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1
METHOD FOR DATA OSCILLATOR
DETECTION USING FRICTIONALLY
DAMPED HARMONIC OSCILLATORS

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This invention was made with government support under
RR025012 awarded by the National Institutes of Health. The
government has certain rights in the invention.

FIELD OF THE INVENTION

The field of the invention is systems and methods for
time-frequency analysis. More particularly, the invention
relates to systems and methods for detecting and analyzing
oscillations in acquired signals, such as electrophysiological
signals indicative of neuronal and other bioelectrical activ-

ity.
BACKGROUND OF THE INVENTION

Time-frequency analysis involves monitoring the changes
in the frequency spectrum of a system over time. The
analysis is of importance in a wide variety of fields of
science and engineering. The old work-horse of frequency
analysis, the fast Fourier transform (“FFT”), can be utilized
in time-frequency analysis by segmenting data into time
windows. By monitoring changes in the power spectrum in
each time window, the presence or absence of activity at
certain frequencies within that time window can be deter-
mined. The segmentation process, however, introduces arti-
facts and precludes finer time resolution within the time
windows. To address this problem, several refinements of
the FFT approach have been proposed. These refinements,
however, are all somewhat labor intensive, requiring judg-
ments to be made about time window sizes and windowing
functions, which may be different for different frequency
ranges.

Over the last twenty years, wavelet transforms have
become an important new tool for performing time-fre-
quency analysis. A wavelet includes an oscillatory wave-
form that has a fairly well-defined frequency, and which
exists only for a brief period of time. By convolving time
series data with a suitably chosen wavelet, a determination
of whether an oscillation of a certain frequency is present at
a certain interval in time can be made, and in a manner that
is more convenient and less susceptible to artifact than time
windowed FFT. There are many kinds of wavelets and many
applications of wavelet transforms to electroencephalogra-
phy (“EEG”) analysis.

A defining property of wavelets is the admissibility cri-
terion, a consequence of which is that the mean of the
wavelet when averaged over all time must equal zero. This
criterion ensures that a stable inverse transform exists. A
stable inverse transform is important for reliable signal
transmission and reconstruction. However, in many fields of
science and engineering, signal reconstruction is not the
desired end result; rather, it may only be desirable to detect
whether oscillations of certain frequencies appear, at what
times they appear, and for what duration of time they exist.
For example, in the brain, it is known that oscillations in the
theta (4-8 Hz) and gamma (30-100 Hz) ranges are associated
with cognitive activity. Oscillations from these two fre-
quency ranges are sometimes phase-coupled, such that the
faster gamma frequencies ride entirely on the crests, or
troughs, of slower theta rhythms. Of increasing clinical
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interest are high frequency oscillations (“HFOs”) in the
range of 200-500 Hz. These oscillations tend to occur more
frequently in brain regions that are epileptogenic, and so
may be useful as a marker for tissue that should be surgically
resected in patients with refractory epilepsy. For these
applications, it might be desirable to relax the admissibility
criterion. Relaxing the admissibility criterion results in a
wide class of waveforms called pseudo-wavelets, or quasi-
wavelets, which have found application in the study of
turbulence and other complex phenomena.

One such pseudo-wavelet was previously described for
discretized data applications by D. Hsu, et al., in “An
Algorithm for Detecting Oscillatory Behavior in Discretized
Data: the Damped-Oscillator Oscillator Detector,” 2007;
arXiv:0708.1341v1 [g-bio.QM]. The pseudo-wavelet dis-
cussed by Hsu, et al., corresponded to using a mathematical
model of a frictionally damped harmonic oscillator to detect
data oscillations of the same frequency as the damped
harmonic oscillator. While this pseudo-wavelet included a
friction factor to damp the mathematical oscillator, the
friction factor was used as a free parameter to control noise
in the time-frequency analysis process. Thus, while the
pseudo-wavelet discussed in Hsu, et al., provided temporal
resolution benefits, it was still constrained by existing spec-
tral resolution limitations.

It would therefore be desirable to provide a system and
method for time-frequency analysis in which higher tempo-
ral resolution than that achievable with Fourier analysis is
achievable, while simultaneously increasing the achievable
spectral resolution of the analysis. Preferably, such a dual
increase in temporal and spectral resolution would be pro-
vided without an undue increase in computational burden.

