a2 United States Patent

Estan et al.

US007940755B2

US 7,940,755 B2
May 10, 2011

(10) Patent No.:
(45) Date of Patent:

(54) LOOKUP ENGINE WITH PROGRAMMABLE
MEMORY TOPOLOGY

(75) Inventors: Cristian Estan, Madison, WI (US);
Karthikeyan Sankaralingam, Madison,

WI (US)

(73) Assignee: Wisconsin Alumni Research

Foundation, Madison, WI (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 97 days.

(21) Appl. No.: 12/407,286

(22) Filed: Mar. 19, 2009
(65) Prior Publication Data
US 2010/0238942 Al Sep. 23, 2010
(51) Imt.ClL
HO4L 12/50 (2006.01)
HO4L 1228 (2006.01)
HO4L 12/56 (2006.01)
H04Q 11/00 (2006.01)
GO6F 15/00 (2006.01)
GO6F 15/76 (2006.01)
(52) US.CL ... 370/386; 370/388; 370/389; 712/10;
712/11;712/13
(58) Field of Classification Search 370/388.389,

370/386, 388, 389; 712/10, 11, 13
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,816,561 B1* 11/2004 Pottercci 375/371
7,461,236 Bl 12/2008 Wentzlaff
2002/0172205 Al* 11/2002 Tagore-Brage etal. . 370/395.42
2004/0096049 Al* 5/2004 Delaneyetal. 379/229
2005/0243708 Al* 11/2005 Bunyk ... 370/200

2006/0041338 Al*

2/2006 Fislageccoccceevvvenncne
2008/0120702 Al*

5/2008 Hokimoto
2008/0229063 Al* 9/2008 Kleihorst et al. .
2010/0169861 Al* 7/2010 Wangetal. ... 717/110

OTHER PUBLICATIONS

Hauser, J. R., & Wawrzynek, J. (1997). Garp: A MIPS processor with
areconfigurable coprocessor. In K. L. Pocek, & J. Amold (Eds.) IEEE
Symposium on FPGAs for Custom Computing Machines , (pp.
12-21). Los Alamitos, CA: IEEE Computer Society Press.*

Taylor, M. B., Kim, J., Miller, J., Wentzlaff, D., Ghodrat, F.,
Greenwald, B., Hoffman, H., Johnson, P., Lee, . W., Lee, W., Ma, A .,
Saraf, A., Seneski, M., Shnidman, N., Strumpen, V., Frank, M.,
Amarasinghe, S., & Agarwal, A. (2002). The raw microprocessor: A
computational fabric for software circuits and general-purpose pro-
grams. IEEE Micro , 2.*

J. S. Kim, M. B. Taylor, J. Miller, and D. Wentzlaff. Energy charac-
terization of a tiled architecture processor with on-chip networks. In
Proc. Int. Symp. Low Power Electronics and Design,pp. 424-427,
Aug. 2003.*

Basu, Anindya, et al., Fast Incremental Updates for Pipelined For-
warding Engines, INFOCOM 2003, Twenty-Second Annual Joint
Conference of the IEEE Computer and Communications Societies,
IEEE, Mar. 3, 2003, pub. Apr. 2003, vol. 1, pp. 64-74, IEEE, New
York, New York, USA.

Baboescu, F., etal., A Tree Based Router Search Engine Architecture
with Single Port Memories, ISCA Proceedings of the 32" Interna-
tional Symposium on Computer Architecture, Jun. 4-8, 2005, pp.
123-133, IEEE, New York, New York.

* cited by examiner

Primary Examiner — Ayaz R Sheikh
Assistant Examiner — Tarell Hampton
(74) Attorney, Agent, or Firm — Boyle Fredrickson, S.C.

(57) ABSTRACT

An architecture for a specialized electronic computer for
high-speed data lookup employs a set of tiles each with inde-
pendent processors and lookup memory portions. The tiles
may be programmed to interconnect to form different
memory topologies optimized for the particular task.

22 Claims, 5 Drawing Sheets

30

/ (m]
65 502
— 48\ |48) L sob

A N
0a 50b
-

U.S. Patent May 10, 2011 Sheet 1 of 5 US 7,940,755 B2

[717178
i 1
i 27\,-4 Nfa
| =¥ 67j’ \
’,/’ \\\
/’,, “\
/’,, 32\ \“
500 2%
L7 |/ \
»—30
36—l O
Prulm
33940 O
N
NS EHH 3
1 O
OO
O OJ{ 50a 50b
;2 O O N ;
I \
P =l 40 65>§’\ 50
48aN |48b
- .,_\l L f50b\
32 ¢ px
ANEERA
50a 50b
32"

FIG. 1

US 7,940,755 B2

Sheet 2 of 5

May 10, 2011

U.S. Patent

/ 488,b

FIG. 2

/56

60
TAAN
)

T -32
Vi

/

R -

WIN

Y
62

67

32

)

'
M1|M2|M3|M4IM

[T2I3[T4[11]

38

1]«

|01]02]03[04[05

X =

@ >
= T w
/C FHVE ﬂ._u.
.m L
S<pP oo
Al
™~
|
7= AH WO
2 Clofw| -
=)
o
il e

U.S. Patent May 10, 2011 Sheet 3 of 5 US 7,940,755 B2

I I IT ¥ X

- FIG. 6

X <OmMmMOO W >
]

FIG. 9

U.S. Patent

76J

May 10, 2011 Sheet 4 of 5 US 7,940,755 B2
o Ve 30\ 31
A T 1 A
'L 767 T T
B 0 C B
[!
C X 0
Y
FIG. 7 16, 8
100~ PARTITION TASKS
TO LOGICAL TILES
l
COMPILE CODE
102~ BLOCKS FOR FIG.].O
TILES

-l

104—~ TILES TO PHYSICAL

ASSIGN LOGICAL

TILES

106

CHECK

ROUTING
PROBLEMS
?

