a2 United States Patent

Gupta et al.

US009830157B2

US 9,830,157 B2
Nov. 28, 2017

(10) Patent No.:
45) Date of Patent:

(54)

(735)

(73)

@
(22)

(65)

(1)

(52)

(58)

SYSTEM AND METHOD FOR SELECTIVELY
DELAYING EXECUTION OF AN
OPERATION BASED ON A SEARCH FOR
UNCOMPLETED PREDICATE OPERATIONS
IN PROCESSOR-ASSOCIATED QUEUES

Inventors: Gagan Gupta, Fitchburg, WI (US);
Gurindar S. Sohi, Madison, WI (US);
Srinath Sridharan, Madison, WI (US)

Wisconsin ALumni Research
Foundation, Madison, W1 (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 1575 days.
Appl. No.: 12/858,907

Filed: Aug. 18, 2010

Prior Publication Data

US 2012/0047353 Al Feb. 23, 2012

Int. CI.

GOGF 9/30

GOGF 9/38

GOGF 9/44

GOGF 9/45

GOGF 9/48

GOGF 9/50
U.S. CL

CPC ... GOGF 9/3838 (2013.01); GOGF 8/314

(2013.01); GOGF 8/456 (2013.01); GOGF

8/458 (2013.01); GOGF 9/4881 (2013.01):

GOGF 9/5033 (2013.01); GOGF 9/5038

(2013.01)

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

Field of Classification Search
CPC i GOG6F 9/30087; GO6F 9/3838

—_
o0

l«—] AMETHOD 2

38~

|_—26h

T
N

B.METHOD 1

50—

pa
(2]

< C.METHOD 3 (A B) 26¢

USPC ittt 712/216, 220
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,517,628 A * 5/1996 Morrison et al. 712/234
5,941,983 A * 8/1999 Gupta et al. 712214
6,950,927 B1* 9/2005 Apisdorf et al. .. . 712/216
7,571,301 B2* 8/2009 Kejariwal et al. . 712/215
8,086,826 B2* 12/2011 Brown et al. .. 712/214
8,381,203 B1* 2/2013 Beylin et al. 717/150
2004/0226011 A1* 11/2004 Augsburg GOGF 9/30123
718/100

2010/0070740 Al 3/2010 Allen et al.

OTHER PUBLICATIONS

Allen, Matthew D., et al., Serialization Sets: A Dynamic Depen-
dence-Based Parallel Execution Model, Technical Report #1644,
Aug. 2008, pp. 1-10, Computer Sciences Department, University of
Wisconsin-Madison, Madison, Wisconsin, USA.

Allen, Matthew D., et al., Metadata-Based Parallelization of Pro-
gram, Aug. 10, 2007, pp. 1-10, Computer Sciences Department,
University of Wisconsin-Madison, Madison, Wisconsin, USA.

(Continued)

Primary Examiner — David] Huisman
(74) Attorney, Agent, or Firm — Boyle Fredrickson, S.C.

(57) ABSTRACT

A system and method of parallelizing programs employs
runtime instructions to identify data accessed by program
portions and to assign those program portions to particular
processors based on potential overlap between the access
data. Data dependence between different program portions
may be identified and used to look for pending “predicate”
program portions that could create data dependencies and to
postpone program portions that may be dependent while
permitting parallel execution of other program portions.

16 Claims, 8 Drawing Sheets

f38 60 f266

12a f«— AMETHOD 2| SC3
38— ~60 26b

12b B.METHOD 1| SC3
264

g e

50~ 26¢

C.METHOD 3 (A B)

[z}

US 9,830,157 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Rinard, Martin C., The Design, Implementation and Evaluation of
Jade: A Portable, Implicitly Parallel Programming Language, A
Disseration Submitted To The Department Of Computer Science
And The Committee On Graduate Studies Of Stanford University In
Partial Fulfillment Of The Requirements For The Degree Of Doctor
Of Philosophy, Sep. 1994, pp. 1-268, Palo, Alto, CA, USA.
Pochayevets, Oleksandr, BMDFM: A Hybrid Dataflovv Runtime
Parallelization Environment for Shared Memory Multiprocessors,
Thesis in Computer Engineering, Technische Universitat Munchen,
Institut fur Informatik, Lehrstuhl fur Rechnertcehcnik und
Rechnerorganisation, 2006, pp. 1-170, Munich, Germany.