SUMMARY OF THE INVENTION

The present invention overcomes the aforementioned
drawbacks by providing a system and method for time-
frequency analysis in which acquired signals are modeled as
frictionally damped harmonic oscillators having a friction
factor that is not a free parameter, but a specific parameter
selected in a manner that provides both an increase in
temporal and spectral resolution over existing time-fre-
quency analysis methods. Moreover, with the appropriate
selection of the friction factor, the number of oscillators
required to perform time-frequency analysis over a broad
spectral range can be significantly reduced, thereby provid-
ing time-frequency analysis without an undue increase in
computational burden. To further reduce the computational
burden of time-frequency analyses, a wavefunction formal-
ism is provided for the pseudo-wavelet. Such a mathemati-
cal formalism further provides application of the pseudo-
wavelet to non-discretized data.

It is an aspect of the invention to provide a method for the
time-frequency analysis of acquired signals, such as elec-
trophysiological signals acquired from a subject. Such elec-
trophysiological signals can include those signals indicative
of neuronal or other bioelectrical activity. The provided
time-frequency analysis is also applicable to other signals,
such as those indicative of speech. The provided method
acquires signals and generates a selected number of oscil-
lators for a respective selected number of frequency values.
Each oscillator models the acquired signals as damped
harmonic oscillators that are frictionally damped by a fric-
tion factor. The friction factor is selected for each oscillator
to balance trade-offs between temporal and spectral resolu-
tion. For each oscillator, a corresponding wavefunction is
calculated, from which a spectral density metric is calcu-
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lated. For example, the spectral density metric may be a
power metric, such as a data power indicative of energy
changes in the oscillators that result from a data driving
force. A report indicating the presence of oscillations in the
acquired signals at the frequency values throughout a
desired frequency band is produced. The report includes
information related to the calculated spectral density met-
rics.

It is another aspect of the invention to provide a method
measuring correlations between oscillators having different
frequency values, or that are located at different locations in
space. For example, correlations between oscillators in
electroencephalography signals at the theta and gamma
frequency ranges can be measured. Correlation information
is calculated using a power metric such as the data power.

The foregoing and other aspects and advantages of the
invention will appear from the following description. In the
description, reference is made to the accompanying draw-
ings which form a part hereof, and in which there is shown
by way of illustration a preferred embodiment of the inven-
tion. Such embodiment does not necessarily represent the
full scope of the invention, however, and reference is made
therefore to the claims and herein for interpreting the scope
of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flowchart setting forth the steps of an exem-
plary method for analyzing an electrophysiological signal
using a damped-oscillator oscillator detector pseudo-wave-
let;

FIG. 2 is a block diagram of an exemplary electroen-
cephalography system; and

FIG. 3 is a pictorial representation of an exemplary deep
brain stimulation system configured to acquire signals that
measure neuronal activity and to deliver electrical stimulus
therapy to a subject’s brain.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention provides a so-called damped-oscil-
lator oscillator detector (“DOOD”) pseudo-wavelet for
detecting oscillations in an acquired signal, such as an
electrophysiological signal indicative of neuronal or other
bioelectrical activity. Generally, the DOOD pseudo-wavelet
provides a mathematical model for oscillating signals that
generates mathematical oscillators that are analogous to
mechanical oscillators. One approach to generating the
DOOQOD oscillators is to generate a set of mathematical
harmonic oscillators, each of which has its own natural
frequency of oscillation. Then, a time series of data, such as
an electrophysiological signal, serves as a driving force that
acts upon each mathematical harmonic oscillator. Thus,
starting with the mathematical oscillators all at rest, the time
series data will drive activity in the mathematical oscillators.
If there is an oscillation in the data (a “data oscillator”) that
is substantially resonant with one of the generated math-
ematical oscillators, then that mathematical oscillator will
steadily gain in energy. That mathematical oscillator will
continue to gain in energy as long as the data oscillator
remains on. If the data oscillator is turned off, the energy of
the mathematical oscillator will plateau. If the data oscillator
is turned back on again, the mathematical oscillator will
either gain or lose energy, depending on whether the data
oscillator is in-phase or out-of-phase with the mathematical
oscillator. Sudden increases or decreases in energy are both
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markers of a resonant oscillation in the data. Therefore, the
time rate of change of the energy of each mathematical
oscillator, that is, its power, is monitored.

Time resolution is improved in this scheme by allowing
friction to act on the mathematical oscillators. Friction
induces the mathematical oscillators to approach a steady
state. The steady state will be different depending on
whether or not there is resonant driving of the mathematical
oscillators by data oscillators. The higher the friction, the
faster the mathematical oscillator approaches steady state
and the better the time resolution for detecting when data
oscillators turn on and off.