108—~—

DETERMINE
ROUTING
HEADERS

110~

DOWNLOAD TO
TILES

U.S. Patent May 10, 2011 Sheet 5 of 5 US 7,940,755 B2

T N3
o1 2|3 o (5 >— out
[T T T I X)
30~ 6 | 7| 8 | 9 <0<
K+ r 1T 3 30
12> 13> 14 > 15 =116 @
> OUT

US 7,940,755 B2

1
LOOKUP ENGINE WITH PROGRAMMABLE
MEMORY TOPOLOGY

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with United States government
support awarded by the following agency: NSF 0546585 and
0627102. The United States government has certain rights in
this invention.

CROSS REFERENCE TO RELATED
APPLICATIONS

BACKGROUND OF THE INVENTION

The present invention relates to specialized electronic
devices for looking up data, such as may be used in high-
speed network routers and switches and, in particular, to a
device that may optimize its memory topology for different
lookup tasks.

Computer networks allow the exchange of data among
spatially separated computers connected by “links”, the latter
physically implemented as electrical conductors, fiber optics,
and radio waves. The dominant network protocols work by
dividing a data message into data packets, each of which
contains a destination address. The destination address
attached to the packets permits the packets to navigate
through complex and dynamically changing networks to the
destination. When particular links used by a message become
crowded or disabled, packets of that message, guided by the
destination address, may be routed through different links to
reach their destination in a manner invisible to the sender.

A key element in implementing a network using addressed
packets is a device called a router (or sometimes a switch)
which reads packets’ addresses and steers them according to
the addresses among the different links joined by the router.
For this purpose, the router employs a “routing table” match-
ing packet addresses with ports leading to the different links.
The data in the router table maybe manually programmed or
may be “learned” using various router heuristics.

Routers may also perform other tasks such as address
translation where the packet addresses changed for another
packet address, or the management of white or blacklists
where certain packets may be blocked, for example, to pre-
vent denial of service attacks where the network is flooded
with spurious packets from a given address.

All of these functions of a router require the router to look
up packet addresses or other packet features in memory, and
to perform these operations repeatedly and rapidly. The
capacity of a router, and thus its usefulness, is largely a
function of how quickly these memory lookups may be com-
pleted.

The memory lookup function may be implemented by a
conventional processor reading a table implemented in ran-
dom access memory. Such memories allow data to be read
from identified memory addresses when the address is pro-
vided. Finding data with such an architecture requires search-
ing through multiple addresses, a generally time-consuming
process. For this reason, high performance routers may use
so-called ternary content addressable memories (TCAM)
which allow the entire memory to be searched in parallel for
the data of interest. These memories substantially reduce the
time taken for the memory lookups but are costly and con-
sume considerable power and concomitantly generate greater

20

25

30

35

40

45

50

55

60

65

2

amounts of heat. Both electrical usage and heat generation
can be problems in large data centers.

A possible solution to the problems attendant to rapid
memory lookup is the creation of specialized electrical hard-
ware for this purpose. This task, however, is complicated by
the variety of different lookup tasks that may be required in a
modern router and the need to employ the router in an evolv-
ing set of network tasks. For example, currently routers may
need to respond to both Internet Protocol (IP) address lookups
and local area network (Ethernet-type) lookups. An IP
address lookup deals with addresses that have topological
significance, that is, different portions of the address repre-
sent different networks and subnetworks. For IP address look-
ups, a tree structure may be preferred as the tree allows
successively parsing the network address in a manner that
reflects the network topology. In contrast, for Ethernet-type
lookups the address will typically have no topological signifi-
cance, representing simply an arbitrary unique number
assigned to each device. In this case, the memory lookups are
better implemented using a hash table which encodes no
topological information about the addresses stored and
allows a simpler lookup operation.

As networks grow more complicated and routers are called
upon to execute additional tasks, it is likely that current meth-
ods for processing packets will prove sub-optimal and
changes to the data structures used by routers during packet
processing will be needed. Current method of packet process-
ing may also be sub-optimal for new protocols, extensions to
existing protocols, or the introduction of new features for
packet processing.

SUMMARY OF THE INVENTION

The present invention provides a specialized circuit for
performing lookup operations. In this circuit, the memory of
alookup table is divided into “tiles” each associated with a set
of specialized processors optimized for memory lookup
tasks. Importantly, connections between the tiles may be
changed by programming allowing the memory topology to
be flexibly changed to match the particular problem being
addressed. Thus, for example, when a tree type lookup is
required, the memory tiles may be interconnected in a tree
form. Alternatively, when a hash table lookup is required, the
memory tiles may be connected in parallel ranks suitable for
hash tables. Arbitrary other topologies may be formed. By
permitting the memory structure to be programmably modi-
fied, the trade-offs between high speed and flexibility are
successfully navigated for both current and future router
tasks.

Specifically, in one embodiment, the present invention pro-
vides a network router for routing data packets in a network
comprising a series of ports receiving and transmitting data
packets and a general-purpose processor communicating
with the series of ports to provide for network routing func-
tions including packet processing but exclusive of some data
packet lookup functions. The router further includes a data
packet lookup engine communicating with the general-pur-
pose processing program to conduct memory lookups based
on information provided by the general-purpose processor.
This data packet lookup engine includes a set of inter-com-
municating computational tiles, each tile including at least
one lookup processor and a memory comprising a portion of
a look-up table accessible uniquely by the tile. The tiles
include interconnection circuitry and program memory, the
latter holding instructions which define a static topology of
interconnection among the tiles through the interconnection
circuitry during operation of the router.

