4 since an
evolving rule associating with the first action with all packets
having the header (4-11, 6-10) would also conflict with the
original rule set 120 (i.e., in FIG. 2D, the resultant proposed
evolving rule 232 for this evolving rule would include a
shaded area portion 234 associated with the deny action).
Accordingly, cache manager 130 searches for the first evolv-
ing rule in the evolving list that has the same action as itself
and can be successtully expanded, the second evolving rule
230 in the example shown, and expands this rule, stating that
all packets having the header of (9-11, 4-6) will have the
action Permit.

Referring now to FIG. 2E, a fifth packet labeled P5 and
having header (4, 3) is received having the same action as the
first evolving rule. This packet has the same action as the first
evolving rule and a proposed expansion 242 of the first evolv-
ing rule is semantically consistent with the original rule set.
However, proposed expansion 242 is in conflict with the fifth
property for hyper rule expansion, requiring that each evolv-
ing rule lies entirely inside a single one of the rules in the
original rule set. The proposed expansion 242 is not entirely
within either box 211, corresponding to rule RO, nor box 213,
corresponding to rule R2. Evolving the second evolving rule
230 would cause a similar conflict. Accordingly, rather than
expanding the first or second evolving rule 220 and 230,
cache manager 130 forms a third evolving rule 240 stating
that all packets having the header of (4, 3) will be permitted.

It is important to note that under the expansion rules of a
traditional smart rule cache, the first evolving rule can be
expanded to lie within multiple rules (e.g., rules RO and R2 of
the original rule set). Accordingly, using a traditional smart
rule cache, first evolving rule 220 would be expanded to be
proposed evolving rule 242. This expansion would minimize
the number of rules stored within rules cache 102. However,
traditional smart rules caching is limited by the time required

20

25

30

35

40

45

50

55

60

65

8

to update the rules cache 102. The faster the cache manager
130 updates the rules cache 102, the lower the number of
cache miss packets 104. Using traditional evolving rule gen-
eration and expansion, verification of evolving rules is done
by checking the decision of each leaf node in a standard
packet decision diagram (SPDD) or pruned packet decision
diagram (PPDD). However, with a large original rule set
(some rule sets contain 1000-2000 rules), the resulting
SPDD/PPDD is very large. For example, for a real rule set of
1802 rules, a PPDD tree has 26992241 nodes. This results in
ahuge memory space and a relatively long cache update time.

Restricting evolving rules to lie entirely within one rule of
the original rule set allows usage of the HyperCuts decision
tree which will greatly increase the speed of cache updates.
Restricting evolving rules to lie entirely within one rule of the
original rule set makes searching for conflicts much faster
when expanding evolving rules. Previously, when using
SPDD tree in smart rule cache, checking conflicts involved
checking a large number of overlapping nodes in the tree. By
restricting evolving rules to lie entirely within one rule, the
number of nodes to be checked in HyperCuts tree is greatly
reduced. Additionally, each leaf nodes in a HyperCuts tree
contains a small and ordered list of original rules, usually
cache manager 130 only need to check part of the rules for
conflicts with the original rule set. For example, if an
expanded rule conflicts with an original rule R, then other
original rules that have lower priority than R do not need to be
checked. Using the five properties allows faster cache updat-
ing although at the cost of having a greater number of rules in
rule cache 102.

As described, to implement evolving rule generation and
updating, cache manager 130 is configured to receive and
store missed packets 104 used to indicate a need to update the
evolving rules in rule cache 102. Further, cache manager 130
is configured to generate and store proposed evolving rules
pending determination of whether the proposed evolving
rules would conflict with the five properties described above.

Referring now to FIG. 3, a graphical representation of two
data structures used by the cache manager 130 to evolve the
rules stored in cache 102 is shown, according to an exemplary
embodiment. The data structures may be used to store cache
miss packets 104 and to store evolving rules that are being
checked for validity (discussed below with reference to FIG.
7) prior to their inclusion in cache 102.

In operation, a sliding window data structure 300 may be
used by cache manager 130 to store sampled cache miss
packets 104 and to determine relevant statistics (such as fre-
quency of misses, type of cache misses, reasons for cache
misses, etc.) for the evolving rules. Data structure 300 may be
implemented as a first in, first out (FIFO) queue of a number
of sample packets. The number of packets stored in data
structure 300 may be referred to as the sliding window size.
Increasing the sliding window size will increase the number
of evolving rules. Generally, a sliding window of size 1024
will result in about 20 evolving rules.