By way of example, let x,,,(t) represent the voltage
recorded by a given electrode at time, t, and let v (1)
denote its first time derivative. For ease of notation, the
succeeding discussion considers time series data from one
electrode; however, the generalization to many electrodes is
mathematically straightforward. Let h(t) denote the driving
force of the mathematical oscillators, which can be selected
as either x (1) or v, (t). If h(t)=x,,,,(t), the algorithm is
referred to as X-DOOD. If h(t)=v,,,,(t), the algorithm is
referred to as V-DOOD. Here “X” is meant to suggest a
coordinate, and “V,” a velocity.

The time series in X,,,(t) is more sensitive to low
frequency activity, while that in v, (t) is more sensitive to
higher frequency activity. The reason that v, (t) is more
sensitive to higher frequency activity is because the instan-
taneous time derivative of a sinusoid is equal to the fre-
quency of oscillation of the sinusoid times the amplitude of
the sinusoid. For example, if x,,,,(t)=A-sin(wt), then v,,,,
(H)=A-w-cos(mwt). The extra factor of w in v, (t) magnifies
the effect of high frequency oscillations in v ,,,(t) relative to
that of low frequency oscillations. Conversely, for very
small w, the extra factor of w in v, (t) reduces the effect of
low frequency oscillations in v ,,,(t) relative to that of high
frequency oscillations. Thus, it is contemplated that
V-DOOD is more sensitive to high frequency oscillations
while X-DOOD is more sensitive to low frequency oscilla-
tions. In general, it may be desirable to implement both
X-DOOD and V-DOOD when performing time-frequency
analysis in order to explore both low frequency and high
frequency structure.

Let x(n,t) represent the coordinate of the n” mathematical
oscillator, v(n,t) its velocity, M(n) its mass, g(n) its friction
factor, and wy(n) its radial frequency, withn=1 . .. N, where
N, is the total number of mathematical oscillators to be
generated. For convenience, the masses can be set equal to
one; that is, M(n)=1 for all n. The equation of motion for the
n” mathematical oscillator is then:

3 x(n, 1) (1

ar?

= h(r) — wi(mx(n, D) — 2g(Rv(n, 1%

The simplest non-transient solution for Eqn. (1) can be
written in terms of a complex wavefunction, (n,t), as:

Yn, ) = f rh([’).e*(g(n(fiw(n)).(r—r’) dr: 2)
0

where m(n)*=m,*(n)-g*(n). Taking y,(n,t) and Pn,t) to
be the real and imaginary parts of y(n,t), respectively,
yields:
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1 (3)
x(n, 1) = o0 Yin, 1),

g )

v(n, 1) = Yr(n, 1) = ] im0

The wavefunction, y(n,t), can be calculated rapidly using
a recursion relationship. To derive this relationship, take one
incremental time step, Ot:

1+t X , (5)
Wi, 1460 = f WY )- & @ISt g
0

which, for a significantly small time step, dt, can be
rewritten as:

(o2, 14+00)=h(+01) dr+e~ EITINDRLy, 5y 1) (6).

Using Eqn. (6) and given h(t+0t) and 1 (n,t), Y(n,t+dt) can
be calculated rapidly without needing to recalculate y(n,t) or
to keep track of h(t) from prior time steps. It is noted that the
exponential factor in Eqn. (6) has to be calculated only once
before taking the first time step, thereby saving a certain
amount of computational cost. Once (n,t+dt) is calculated,
x(n,t+90t) and v(n,t+3T) can be readily calculated using Eqns.
(3) and (4).

The instantaneous energy of the n” mathematical oscil-
lator has terms that involve the friction factor and terms that
are independent of the friction. Since it is desirable to
measure changes in the energy due to coupling to h(t), the
terms that depend on the friction factor can be typically
dropped wherever they arise. The instantaneous energy of
the n” frictionless harmonic oscillator is given by:

Eo(n) = %vz(n, D+ %w%(ﬂ)xz(n). @

The first term is the kinetic energy term, and the second
term is the potential energy term. Taking the time derivative
of Eqn (7) and inserting Eq. (1), the time rate of change of
the instantaneous energy, that is, the instantaneous power is
determined and given by:

9 ®
57 Fo() = vin, DA = 2g(mv(n. 0).

The term in Eqn. (8) containing g(n) is a term due to
friction, which may be ignored. The term containing h(t) is
the power due to the data driving force. This data driving
term is selected as a power metric that serves as a measure
of spectral density. To emphasize that this measure is that
part of the total power due only to the data driving force, this
power metric is referred to as the “data power.” The data
power is, therefore, written as:

S(n,H)=v(n,Dh(1) ©).