US 7,940,755 B2

3

It is thus an object of the invention to provide a distributed
memory architecture that allows the topology of the indi-
vidual memory elements to be programmably configured.

Each tile may include a set of lookup processors activated
in a fixed sequence so that different lookup processors handle
successive arrivals of data at the tile.

It is thus another object of the invention to permit a pipe-
lining architecture in a distributed memory system. The use of
successive processors makes it possible to achieve a consis-
tent throughput for the pipeline.

The arrival of data at a lookup processor may trigger execu-
tion of the program instructions from the corresponding pro-
gram memory and the lookup processor may go idle once the
program instructions have been completed until the next
arrival of data at the lookup processor.

It is thus an object of the invention to permit an over-
provisioned multiple processor system while managing
energy consumption to only those processors employed in the
computational task at a given time.

The lookup processors may provide only integer compu-
tational support without branch prediction and the program
memories are less than 256 instructions long.

It is thus an object of the invention to provide extremely
simple lookup processors permitting practical implementa-
tion of a large number of lookup processors in a tile.

The lookup processors may provide an instruction set hav-
ing program instructions to implement a function of routing
data to specific other tiles dependent on the outcome of a
memory lookup.

It is thus an object of the invention to permit the convenient
programming of memory topology by way of the program-
ming of the individual lookup processors.

The interconnection circuitry may not provide buffering of
transmitted data or flow control.

It is thus an object of the invention to produce an architec-
ture that allows for static collision-free routing that may be
predetermined at the compilation stage greatly simplifying
the circuitry and producing a robust and deterministic opera-
tion.

The interconnection circuitry may route data among the
tiles according to a routing header applied to the data by the
lookup processor according to an execution of the program
instructions.

It is thus an object of the invention to provide a simple but
flexible mechanism for communicating between the lookup
processors and extremely simple interconnection circuitry.

The interconnection circuitry may route data between the
tiles according to a routing header associated with the data
and the interconnection circuitry may follow static pro-
grammed rules in interpreting the header to route the data.

It is thus an object of the invention to permit intercommu-
nication among tiles with minimal processing overhead.

The interconnection circuitry may route data among the
tiles according to a routing header associated with the data
identifying a final destination for the data where the data will
be processed by a lookup processor. Data may also be pro-
cessed by intermediate tiles on the path to the final destination
if the routing header indicates that multicast handling is
requested.

It is thus an object of the invention to permit a simple
rectilinear organization of the tiles into rows and columns
having only direct communication with adjacent tiles while
permitting more complex routing through the agencies of
intervening tiles.

The interconnection circuitry may provide at least two
physically distinct channels between a tile and the other tiles

20

25

30

35

40

45

50

55

60

65

4

to which it is connected by channels, each channel providing
independent input and output pathways.

Itis thus an object of the invention to provide a system with
extremely versatile static routing and zero likelihood of col-
lision.

The invention may further include a compiler executing on
an independent electronic processor generating program
instructions for each of the lookup processors. The program
instructions may include (1) at least one instruction reading a
register associated with data received at the tiles; (2) at least
one instruction reading the memory associated with the tile;
and (3) at least one instruction sending data to another tile.
The compiler may further include a routing analyzer analyz-
ing a path and timing of data among tiles to detect at least one
of: (i) collisions among data being transmitted among the
tiles; (i) conflicting demands for processing by lookup pro-
cessors of a tile; and (iii) direct transmission from one tile to
a nonadjacent tile.

Thus, it is another object of the invention to produce an
architecture that permits predetermined static routing at the
compiler level.

The network router may further include a general-purpose
processor communicating with the series of ports to provide
for network routing functions including packet processing
but exclusive of some data packet lookup functions. The
lookup processors may have a reduced instruction set with
respect to this general-purpose processor.

Thus, it is an object of the invention to provide an archi-
tecture that may be specifically dedicated to lookup tasks
allowing other network activities to be executed by a general
processor.

The interconnection circuits may manage communication
among the tiles on the communication links by transmitting
data at regular intervals synchronized with the interconnec-
tion circuits of other tiles and by following static rules inter-
preting destination information provided by the lookup pro-
Cessors.

It is thus an object of the invention to produce a determin-
istic routing technique amenable to static routing.

These particular objects and advantages may apply to only
some embodiments falling within the claims and thus do not
define the scope of the invention.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a series of successive, increasingly detailed dia-
grams of a router per the present invention, the router com-
posed of line cards each using a lookup engine having mul-
tiple tiles, the figure showing the principal elements of each
tile including interconnection circuitry joining the tiles
together and multiple lookup processors operating on a
shared memory;

FIG. 2 is a logical diagram of the interconnection circuitry
of each tile serving to arrange the tiles for a particular task;

FIG. 3 is a timing diagram depicting sequential activation
of the lookup processors of a tile in pipeline processing;

FIG. 4 is alogical diagram of an example tree type memory
lookup task that may be implemented with the present inven-
tion;

FIG. 5 is an interconnection diagram of a simple set of tiles
of the present invention arranged to implement the example
lookup task of FIG. 4;

FIG. 6 is a “train schedule” showing the movement of data
among the tiles for the example lookup task of FIG. 4

FIG. 7 is a figure similar to that of FIG. 4 showing a logical
diagram of an example memory hash lookup task;

US 7,940,755 B2

5

FIG. 8 is a figure similar to that of FIG. 5 showing an
interconnection diagram of a simple set of tiles of the present
invention arranged to implement the example lookup task of
FIG. 6;

FIG. 9 is a figure similar to that of FIG. 6 showing the
movement of data among the tiles for the example lookup task
of FIG. 7,

FIG. 10 is a flowchart for a compiler program executing to
create programs to be implemented by the lookup processors
of the tiles of the present invention;

FIG. 11 is a detailed train schedule used by the compiler to
identify tile interconnection problems; and

FIG. 12 is a diagram similar to that of FIGS. 5 and 8
showing simultaneous execution of different lookup tasks on
the lookup engine of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

Referring now to FIG. 1, a router unit 10 may include a
housing 12 holding multiple line cards 14 typically arranged
in modular fashion to connect to a common backplane 11
within the housing 12. The backplane 11 connects the line
cards to network media 16, for example electrical conductors,
optical fiber, or radio transceivers each representing different
links or ports interconnected by the router unit 10.