Cache manager 130 further maintains a proposed evolving
rules list data structure 305 including one or more proposed
evolving rules 310. In operation, cache manager 130 may be
configured to generate evolving rules 310 based on the cache
miss packets 104 stored in data structure 300 as described
above with reference to FIGS. 2A-2E. Each evolving rule 310
stored in structure 305 that has been checked for conflicts may
be transferred into the rules cache 102 during a cache update.
Each evolving rule 310 in structure 305 may be configured to
include a rule weighting field 315. Cache manager 130 uses
the weighting field 315 to maintain a list of evolving rules
stored in hyper rule cache 102 and to determine which rules

US 8,233,493 B2

9

should be switched in or out or modified in the hyper rule
cache 102 in order to maximize a cache hit ratio. The evolving
rules are ordered by weights stored in weighting field 315.
The weights are updated upon the insertion and deletion of
each sample packet in the sliding window. If the weight of an
evolving rule falls down to 0, then the evolving rule is deleted
from the rule list 305. Deleting non-weighted evolving rules
helps to keep the size of rule cache small.

Cache manager 130 may be configured to search and
attempt to match received packets to rules stored in rules
cache 102 using a HyperCuts decision tree instead of the
traditional SPDD/PPDD trees to perform conflict checking
for proposed evolving rules. Using a HyperCut decision tree
in combination the properties governing the expansion of
evolving rules, discussed above with reference to FIGS.
2A-2E, can significantly reduce cache update times.

Referring now to FIG. 4, an exemplary HyperCuts decision
tree 400 for an eight rule original rule set is shown, according
to an exemplary embodiment. Using HyperCuts, each time a
packet arrives, the decision tree 400 is traversed based on
information in the packet header to find a leaf node 410
matching the packet header information. A small number of
matching rules that are stored in the leaf node 410 are then
linearly traversed to find the highest weighted rule that
matched the packet.

The HyperCuts decision tree may be built and maintained
by cache manager 130 in a manner that is known in the art. To
construct the HyperCuts decisions tree, cache manager 130
starts with a set of N rules of an original rule set, each rule
containing K fields. If the size of the set of rules in larger than
a predefined size for each leaf node, the set is split into a
number of child nodes, where each child node contains a
sub-region of the region of'its parents. The number of children
is called the number of cuts. In order to locally optimize the
distribution of rules, among child nodes, splitting criteria are
used to determine first which fields are to be cut and second
how many cuts to be done in each chosen field.

For example, a Hypercuts decision tree 400 illustrated in
FIG. 4 represents a decision tree for a rule set containing 8
rules having a range matching criteria. The range based rules
are shown in Table 2:

TABLE 2
Range representation matching rules set
Rule Field 1 Field 2 Field 3 Field 4 Field 5 Action
RO 0-1 14-15 2 0-3 0 Action0
R1 0-1 8-11 1 2 1 Actionl
R2 0-1 4-7 0-3 3 1 Action0
R3 0-7 8-15 0-3 1 0 Action2
R4 0-7 0-7 2 0-3 0 Actionl
RS 0-1 0-7 0-3 1 0 Actionl
R6 0-15 0-15 0-3 0-3 0 Action3
R7 0-15 0-15 0-3 0-3 1 Action4

According to an exemplary embodiment, the number of
cuts and size of the cuts may be made based on a mean of the
number of unique elements in the set of rules. For example,
referring to Table 2, for Field 1, there are three unique ele-
ments (namely 0-1, 0-7, and 0-15). The number of unique
elements in Field 1 through Field 5 of Table 2 is 3, 6, 3, 4 and
2, respectively. Accordingly, the mean number for the fields is
3.2, meaning that Fields 2 and 4 are good candidates for leaf
node indices. Referring to Table 2 and as shown in FIG. 4,
there are eight unique combinations of Fields 2 and 4. Thus,
the set of fields is split into eight leafnodes 410 correlating to
the number of unique combinations of Fields 2 and 4 occur-

20

25

30

35

40

45

50

55

60

65

10
ring in Table 2. Each leaf node 410 is labeled with the subset
of Fields 2 and 4 that correlate to the rules within that leaf
node. Each leaf node 410 also contains a number of Rules, the
rules ordered in terms of rule weighting or priority. Some
rules may be contained within multiple leaf nodes 410.

FIG. 4 further illustrates a search of the decision tree 400
based on a received sample packet 420 having header fields of
(2,6,2,1,0). Cache manager 130 implements a search engine
to identify a particular leaf node 410 based on the packet
header 420. In this instance, the packet header matches the
leaf node associated with 4-7 for Field 2 and 0-1 for Field 4.
The highest priority rule matching the packet header, in this
case Rule R4, is returned.