The data power, S(n,t), is sensitive to a broad range of
frequencies. Furthermore, a related measure, the square of
the data power, S*(n,t), is especially sensitive to low fre-
quency structures.

In comparison, the more traditional wavelet and pseudo-
wavelet approaches identify the total energy of the wave-
function, Y(n,t), as the spectral density, which is given as:

En,n=pn,0)1? (10).
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In the absence of friction, the total energy, E(n,t), plateaus
when there are no active data oscillators. In the presence of
friction, the total energy decays back to baseline with a rate
given by the friction constant, g(n), when the data oscillators
are turned off. One might imagine looking at the total power,
given by 3E(n,t)/3t. This quantity drops back to baseline
faster than the total energy, but it represents the total power
and contains extraneous terms, such as the time rate of
change of the energy due to friction, i.e., the second term in
Eqn (8). Therefore, neither E(n,t), nor 3E(n,t)/at, is as
sensitive to state changes in the data oscillator as is S(n,t).
In some instances, the data power, S(n,t), can show a sudden
drop almost immediately after a data oscillator is turned off,
within one period of the resonant frequency. Although the
data power, S(n,t), is still subject to the uncertainty principle,
temporal resolution is typically much better with S(n,t) than
with E(n,t). Thus, the data power, S(n,t), provides a spectral
density metric with superior temporal resolution character-
istics relative to currently used metrics, including total
energy, E(n,t), and the time rate of change of the total energy,
SE(n,t)/at.

The friction factor, g(n), can be used to sharpen the time
resolution of the data power spectral density, S(n,t). If a data
oscillator turns on, drives up the spectral power to a new
level, and then turns off, the friction factor will bring the data
power spectral density back down to baseline on a time scale
of 1/g(n). Thus, larger friction factors will bring down the
spectral power faster, thereby giving better time resolution
as to when the data oscillator turned off. However, larger
friction factors will also cause broadening of the spectral
peak. This manifestation of the uncertainty principle is
expected and unavoidable. For example, if one inserts a pure
sinusoid for h(t) in Eqn. (2), one finds a Lorentzian line
shape with a peak at the frequency of the sinusoid used for
h(t), and a half-width-at-half maximum (“HWHM”) given
by g(n). The larger g(n) is, the wider the Lorentzian peak
becomes.

In light of these considerations, when choosing g(n), a
trade-off between better time resolution or better frequency
resolution is confronted. Note from Eqn. (2) that if g(n)=0 is
selected for all n, then, essentially, the finite Fourier trans-
form is recovered to within a phase factor. For best time
resolution, g(n) may be chosen to be as large as possible, but
no larger than the frequency value, f(n), of the oscillator
because it does not make sense to try to obtain better time
resolution than the time period of the oscillation itself. For
better frequency coverage that avoids any gaps in a desired
frequency range, neighboring oscillators should be consid-
ered.

For example, if the frequency values, f(n), are selected to
lie on a conventional linear grid with:

S+ )=fln)+of (11);
then it is most reasonable to select the friction factors as:

gn)=2n-0f (12);

so that the spectral bandwidths of neighboring mathemati-
cal oscillators overlap, leaving no gap between. In such an
instance, the absolute frequency resolution is given by of,
while the relative frequency resolution is given by:

g _ of
o)  f)

a3
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Note that in such an instance, the relative frequency
resolution is proportional to 1/n; that is to say, the relative
spectral bandwidth of each mathematical oscillator
decreases for higher frequency oscillators.

Rather than setting the absolute frequency resolution 5

constant for every mathematical oscillator, the relative fre-
quency resolution should be set as a constant. For example,
a grid constant, g, can be selected as:

_forD-fo.
g0 o)

14

where the grid constant, g, is a small positive number that
is the same for each mathematical oscillator. It is noted that
smaller values of g, give better frequency resolution, but
poorer time resolution. Such a choice then implies that the
frequency grid is no longer linear, but geometric. That is to
say, Eqn. (14) implies that the frequency values are selected
in accordance with:

S+ 1)=fln) (1+o)

When the frequency range that needs to be spanned for a
given problem is small, say on the order of 1-2 orders of
magnitude, then it does not matter as much whether a linear
or geometric frequency grid is selected. However, when the
frequency range that needs to be spanned is on the order of
three or more orders of magnitude, then computational
economy suggests that one should adopt a geometric fre-
quency grid. In this way, one can span the greatest frequency
range with the smallest number of mathematical oscillators,
while still maintaining the same relative spectral resolution
of each mathematical oscillator.