Each line card 14 implements a router or switch and pro-
vides multiple ports 20 at a rear connector 18 that may con-
nect with the backplane 11 for the receipt and transmission of
data packets from and to the network media 16. Each port 20
is received by network interface circuitry 22 on the line card
14, the network interface circuitry 22 handling data level and
link level network protocols. The network interface circuitry
22 in turn connects to an internal bus 24 communicating with
a general-purpose or network processor 26 (henceforth gen-
eral purpose processor) and memory 27. Memory 27 may
include a combination of volatile and nonvolatile memory
and holds an effective operating system for the line card 14
and programs executed by the general-purpose processor 26
for managing router functions of the type generally under-
stood in the art.

The general-purpose processor 26 communicates with a
special-purpose lookup engine 28 of the present invention, for
example, using a coprocessor type interface in which the
general-purpose processor 26 passes distinct memory lookup
tasks to the lookup engine 28. After a known number of
cycles, the lookup engine 28 returns the results of that data
lookup.

Referring still to FIG. 1, the lookup engine 28 is composed
of multiple tiles 30 arranged in an array 31 of rows and
columns that intercommunicate using a communication grid
32, the latter which connects each tile to its immediate neigh-
bors (e.g. east, west, north, south) for the intercommunication
of data as will be described.

Each tile 30 holds a portion of a lookup memory 34, the
lookup memory implementing, for example, a router table or
a whitelist or blacklist that can be indexed by information
from a data packet. The lookup memory 34 may be standard
random access memory.

The portion of the lookup memory 34 in each tile 30 is
addressable only by a set 36 of lookup processors 38 in that
tile 30, each lookup processors 38 which may independently
access lookup memory 34. The lookup processors 38 may be
highly reduced instruction set processors or other architec-
tures that may efficiently implement the steps that will be
described below. In one embodiment, lookup processors pro-
vide only integer computational support without branch pre-

20

25

30

35

40

45

50

55

60

65

6

diction. Thus, the lookup processors 38 will provide an
instruction set much reduced from the general-purpose pro-
cessor 26 with an eye toward minimal complexity and
reduced power consumption. Each lookup processor 38 can
execute instructions to read and write one or more associated
registers, perform a memory read of lookup memory 34, and
to apply routing headers to data derived from that lookup
based on the results of the lookup. Importantly, the lookup
processors 38 may conditionally assign a destination (of
another tile) to data based on the outcome of an instruction
operation. Thus, the program and language permits branch
instructions to be implemented by choice of destination in the
passing of data among tiles as well as by conventional branch-
ing among instructions within the individual tile.

The instructions executed by the lookup processors 98 are
held in a common programmable memory 40 holding one or
more programs 42 that are generally identically shared
among multiple lookup processors 38. In one embodiment,
the firmware memory may be less than 256 instructions long.
The programs 42 will include code blocks 44 executed by the
lookup processors 38 when they are activated, as will be
described, and topology data 46 indicating where the results
of the execution of the code blocks 44 will be sent upon
completion. Practically, the code blocks 44 and topology data
46 may be jointly implemented by a single set of instructions
which perform reads of lookup memory 34 and, based on the
results of the lookup, apply headers to data packets to route
them to other tiles 30.

This interconnection of the tiles 30 with othertiles 30 inthe
array 31 using the grid 32 and with the general-purpose pro-
cessor 26 is managed via interconnection circuits 48a and 485
that provide two physically independent interconnections
50a and 505 within the communication grid 32 between each
tile 30 and its neighbor. Each interconnection 50a and 505
provides two conductors 52a and 526 providing for data
flowing into the tile 30 and out of the tile 30 respectively so
that there is no interference between incoming and outgoing
data. Thus, each interconnection circuit 48a and 485 provides
interconnections 50a and 505 to each adjacent tile (if any) to
the east (right) of the given tile 30, to the west (left) of the
giventile 30, to the north (above) of the given tile 30 and to the
south (below) of the given tile 30. Tiles 30 at the edge of the
array 31 oftiles 30, for example having no adjacent neighbors
in at least one direction, may communicate directly with the
general-purpose processor 26 to receive or transmit data in
similar fashion. One more interconnection 50a and 505 is
provided from the interconnection circuits 48a and 485 with
the set 36 of lookup processors 38 so that data passing among
tiles 30 may be either routed through the tile 30 or routed to
the tile 30 depending on its routing header.

Referring now to FIG. 2, the interconnection circuits 48
provide for a simple address-based routing of a received data
packet 56 arriving on the communication grid 32. The data
packet 56 will generally include a payload 58 having the
results of the calculation or read of lookup memory 34 of that
tile 30 and one or more address headers 60 describing the
destination of the payload 58 through the array 31 of tiles and
the code block 44 to be executed at the destination tile when
the payload 58 arrives. One header 60 may provide a multi-
cast flag as will be described. The data packet 56 is received
along the grid 32 from one of up to four directions (east, west,
north, south). The particular direction may be ignored (as
depicted) or monitored to implement a collision management
scheme as will be described below.