System 100 defines a packet classification system using a
hyper rule decision tree where the cache manager 130 is
configured to implement a rule evolution method in accor-
dance with the five properties discussed above with reference
to FIGS. 2A-2E, to construct evolving rules in a hyper rules
cache 102. Cache manager 130 is configured to implement a
conflict checking method to determine whether a proposed
evolving rule conflicts with the semantics of the original rule
set or the five properties.

Referring now to FIG. 5, a method 500 for checking pro-
posed evolving rules for conflict with the five expansion rule
properties using the packet classification system 100 is
shown, according to an exemplary embodiment. Method 500
may be a recursive method to determine whether a rule is in
conflict with any of the five properties of the hyper rule cache.
Method 500 may be implemented by cache manager 130 to
determine whether an evolving rules can be expanded based
on a miss cache packet 104 consistent with the five hyper rule
cache rule expansion properties.

Method 500 starts in step 505 and proceeds to step 510
where cache manager 130 begins the review of an expanded
rule with an examination of the root node of the HyperCuts
decision tree to identify leaf nodes having rules that overlap
with the expanded rule. During the review, two types of rules
identifications (ID) are sought, a matching rule (ID) and a
conflict rule (ID). A matching rule is a rule that has the same
decision as the expanded rule where the expanded rule lies
entirely within the matching rule. A conflict rule is a rule that
has different actions from the expanded rule and overlaps
with the expanded rule. Both the matching rule ID and the
conflict rule ID are initialized to the total number of rules in
the original rule set.

In a step 515, cache manager 130 identifies a leaf node
having a number of rules from the original rule set to be
checked against the expanded rule. In a step 520, a current
rule is examined. In a step 522, a determination is made
whether the current rule ID is less than the minimum of the
matching rule ID and the conflict rule ID. If the ID of the
current rule is larger, it is not necessary to check this rule or
any other rules in the leaf node and cache manager 130 returns
to step 515 to identify other leaf nodes to be examined. If the
current rule 1D is larger, it is a lower priority rule. If an
expanded rule has already conflicted or matched a higher
priority rule, cache manager 130 does not need to check rules
that have lower priorities. Essentially, the highest priority rule
determines the decision if an expanded rule. Further, the rules
in aleafnode are ordered by priority, such that cache manager
130 does not need to check all the other rules in a leaf node if
a conflict or match is found since they will all have lower
priorities.

If the current rule ID is smaller than the minimum of the
matching rule ID and the conflict rule ID, the algorithm check
whether the current rule overlaps with the proposed evolving
rule in a step 524. Ifyes, a determination is made whether the

US 8,233,493 B2

11

action of the current rule matches the action of the proposed
evolving rule in a step 526. If the actions are different, this
means that the rules overlap, but have different decisions and
the conflictrule ID is updated to be the current rule ID in a step
530 and cache manager 130 returns to step 515.

If the actions are the same in step 526, cache manager 130
is configured to check whether the proposed evolving rule lies
entirely inside the current rule in a step 528. If the proposed
evolving rule does lie entirely inside the current rule, the
matching rule ID is updated to be the current rule ID in a step
532 and cache manager 130 returns to step 515. If not, cache
manager examines the next rule returning to step 520.

Using the method 500, cache manager 130 iteratively
examines all of the child nodes having rules that overlap with
the proposed evolving rule. Following the iterative examina-
tion of the child nodes, a determination is made in a step 540
whether the matching rule ID is less that the conflict rule ID.
If yes, there is no conflict and the proposed evolving rule is
approved and expanded in a step 550. If no, the proposed
evolving the rule is not permitted under the five properties and
the next rule in the expanded rule list is checked in step 510.

FIG. 6 depicts a high level block diagram of a general
purpose computer suitable foruse in performing the functions
described herein. As depicted in FIG. 6, the system 600 com-
prises a processor element 602 (e.g., a CPU), a memory 604,
e.g., random access memory (RAM) and/or read only
memory (ROM), a module 100 for classifying packets, and
various input/output devices 606 (e.g., network interface
cards, such as 10, 100, or Gigabit Ethernet NIC cards, Fibre
Channel Host Bus Adapters, Infiniband adapters, storage
devices, including but not limited to, a tape drive, a floppy
drive, a hard disk drive or a compact disk drive, a receiver, a
transmitter, a speaker, a display, a speech synthesizer, an
output port, and a user input device (such as a keyboard, a
keypad, a mouse, and the like)).

It should be noted that the present invention can be imple-
mented in software and/or in a combination of software and
hardware, or entirely in hardware, e.g., using application
specific integrated circuits (ASIC), a general purpose com-
puter or any other hardware equivalents. In one embodiment,
the present module or process 100 for classifying packets can
be loaded into memory 604 and executed by processor 602 to
implement the functions as discussed above. As such, the
present method 100 for classitying packets (including asso-
ciated data structures) of the present invention can be stored
on a computer readable medium or carrier, e.g.,, RAM
memory, magnetic or optical drive or diskette and the like.