By way of example, a geometric frequency grid may be
employed when performing time-frequency analysis over a
broad spectral range, such as 0.5-6000 Hz. In such an
example:

(15).

A)=fn-1)(1+go), with f{1)=0.5 Hz;

£0=0.02; and

gm=2mgofln).

Using this selected geometric frequency grid, the spectral
range of 0.5-6000 Hz can be spanned using only 476
mathematical oscillators. In comparison, if a linear fre-
quency grid with df=g(n)=1 Hz is utilized, upwards of 6000
frequency points would be required to span the same range
as with the aforementioned geometric frequency grid.

The sampling rate, f;, of the raw data places an upper limit
on the highest frequency oscillator that can be reliably
calculated because, if there is an oscillation in the data that
is of the same frequency or higher, then it will be artifac-
tually “folded” into the dynamics of oscillators of somewhat
lower frequency. This phenomenon, known as aliasing,
applies equally to FFT and to the DOOD pseudo-wavelet. It
is advisable, then, to consider using oscillators of frequency
values no higher than f/2 for this reason.

For every pair of values for x(n,t) and v(n,t), calculated
via Eqns. (3)-(4), an instantaneous phase, 6(n,t)=m(n)t+d(n),
can be defined via:

x(n,1)=A-sin(6(n,1)) (16);

(i, t)=4-w-cos(0(n,1)) (17);
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and

w(n)-x(n, 1) ) (18)

O(n, 1) = arctan( D

Since the spectral density of interest is the data power, a
variety of correlation functions from the data power spectral
density can be produced. One such correlation function, the
pair correlation function, is defined as:

L 19
Clm, n; 1) ={S(m, NS, 0)) = VZ S(m, 1+ ké)S(n, kor).
"=t

To extract phase information, it is desirable not to intro-
duce phase shifts through the sign of the data power. This
kind of artifact is preventable by squaring the data power
before taking the time average:

Celm, m; 1) = (S%(m, NS%(n, O)cosb(n, O)); (20)
Cy(m, m; 1) = (S%(m, DS>(n, 0)sind(n, 0)); 21
B Cs(m, m; 0)\ (22)

. )= ol o
23

oolm, n) = \/Czc(m, n; 0) + C%(m, n 0).

Equations (20)-(23) can be used to check whether the
phase of the n™ oscillator modifies the data power amplitude
of the m” oscillator, where the n” and m” oscillators have
different frequency values, but may be spectrally adjacent. If
the m” oscillator tends to be more activated at a particular
phase of the n” oscillator, then o,(m,n) will be relatively
larger for that pair of (m,n), and 6,(m,n) will give the
relative phase of the n? oscillator during which the square
magnitude of the data power of the m™ oscillator is largest.

With the foregoing explanation of concepts related to the
application of the DOOD pseudo-wavelet to the detection of
oscillations in a given signal in place, referring now to FIG.
1, a flowchart setting forth the steps of an exemplary method
for analyzing a particular signal including oscillations, in
this case, electrophysiological signals, such as electroen-
cephalography (“EEG”) signals, is illustrated. As applied to
EEG signals, the DOOD method models the EEG signals as
damped harmonic oscillators being affected by a selected
friction factor that forms a part of the DOOD pseudo-
wavelet. Particularly, the friction factor is selected to pro-
vide a spectral detection band centered about a given fre-
quency value, such that fewer oscillators are required to
provide detection coverage of a desired frequency range.
The friction factor also provides an increase in temporal
resolution to the detection process. In this manner, time-
frequency analysis can be performed over a broad spectral
range with high temporal resolution. It should be appreci-
ated that while the present invention is described with
respect to the analysis of electrophysiological signals, the
time-frequency analysis method is also applicable to other
applications, such as voice recognition, in which it is desir-
able to provide high temporal resolution over a broad range
of frequency values.

The analysis method begins with the acquisition of elec-
trophysiological signals from a subject, as indicated at step
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102. For example, the electrophysiological signals are
indicative of neuronal activity and are acquired by an EEG
system or a deep brain stimulation system that is configured
to measure neuronal activity in addition to supplying elec-
trical stimulus therapy. A desired number of oscillators are
generated, as indicated at step 104. As discussed above in
detail, each oscillator models the acquired signals as a
damped harmonic oscillator with a given frequency value
and a given friction factor. Thus, when generating each
oscillator, a friction factor is selected. The choice of friction
factor is made while balancing trade-offs in temporal and
spectral resolution. For example, to improve temporal reso-
Iution the friction factor is selected to be as large as possible
while being smaller than the frequency value of the oscil-
lator. That is:

&m<Sn)

To provide a spectral resolution capable of covering a
broad frequency range that spans many orders of magnitude,
for example three of more orders of magnitude, a geometric
grid spacing is used between oscillators. That is:

Sn+)=fln) (14go) with go>0

In such an instance, it is desirable to match the friction
factor to the chosen frequency spacing. For example, the

(24).