The data packet 56 is parsed by the interconnection circuit
48 at each tile 30 receiving the data packet 56 to read the
address header 60 (indicating its destination) which is pro-

US 7,940,755 B2

7

vided to a decoder 62 operating according to a static set of
rules that may be preprogrammed and consistent among the
tiles 30 to control a logical single-pole, five-throw routing
switch 63 allowing the remainder of the data packet 56 (the
payload 58 plus other routing headers 60 exclusive of the
topmost address header) to be routed either east, west, north,
south, or to the instant tile 30. For tiles 30 within the array 31,
each of the first four directions will be to an adjacent tile 30;
however, for tiles 30 at the edge of the array 31, one of these
directions may represent general-purpose processor 26.
When the address header 60 for an incoming message is the
address of the instant tile 30 receiving the message, the data is
routed to the instant tile 30 along the fifth throw 65.

For data packets 56 that are not being sent to an adjacent tile
30, the interconnection circuit 48 at the non-destination tile
30, may follow a simple set of rules to further route the data
packet 56. In one embodiment, the interconnection circuit 48
determines whether the destination tile 30 is in the same row
as the interconnection circuit 48. If so, the interconnection
circuit 48 routes the data packet 56 to the east. Otherwise, the
interconnection circuit 48 routes the data packet 56 to the
south. This simple set of rules together with knowledge by the
interconnection circuit 48 of the location of its tile 30 within
the array 31 allows data packets 56 to be sent to non-adjacent
tiles 30 over several clock cycles.

In one embodiment, a form of multicasting may be imple-
mented by the addition of a multicasting flag in the header 60.
This multicasting flag indicates to each interconnection cir-
cuit 56 receiving the data packet that the payload 58 should be
both forwarded to the destination tile 30 and used by the given
tile 30 of the interconnection circuit 56.

The interconnection circuits 30 may also implement a form
of collision management by providing a predetermined pri-
ority among packets received from different directions on the
grid 32. Thus, for example, in the event of simultaneously
arriving data packets 56 from the north and the east at a given
tile 30, the given tile 30 may give priority to the data from the
north while ignoring the east data. This provides for increased
programming flexibility by permitting collision resolution to
be used to select among competing data flows.

Referring to FIGS. 1 and 2, data may be sent through the
array 31 along the interconnection circuits 48 in serial fashion
under the control of the cycle clock 67 (shown in FIG. 1)
generally having clock edges that control not only the execu-
tion of instructions by the processors 38 but also each “hop”
in data transfer between tiles 30. The routing of the data may
thus be preplanned statically by a compiler as will be
described so that there is no need for the detection of colli-
sions and retransmission of messages as in the conventional
network. For this reason interconnection circuits 48a and 485
need not provide for buffering, flow control, or complex net-
work protocols that retransmit in the event of collision. Flow
control, as used herein, refers to communications among the
tiles 30 to control the rate of transmission between tiles 30 so
that a fast sending tile 30 does not overrun a slow sending tile
30 on the grid 32.

Synchronized by the cycle clock 67, the general-purpose
processor 26 may provide lookup requests to the lookup
engine 28 and receive the results a fixed number of cycles
later. The lookup request is received from an edge tile 30 and
the same or different edge tile may return the result. Multiple
tiles 30 typically are involved in the lookup process, each of
the tiles 30 executing the code blocks 44 to look up data from
lookup memory 34 and forward the results to another tile 30
or the general-purpose processor 26.

At each tile 30 involved in the computation, data received
by interconnection circuit 48a or 485 for that tile 30 is routed

20

25

30

35

40

45

50

55

60

65

8

to an uncommitted lookup processor 38 in a simple sequence
that cyclically routes among each of the lookup processors
38. When the lookup processor 38 receives its data, it begins
execution of the code block 44 in memory 40, and before that
time the lookup processor 38 is idle conserving power.
Lookup processors 38 that are currently executing a code
block 44 complete instructions synchronized to the cycle
clock 67 and transmit data through the interconnection cir-
cuits 48a and 485 also synchronized to the cycle clock 67. The
lookup processors 38 select the interconnection circuit 48a
and 485 for transmission of data and apply headers for future
routing of the data per the topology data 46 that has been
prepared to prevent data collisions by a compilation process
to be described.

Referring now to FIGS. 1 and 3, during a set of clock cycles
64 input data I1-15 may be received at successive clock cycles
by a given tile 30. Circuitry associated with the set 36 of
lookup processors 38 will allocate the input data to successive
lookup processors 38 numbered 1-4 in this simplified
example using only four lookup processors 38. More typi-
cally, the invention contemplates the use of 16 or more lookup
processors 38 to provide for efficient pipeline processing.

After a first delay 66 being a fixed number of cycles 64
determined by the number of instructions of the code block 44
being executed by the lookup processors 38 before memory
access, the lookup processors 38 will begin memory accesses
M1-M4 staggered in time as a result of the staggered receipt
of input data I1-15 and the identical program being executed
by each of the lookup processors 38. This staggering prevents
interference in memory accesses and high utilization of the
lookup memory 34.

After a tile delay 68 determined by the number of instruc-
tions of the code block 44 after memory access, output data
01-04 is provided by each of the lookup processors 38 in
staggered fashion for transmission to the next tile 30 or the
general-purpose processor 26. The output data 01-O4 will
carry with it addresses derived from the topology data 46
(typically based on the results of the lookup) allowing this
output datato be properly routed. A static sum ofthe delays 66
and 68 for the different tiles 30 involved in the lookup pro-
vides a fixed pipeline delay permitting the general-purpose
processor 26 to identify the results of its lookup requests
previously forwarded to the lookup engine 28.