While various embodiments have been described above, it
should be understood that they have been presented by way of
example only, and not limitation. For example, although the
present invention is discussed herein in the context of Internet
Protocol (IP) networks, the present invention may be applied
to any packet based network including, but not limited to,
cellular networks, Asynchronous Transfer Mode (ATM) net-
works, etc. For the purpose of scope, the term packet is
intended to broadly include a data unit of any size or type, e.g.,
a record and the like. Thus, the breadth and scope of a pre-
ferred embodiment should not be limited by any ofthe above-
described exemplary embodiments, but should be defined
only in accordance with the following claims and their
equivalents.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained
herein, but include modified foams of those embodiments
including portions of the embodiments and combinations of
elements of different embodiments as come within the scope
of the following claims.

20

25

30

35

40

45

50

55

60

65

12

We claim:

1. A computer-implemented method for classifying
received packets, comprising:

receiving a packet;

processing the received packet through a hardware-based

packet classifier having at least one evolving rule that
determines an action to be taken based on a header field
in the received packet to identify at least one cache miss
packet that cannot be classified by the classifier;

processing the at least one cache miss packet through a

software based packet classifier including an original
rule set; and

determining whether to expand the at least one evolving

rule in the hardware-based packet classifier based on the
result of the processing of the at least one cache miss
packet, the determination including determining
whether an evolving rule has both the same action and
lies entirely within one of the rules of the original rule
set,

wherein said hardware-based packet classifier comprises at

least one rule cache for storing said at least one evolving
rule,

wherein said at least one evolving rule is updated periodi-

cally based on the cache miss packets, and

wherein a cache miss packet is a packet that is unable to be

classified by said hardware-based packet classifier.

2. The method of claim 1, wherein said at least one evolv-
ing rule is updated in accordance with the at least one cache
miss packets based on a weighting associated with a cache
miss packet.

3. The method of claim 1, wherein the at least one evolving
rule is updated to minimize a cache miss ratio.

4. The method of claim 1, wherein said at least one evolv-
ing rule is updated in accordance with a data structure having
a plurality of evolving rules.

5. The method of claim 4, wherein the at least one cache
miss packet is evaluated to determine whether an order of said
plurality of evolving rules in said data structure needs to be
updated.

6. The method of claim 1, wherein said at least one rule
cache comprises two or more rules caches to allow hot-swap-
ping between said two or more rules caches.

7. The method of claim 1, wherein said software-based
packet classifier comprises a plurality of rules associated with
packet classification comprising the original rule set and
wherein each of the at least one evolving rule must be seman-
tically consistent with the original rule set.

8. A non-transitory computer-readable medium having
stored thereon a plurality of instructions, the plurality of
instructions including instructions which, when executed by a
processor, cause the processor to perform the steps of a
method for classifying packets, comprising:

receiving a packet;

processing the received packet through a hardware-based

packet classifier having at least one evolving rule that
determines an action to be taken based on a header field
in the received packet to identify at least one cache miss
packet that cannot be classified by the classifier;

processing the at least one cache miss packet through a

software based packet classifier including an original
rule set; and

determining whether to expand the at least one evolving

rule in the hardware-based packet classifier based on the
result of the processing of the at least one cache miss
packet, the determination including determining

US 8,233,493 B2

13

whether an evolving rule has both the same action and
lies entirely within one of the rules of the original rule
set,

wherein said hardware-based packet classifier comprises at
least one rule cache for storing said at least one evolving
rule,

wherein said at least one evolving rule is updated periodi-
cally based on the cache miss packets, and

wherein a cache miss packet is a packet that is unable to be
classified by said hardware-based packet classifier.

9. The computer-readable medium of claim 8, wherein said
at least one evolving rule is updated in accordance with the at
least one cache miss packets based on a weighting associated
with a cache miss packet.

14

10. The computer-readable medium of claim 8, wherein
said at least one evolving rule is updated to minimize a cache
miss ratio.

11. The computer-readable medium of claim 8, wherein
said at least one evolving rule is updated in accordance with a
data structure having a plurality of evolving rules.

12. The computer-readable medium of claim 11, wherein
the at least one cache miss packet is evaluated to determine
whether an order of said plurality of evolving rules in said
data structure needs to be updated.

13. The computer-readable medium of claim 8, wherein
said software-based packet classifier comprises a plurality of
rules associated with packet classification comprising the
original rule set and wherein each of the at least one evolving
rule must be semantically consistent with the original rule set.

#* #* #* #* #*

	Bibliography
	Abstract
	Drawings
	Description
	Claims