(25).

friction factor is selected as:
g(m)=fln)log(1+go) (26);
or, for go<<1,
gm)=gflm) (27).

It is noted that when a nonlinear frequency spacing
between oscillators is employed, conventional Fourier
analysis techniques are inapplicable. That is, Fourier analy-
sis techniques, such as those that rely on the fast Fourier
transform (“FFT”), require a uniform, linear spacing
between data points in order to properly operate on the data
samples and to accurately identify the presence of oscilla-
tions at the desired frequency values.

After the desired oscillators have been generated, a wave-
function is calculated for each oscillator in accordance with
Eqn. (6), as indicated at step 106. Each wavefunction is
recursively calculated using Eqn. (6) given initial values for
h(t+0t) and 1(n,t). The initial value of y(n,t) may, for
example, be set as zero; however, other alternatives will be
appreciated by those skilled in the art. The calculated
wavefunctions are then utilized to calculate x(n,t) and v(n,t)
for each respective oscillator, as indicated at step 108. For
example, x(n,t) is calculated in accordance with Eqn. (3),
and v(n,t) is calculated in accordance with (4). Having
calculated x(n,t) and v(n,t) for each oscillator, a spectral
density metric, such as a power metric, is calculated next, as
indicated at step 110. While the total energy, E(n,t), and time
rate of change of the total energy, 3E(n,t)/3t, can be calcu-
lated as the spectral density metric, it is desirable to calculate
the data power in accordance with Eqn. (9). Moreover, in
some applications, such as those in which low frequency
structures are anticipated, the square of the data power,
S*(n,t), may be calculated as the spectral density metric. The
data power provides a spectral density measure that has a
higher temporal resolution than both E(n,t) and 2E(n,t)/3t,
thereby providing an improved time-frequency analysis
metric. It is noted that it may not be desirable to determine
the spectral density metric at every instant in time. For
instance, it may be desirable to determine the spectral
density metric only over a selected time interval, At. In such
an instance, the spectral density metric can be temporally

10

20

25

30

40

45

50

55

60

65

10

averaged over consecutive time intervals, each of a duration
At, and written out as output at the termination of each such
time interval.

Following the calculation of the spectral density metric, a
report is generated, as indicated at step 112. By way of
example, the report can include providing a visual display to
a user, the display indicating the presence of oscillations in
the acquired electrophysiological signals at certain fre-
quency values, as identified by the calculated spectral den-
sity metric.

Optionally, the instantaneous phase of each generated
oscillator is calculated, as indicated at step 114. This instan-
taneous phase information is utilized to determine correla-
tions between oscillators having different frequencies or that
are located at different points in space, as indicated at step
116. This correlation information is conveyed, for example,
via correlation functions calculated using the data power,
S(n,t). Exemplary correlation functions include the pair
correlation functions provided, generally, in Eqns. (19)-(23).
This correlation information is utilized to assess whether
coupling between oscillators is occurring. For example, the
correlation information can be used to assess whether theta
oscillations are coupled to higher frequency gamma oscil-
lations. Information related to such a coupling is useful for
recognizing patterns of seizure in epilepsy. It is contem-
plated that this information can be utilized to identify the
onset of seizure such that an interventional electrical stimu-
Ius can be provided by way of a deep brain stimulation
system to suppress the seizure event. For instance, if a
seizure pattern is recognized as including a particular theta
oscillation coupled to a number of gamma oscillations, in a
specific spatial distribution, then it is contemplated that an
electrical stimulation that mimics the theta-gamma temporal
pattern, but that randomizes the spatial pattern, can be
provided to the patient in order to disrupt the seizure. Such
a pattern of stimulation may break seizures and, if applied
repeatedly, may help “erase” the seizure pattern from the
brain. Such methods of using temporal and spatial distribu-
tions of oscillations to design electrical stimulation therapies
are described, for example, in co-pending U.S. patent appli-
cation Ser. No. 12/426,430, which is herein incorporated by
reference in its entirety. Other uses for this correlation
information include supplementing presurgical plans for
resection of seizure prone regions of the brain, and assessing
drug toxicity for both clinical drug trials and a patient-by-
patient evaluation. Like the spectral density metric, the
instantaneous phase and correlation information can be
included in the report produced at step 112.