The code block 44 associated with a given tile 30, and thus
with the multiple processors 38 of the tile 30, may be char-
acterized in that the resource consuming instructions, defined
as: the send instruction (sending data to another tile 30), load
instruction (reading memory 34) and save instruction (writ-
ing memory 34), are all the same number of clock cycles from
the beginning of the program of the code block 44. In this way,
conflicts in access of memory 34 or transmitting data among
the processors 38 are simply avoided. In other words, because
the processors 38 begin the code block 44 at successive times,
their access to resources is correspondingly staggered.

Referring now to FIG. 4, it will be understood that the
present architecture, by virtue of the ability to freely inter-
connect the tiles 30, allows the topology of the memory of the
lookup table divided among lookup memories 34 to be pro-
grammably reorganized for effective processing. For
example, a memory lookup problem, for example for an IP
address, may be logically represented in a tree structure as
shown in FIG. 4. In this memory lookup process, incoming IP
address data 70 may have three address fields (here repre-
sented as a single bit) compared successively at three diftferent
levels in the tree. Thus, for example, a first address field may
be evaluated with respect to data in memory portion A to
identify a network. Depending on the results of that evalua-

US 7,940,755 B2

9

tion the second address field identifying a sub-network may
be compared to data contained in memory portions B or C
(depending on the results of the determination at A). At the
third level of the tree, a third field representing a lower-level
sub-network may be compared to data contained in memory
portions D, E, F, or G (depending on the previous evalua-
tions).

Efficient implementation of this tree structure can be done
by connecting tiles associated with memory portions A-F ina
similar tree using the grid 32 between the tiles 30. Thus,
referring to FIG. 5, which shows an example tile array 31 of
three rows in three columns, the IP address data 70 may be
received at tile A in the upper left-hand corner of the array 31
which may be programmed to connect to tiles 30 at the second
row, first column and first row, second column representing
memory portions B and C respectively. Likewise memory
portions D and E logically related to memory portion B may
be implemented by tiles in the third row, first column, and
third row, second column, respectively, adjacent to memory
portion B and connected thereto by means of the interconnec-
tion circuits 48. Similarly, memory portions F and G related to
memory portion C may be implemented by tiles in the second
row, second column, and first row, third column adjacent to
the tile implementing memory portion C.

Thus, the tiles 30 may be assigned to memory portions as
follows:

A
B
D

tm 0

G
Y
X

where the tiles labeled Y and X perform no processing but
simply provide a conduit interconnecting the tiles. This
assignment of'tiles to logical memory structures provides one
possible organization of the tiles 30 for tree type calculations
and significantly one that improves the efficiency of the cal-
culation by allowing pipelining type processing. Other
arrangements are also possible.

Referring to FIG. 6, the passage of data among tiles 30 in
this example may be represented in a “train schedule” chartin
which the particular tiles are arrayed on the vertical axis and
clock cycles are indicated on the horizontal axes in the man-
ner of stations and schedule times in a train chart. The passage
of data through the array 31 is represented by trajectories 72.
Bifurcations in trajectories 72 represent different branches of
the tree of FIG. 4, for example, at the A node during the first
clock cycle I, at the C node during the second clock cycle 11,
etc. Ultimately the data from all trajectories 72 converge at
tile X for communication back to the general-purpose pro-
cessor 26.

Importantly, the schedule of FIG. 6 shows all possible data
trajectories 72 for any traversal of the tree of FIG. 4 thus
permitting the routing of data to be statically planned by a
compiler to ensure consistent delay between the arrival of
data at the tile A and its exit at tile X regardless of the
trajectories 72 (simplifying the pipelining process) and in
more complicated examples of limiting collisions between
data passing through tiles 30. It is important to note in this
example that only one trajectory 72 from a given tile will be
traversed at a time and hence places where trajectories 72
converge on a tile do not represent conflicts in network com-
munication.

Referring now to FIG. 7, a different memory lookup prob-
lem may make use of the completely different memory topol-
ogy. Consider now a hash table 74 that may be used for

20

25

30

35

40

45

50

55

60

65

10

Ethernet-type address lookups. Such a hash table 74 may
provide for the parallel interrogation of memory blocks A, B,
and C using a hash code of the argument 76. The results from
each of the memory portions A, B, and C are then assessed at
a logical Or-gate. Referring to FIG. 8, this topology may also
be implemented through the tiles 30 of the present invention.
In this case the hashed value of the argument 76 may be
received by an input tile I in the upper left-hand corner of the
array 31 which may be programmed to connect to the other
tiles providing memory portions A, B, and C in parallel per of
the hash table topology of FIG. 7. Thus, memory portions A
and C may be assigned to tiles in the first row, second column
and second row, first column respectively, to connect directly
to the tile I while memory portion B may be assigned to a tile
in the second row, second column communicating indirectly
with tile [via the tile implementing memory portion A acting
as a conduit. The results from each of the tiles representing
memory portions A, B, and C may then be routed to atile O for
evaluation of the results (whether any individual hash tables
have a matching entry) and output to the general-purpose
processor 26. Thus, the tiles may be arranged as follows

I
C
X

ow»

where tile X serves in this example only for routing. The train
schedule for this example is shown in FIG. 9 and differs from
the example of FIG. 6 in that each of the trajectories 72 is
executed simultaneously and thus collisions in the grid 32 and
conflicts in processor demands can occur. Initially, node I
must transmit the data to be hashed to the tiles representing
memory portions A, B, and C in three sequential operations.
In this example during the first clock cycle II after receipt of
the data at tile I, the tile for memory portion A receives the
data. During the second clock cycle 111, the tile for memory
portion A receives the data for the tile representing memory
portion B (as a conduit) and, at a third clock cycle IV, node C
receives the data from node I and node B receives the data
from node A. Node O then receives the results from nodes A,
B, and C over clock cycles 1V, V, and VI to provide an output
to the processor 26 at VII.

Referring to FIG. 11, these simple examples can be routed
with no collisions even with a single connection between each
tile 30; however, it will be understood that messages may be
sent over either the first or second interconnections 50a and
5054 further eliminating the risk of collision. In addition, data
may be routed through unused nodes or tiles 30 to provide for
synchronization or effective buffering of the data through the
machine. Generally the routing must be performed to con-
form with the topology of rows and columns of the tiles 30;
that is, (1) data may only move from a given tile to an adjacent
tile in one clock cycle, (2) only one data packet may be
received by a given tile for processing in one clock cycle, and
(3) at most two data packets may arrive at a given tile at a
given clock cycle.

Referring now to FIG. 10, the architecture of the present
invention, as noted above, makes it possible to programmably
reconnect the tiles 30 to optimize memory lookup problems
in a way that permits the static avoidance of routing problems
such as described above. This static routing solution may be
fully embodied in the code blocks 44 and topology data 46
which together define the operation of the lookup processors
38 generated at the time of compilation.

US 7,940,755 B2

11

The compiling process performed by a program executing
typically but not necessarily on a separate processor, may, as
indicated by process block 100, begin by partitioning lookup
tasks to particular logical memory blocks solely and uniquely
accessed by those operations. This partitioning process may
be done automatically or may allow the user to identity logi-
cal memory blocks.

At process block 102, the code blocks associated with the
lookups of each logical memory block are written and com-
piled according to particular instruction sets of the lookup
processors 38. Up to this point, there is no need to relate the
memory blocks to particular tiles 30.

At process block 104, the logical memory blocks are
assigned to two physical tiles 30 either automatically or with
input from the user. In either case, at process block 106 the
assignment is evaluated, for example, by generating the logi-
cal equivalent train schedule described above to check for
routing collisions, adjacency problems, or the conflicts in the
need for resources of the processors 38. Conflicts may be
corrected automatically by the compiler, for example using a
trial and error process, or other iterative process or techniques
known in the art.

At process block 108, based on the routing selected, the
topology data 46 entries are computed and, at process block
110, the code blocks 44 and topology data 46 are loaded in to
the memory of each of the tiles 30.

Referring now to FIG. 12 it will be understood that to the
extent that the tiles 30 operate independently, multiple difter-
ent lookup problems can be executed by the array 31 simul-
taneously. This permits, for example, the generation of a
router that may decode both IP addresses and the local Eth-
ernet addresses in a gateway type application. In this case, the
tiles 30 marked by a rectangle represent those undertaking an
1P lookup while the tiles 30 marked by a diamond are tiles
implementing a packet classification process, and tiles 30
marked by a circle are those implementing a hash table for
Ethernet lookup.

The architecture of the present invention can generally
perform lookup operations and specifically lookup opera-
tions associated with packet types or addresses. Thus, it can
be used not only for routing packets but also for packet
classification, deep packet inspection for security applica-
tions, and network address translation.

The term router used herein should be understood broadly
to include any device providing for packet processing and
thus not only routers but also devices that are often referred to
as switches.

It should be understood that the invention is not limited in
its application to the details of construction and arrangements
of'the components set forth herein. The invention is capable of
other embodiments and of being practiced or carried out in
various ways. Variations and modifications of the foregoing
are within the scope of the present invention. It also being
understood that the invention disclosed and defined herein
extends to all alternative combinations of two or more of the
individual features mentioned or evident from the text and/or
drawings. All of these different combinations constitute vari-
ous alternative aspects of the present invention. The embodi-
ments described herein explain the best modes known for
practicing the invention and will enable others skilled in the
art to utilize the invention.

We claim:

1. A network router for routing data packets in a network
comprising:

a series of ports receiving and transmitting data packets;

20

25

30

35

40

45

50

55

60

65

12

a general-purpose processor communicating with the
series of ports to provide for network routing functions
including packet processing but exclusive of some data
packet lookup functions;

a packet lookup engine communicating with the general-
purpose processor to receive data therefrom and to con-
duct memory lookups based on the data, the packet
lookup engine comprising a set of intercommunicating
computational tiles each tile including:

(1) a set of lookup processors providing elemental memory
lookup functions, each lookup processor associated with
a program memory for holding program instructions;

(2) a lookup memory holding packet related data and
accessible by the set of lookup processors executing the
elemental memory lookup functions; and

(3) interconnection circuitry managing intercommunica-
tion of data between the tiles;

wherein the program instructions include:

(1) at least one instruction reading a register associated
with data received at the tiles;

(2) at least one instruction reading the lookup memory
associated with the tile; and

(3) at least one instruction sending data to another tile;

wherein the program instructions when executed prevent at
least one of:

(i) collisions among data being transmitted among the tiles;

(ii) conflicting demands for processing by lookup proces-
sors of a tile; and

(iii) direct transmission from one tile to a nonadjacent tile.

2. The network router of claim 1 wherein an arrival of data
at a lookup processor triggers execution of the program
instructions from a corresponding program memory and
wherein the lookup processor is idle once the program
instructions have been completed until a next arrival of data at
the lookup processor.