Referring now to FIG. 2, an exemplary electroencepha-
lography (“EEG”) system 200 for acquiring electrophysi-
ological signals indicative of neuronal activity is illustrated.
The electrophysiological signals measured and acquired
with the EEG system 200 are acquired on a number of EEG
electrodes 202, or sensors, for example, of the 10-20 inter-
national electrode placement system.

During measurement of neuronal activity with the EEG
system, a continuous stream of voltage data representative
of an electrophysiological signal is detected by the elec-
trodes 202, which are coupled to the subject’s scalp, and the
acquired signals are sampled and digitized. Specifically, an
amplifier 204 in communication with the electrodes 202 is
used to amplify the acquired signals, after which the ampli-
fied signals are sent to an analog-to-digital (“A/D”) con-
verter 206 that converts the signals from analog to digital
format. The acquired signals can also undergo additional
preprocessing in order to remove artifacts, such as those due
to data collection and physiological causes. The digital
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signals are sent to a processor 208 that processes the signals
as described in detail above. The processor 208 is also
configured to store the processed or unprocessed signals in
a memory 210, and to display the signals on a display 212.

Referring now to FIG. 3, the present invention can be
implemented using a deep brain stimulation (“DBS”) system
300 capable of recording neural activity and administering
electrical stimulation to a target brain area to prevent antici-
pated pathological neural activity. An exemplary DBS sys-
tem 300 includes an electrode probe 302 that is capable of
both stimulating populations of neurons and measuring
single-unit neuronal activity. The probe 302 is typically
implanted in the subject and connected via an insulated lead
304 to a neurostimulator 306. It is contemplated that the lead
304 runs under the skin of the head, neck, and shoulder and
that the neurostimulator 306 is implanted to sit inferior to the
clavicle. The neurostimulator 306 includes a pulse generator
308, a controller 310, and a battery pack 312 configured to
power the DBS system 300. The neurostimulator 306 can
also include a memory to store measured neural activity data
and models for implementation on the controller 310.

In operation, the DBS system 300 measures neuronal
activity data by acquiring electrophysiological signals from
the brain with the electrode probe 302. These electrophysi-
ological signals are carried via lead 304 to the neurostimu-
lator 306 where they are processed by the controller 310.
The controller 310 analyzes the signals and identifies a
corrective stimulation signal that will prevent anticipated
pathological neural events. The selected stimulation signal is
then generated by the pulse generator 308 and delivered via
the lead 304 to the electrode probe 302, which administers
the stimulation signal to the target area. Depending on the
predicted neural activity, the stimulation signal may inhibit
the neuron, excite the neuron, or do nothing.

The present invention has been described in terms of one
or more preferred embodiments, and it should be appreciated
that many equivalents, alternatives, variations, and modifi-
cations, aside from those expressly stated, are possible and
within the scope of the invention.

We claim:

1. A computer-implemented method for analyzing elec-
trophysiological signals acquired from a subject, the steps of
the method comprising:

a) acquiring electrophysiological signals from a subject
using a device configured to measure bioelectrical
activity;

b) generating with a computer system, a selected number
of oscillators for a respective selected number of fre-
quency values, each of the selected oscillators model-
ing the acquired -electrophysiological signals as
damped harmonic oscillators that are damped by a
friction factor selected by the computer system using
the respective frequency value of the oscillator;

¢) calculating with the computer system, a wavefunction
for each oscillator;

d) calculating with the computer system, a spectral den-
sity metric for each of the selected oscillators using the
associated calculated wavefunctions and the acquired
electrophysiological signals;

e) producing with the computer system, a report indicat-
ing a presence of oscillations in the acquired electro-
physiological signals at frequency values throughout a
desired frequency band using the calculated spectral
density metrics; and

) outputting the report to a display device.

2. The method as recited in claim 1 in which the report
produced in step e) further indicates a time at which oscil-
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lations occurred in the acquired electrophysiological signals
and a duration of each oscillation that occurred.

3. The method as recited in claim 1 in which successive
oscillators have frequency values that are nonlinearly spaced
apart.

4. The method as recited in claim 3 in which the frequency
values are selected by the computer system in accordance
with f(n)=f(n-1)-(1+g,) and the friction factors are selected
by the computer system in accordance with at least one of
g(m)=f(n)log(1+g,) and g(n)=g,f(n), wherein f(n) is the
frequency value for an n” oscillator, f(n-1) is the frequency
value for an (n-1)* oscillator, g, is a frequency grid con-
stant, and g(n) is the friction factor for the n” oscillator.