3. The network router of claim 1 wherein the lookup pro-
cessors provide an instruction set having program instruc-
tions to implement a function of routing data to specific other
tiles dependent on an outcome of a memory lookup of look up
memory.

4. The network router of claim 1 wherein the lookup pro-
cessors are sequenced so that different lookup processors
handle successive arrivals of data at the tile.

5. The network router of claim 1 wherein the lookup pro-
cessors provide only integer computational support without
branch prediction.

6. The network router of claim 1 wherein the interconnec-
tion circuitry does not provide buffering of transmitted data.

7. The network router of claim 1 wherein the interconnec-
tion circuitry does not provide flow control that coordinates a
rate of data transmission among tiles.

8. The network router of claim 1 wherein the interconnec-
tion circuitry routes data among the tiles according to a rout-
ing header applied to the data by the lookup processor accord-
ing to an execution of the program instructions.

9. The network router of claim 1 wherein the interconnec-
tion circuitry routes data between the tiles according to a
routing header associated with the data and the interconnec-
tion circuitry follows static programmed rules in interpreting
the header to route the data.

10. The network router of claim 1 wherein the interconnec-
tion circuitry routes data among the tiles according to a rout-
ing header associated with the data and identifying a final
destination tile for the data where the data will be processed
by a lookup processor.

11. The network router of claim 1 wherein the interconnec-
tion circuitry routes data among the tiles according to a rout-

US 7,940,755 B2

13

ing header indicating a multicasting of the data and a desti-
nation tile for the data, causing the routed data to be processed
by all tiles receiving the data before the receipt of the data by
the destination tile.

12. The network router of claim 1 wherein the interconnec-
tion circuitry provides at least two physically distinct chan-
nels between a tile and the other tiles to which it is connected
by channels, each channel providing independent input and
output pathways.

13. The electronic processor of claim 1 wherein the lookup
processors are programmed so that different tiles represent
different nodes of a lookup tree.

14. The electronic processor of claim 1 wherein the lookup
processors are programmed so that different tiles represent
different ranks of a hash table address.

15. A network router for routing data packets in a network
comprising:

a series of ports receiving and transmitting data packets;

a general-purpose processor communicating with the
series of ports to provide for network routing functions
including packet processing but exclusive of some data
packet lookup functions;

a packet lookup engine communicating with the general-
purpose processor to receive data therefrom and to con-
duct memory lookups based on the data, the packet
lookup engine comprising a set of intercommunicating
computational tiles each tile including:

(1)asetof lookup processors providing elemental memory
lookup functions, each lookup processor associated with
a program memory for holding program instructions;

(2) a lookup memory holding packet related data and
accessible by the set of lookup processors executing the
elemental memory lookup functions; and

(3) interconnection circuitry managing intercommunica-
tion of data between the tiles

further including a compiler executing on a an independent
electronic processor generating program instructions for
each of the lookup processors, the program instructions
including:

(1) at least one instruction reading a register associated
with data received at the tiles;

(2) at least one instruction reading the memory associated
with the tile; and

(3) at least one instruction sending data to another tile;

wherein the compiler includes a routing analyzer analyzing
a path and timing of data among tiles to detect at least
one of:

(1) collisions among data being transmitted among the tiles;

(ii) conflicting demands for processing by lookup proces-
sors of a tile; and

(ii1) direct transmission from one tile to a nonadjacent tile.

16. A network router for routing data packets in a network
comprising:

a series of ports receiving and transmitting data packets;

a general-purpose processor communicating with the
series of ports to provide for network routing functions
including packet processing but exclusive of some data
packet lookup functions;

20

25

30

35

40

45

50

55

14

a data packet lookup engine communicating with the gen-
eral-purpose processing program to conduct memory
lookups based on information provided by the general-
purpose processor, the data packet lookup engine com-
prising a set of intercommunicating computational tiles,
each tile including at least one lookup processor and a
memory comprising a portion of a look-up table acces-
sible uniquely by the tile, wherein the tiles include inter-
connection circuitry and programmable memory, the
programmable memory receiving instructions which
provide a static topology of interconnection among the
tiles through the interconnection circuitry during opera-
tion of the router

wherein the instructions in the programmable memory
include:

(1) at least one instruction reading a register associated
with data received at the tiles;

(2) at least one instruction reading the lookup memory
associated with the tile; and

(3) at least one instruction sending data to another tile;

wherein the program instructions when executed prevent at
least one of:

(i) collisions among data being transmitted among the tiles;

(ii) conflicting demands for processing by lookup proces-
sors of a tile; and

(iii) direct transmission from one tile to a nonadjacent tile.

17. The network router of claim 16 wherein each tile
includes a set of lookup processors activated in a fixed
sequence so that different lookup processors handle succes-
sive arrivals of data at the tile.

18. The network router of claim 16 wherein an arrival of
data at a lookup processor triggers execution of the program
instructions from the corresponding program memory and
wherein the lookup processor is idle once the program
instructions have been completed until a next arrival of data at
the lookup processor.

19. The network router of claim 16 wherein the lookup
processors provide only integer computational support with-
out branch prediction.

20. The network router of claim 16 wherein the intercon-
nection circuitry does not provide buffering of transmitted
data.

21. The network router of claim 16 wherein the intercon-
nection circuitry routes data among the tiles according to a
routing header applied to the data by the lookup processor
according to an execution of the program instructions.

22. The network router of claim 16 wherein the intercon-
nection circuitry may receive data from other tiles from dif-
ferent directions, and wherein the interconnection circuitry
establishes a priority among the different directions to accept
data from a first direction and ignore data from a second
direction when the data from the first and second directions
arrives at the same time.

	Bibliography
	Abstract
	Drawings
	Description
	Claims