5. The method as recited in claim 1 in which the spectral
density metric calculated in step d) is indicative of changes
in energy of each of the selected oscillators, the changes in
energy being due to a driving force of each of the selected
oscillators.

6. The method as recited in claim 5 in which the driving
force is at least one of the acquired electrophysiological
signals and a first time derivative of the acquired electro-
physiological signals.

7. The method as recited in claim 1 in which each of the
selected oscillators includes a spectral band defined by the
friction factor of each of the selected oscillators.

8. The method as recited in claim 1 in which the spectral
density metric is at least one of a data power and a squared
data power, and step d) includes calculating with the com-
puter system, a first time derivative of the acquired electro-
physiological signals for each of the selected oscillators
using the associated calculated wavefunction.

9. The method as recited in claim 8 in which step d)
further includes calculating the spectral density metric by
multiplying the calculated first time derivative with at least
one of the acquired electrophysiological signal and the
calculated first time derivative.

10. The method as recited in claim 1 in which the
electrophysiological signals are indicative of neuronal activ-
ity and are acquired using at least one of an electroencepha-
lography system and a deep brain stimulation system.

11. The method as recited in claim 1 further comprising
calculating with the computer system, a correlation between
at least two or more of the selected oscillators using the
calculated spectral density metric.

12. An apparatus configured to perform time-frequency
analysis of a time series of data, the apparatus comprising:

a user interface for selecting a frequency value

a processor in communication with the user interface,
configured to receive the selected frequency value and
the selected friction factor, and configured to:

(1) select a friction factor using the selected frequency
value;

(i1) generate, for the selected frequency value, an oscil-
lator modeling the time series of data as a damped
harmonic oscillator that is damped by the selected
friction factor;

(iii) calculate a wavefunction for the oscillator;

(iv) calculate a power metric for the oscillator using the
calculated wavefunction and the time series of data;

(v) identify whether a data oscillation exists in the time
series of data at the selected frequency value using the
calculated power metric;

(vi) repeat steps (1)-(v) using a plurality of different
frequency values received from the user interface to
generate a plurality of different oscillators for each of
the received plurality of different frequency values;
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(vii) produce a report using the calculated power metrics,
the report indicating a presence of the identified data
oscillations; and

(viii) outputting the report to a display device.

13. The apparatus as recited in claim 12 in which the
report produced in step (vi) further indicates a time at which
each identified data oscillation occurred, and a duration of
each identified data oscillation.

14. The apparatus as recited in claim 12 in which the
plurality of different oscillators are nonlinearly spaced apart.

15. The apparatus as recited in claim 12 in which the
processor is further configured to select the friction factor in
step (i) in accordance with at least one of g=g,, g=f'log
(14g,), and g=g,f, wherein g is the friction factor for the
oscillator, f is the frequency value for the oscillator, and g,
is a frequency grid constant.

16. The apparatus as recited in claim 12 in which the
processor is further configured to calculate a correlation
between at least two of the plurality of generated oscillators
using the calculated power metric.

17. The apparatus as recited in claim 16 in which the
correlation is a pair correlation calculated in accordance
with:

C(m,n;0)=¢ S(m,1)S(n,0)) ; wherein

C(m,n;t) is the pair correlation between an n” and an m”
generated oscillator;

S(m,t) is the power metric for the m” generated oscillator
at a time, t; and

S(n,0) is the power metric for the n” generated oscillator
at a time t=0.
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18. A computer-implemented method for analyzing a
signal to determine frequency characteristics thereof, the
steps of the method comprising:

a) selecting with a computer system, a plurality of fre-

quency values throughout a desired frequency band;

b) selecting with the computer system, a friction factor for
each selected frequency value using the respective
selected frequency value;

¢) generating with the computer system and for each
selected frequency value and respective friction factor,
an oscillator that models the signal as a damped har-
monic oscillator that is damped by the friction factor;

d) calculating with the computer system, a wavefunction
for each of the generated oscillators;

e) calculating with the computer system, a spectral den-
sity metric for each of the generated oscillators using
the associated calculated wavefunction and the signal;

f) producing with the computer system, a report indicating
a presence of oscillations in the signal at frequency
values throughout the desired frequency band using the
calculated spectral density metric; and

e) outputting the report to a display device.

19. The method as recited in claim 18 in which the
selected plurality of frequency values are non-uniformly
spaced apart.

20. The method as recited in claim 19 in which the
selected plurality of frequency values are spaced apart in
accordance with a geometric grid spacing.

#* #* #* #* #*
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