* cited by examiner

U.S. Patent Nov. 28, 2017 Sheet 1 of 8 US 9,830,157 B2
12a 12b 10
: :
t 1|
| ProCESSOR | PROCESSOR |——
14
e }— FIG. 1
CONTROL
16— CIRCUITRY |—+4—24
12¢——] PROCESSOR I-—I | PROCESSOR |-—r
| 12d
14 ——{_CACHE }
| 14
{] [[__SHARED MEMORY
1 I_\l
\ 18
18
25
20 25
PROGRAM | | RUNTIME FIG. 2
LIBRARY
28
OPERATING 2
SYSTEM 4 OUEUE
PROGRAM 26
DATA

US 9,830,157 B2

Sheet 2 of 8

Nov. 28, 2017

U.S. Patent

9¢

/ N
A
' —
i
NmA | ¥ QOHLIW'Y
i
e B =—9¢
]
N%M | 7 QOHLAW'G
poz—’ _ 9
2 P
H0SSIo04d NmAM mﬁm Y) € QOHLIWD
9
. I NmA I T QOHLIN'S
I QOHLIN'E 40SS3004d " 9e
v o g _
19e 8t det NMA | 2 QOHLINY
. . 0 9¢
e9z~" ge—” ge ez NmA 1 qoniany SFOE

]
oz

L~

U.S. Patent

Nov. 28, 2017

QUEUING

397~ rUNCTIONS

POINTER TO

407" METHOD

POINTER TO
WRITE SET

42~

44—~ PARAMETERS

oy
-
-
-
-
-
-
-

FIG. 4

38

Sheet 3 of 8

EXECUTE METHOD

ERASE FROM QUEUE [~

f—t
D

A.METHOD 2

38—~

-
N

B.METHOD 1

50—~

[—
o

C.METHOD 3 (A B)

FIG. 5

US 9,830,157 B2

|_—26b

| _—26¢

U.S. Patent

Nov. 28, 2017

Sheet 4 of 8

US 9,830,157 B2

CHECK OTHER QUEUES

51~ QUEUING
FUNCTIONS
72~/ COUNTER ID| \ ., ["INSERT SYNCHRONIZING
40—~ POINTER TO| 3 OPERATIONS
METHOD !)
POINTER TO| DE-QUEUE
2~ wrmeser |\ %] DEPENDENT METHOD
\\ ’L
44~ PARAMETERS \ T
\ g0~ RE-QUEUE DEPENDENT
LIST OF [METHOD
52~ PREDICATE \ |
METHODS \ 65
\ X[EXECUTE METHOD
\ AND ERASE
\ ‘
[RE-QUEUE POST- | g,
| PREDICATE METHODS
f38 60 /-268
FIG. 7 | 12 AMETHOD 2[SC3
38 60 26b
12b BMETHOD 1| SC3 |/
26d
12¢ |/
0= 26¢
C.METHOD 3 (A B) -/

[z}

U.S. Patent Nov. 28, 2017 Sheet 5 of 8 US 9,830,157 B2

-~

_~”| DECREMENT COUNTERS | 78
602" |FOR DEPENDENT METHODS

QUEUING |-~
"™ runcrions | 80
\
POINTER TO| °, NO
76~ DEPENDENT | %
METHOD \
-\j \\ YES
A
77| COUNTER D \ 84\ RE-QUEUE DEPENDENT
\ METHOD
\\
A
\\
\ DE-QUEUE POST- 82
\ PREDICATE METHOD |
/-38 60 38 /-26a
12a AMETHOD 2| SC3 | AMETHOD 4
38 60 26b
12b B.METHOD 1| SC3 |/
3 264
12¢ D.METHOD 2
0 26¢
C.METHOD 3 (A B) -/
(2}

FIG. 9

U.S. Patent Nov. 28, 2017 Sheet 6 of 8 US 9,830,157 B2

f'60 /'38 f268
12 SC3 | AMETHOD 4
38— 60 26h
12b B.METHOD 1{ SCj
38 264
12¢ D.METHOD 2 |/
50—~ 26¢
C.METHOD 3 (A B) L/
[T}
26e
12a |/
~60 26
12b SC3 |/
38— 264
12¢ D.METHOD 2 |/
50—~ 26¢
C.METHOD 3 (A B) /
60,38 264
SC3 | AMETHOD 4 |/

T
FIG. 11 70

U.S. Patent Nov. 28, 2017 Sheet 7 of 8 US 9,830,157 B2

50—~ 26¢
12a C.METHOD 3 (A B)
26e
12b |/
38 26d
12¢ D.METHOD 2 |/
SC3 | AMETHOD 4 L/
38 264
122 A.METHOD 4
26e
12b |/
26d
12¢ |/

FIG. 13

U.S. Patent Nov. 28, 2017 Sheet 8 of 8 US 9,830,157 B2

38

/ 26be
12a C.METHOD 3 (A B, E) |/

26b

12b E. METHOD 5 |/

\

50

38 60

(l 26e
12a C.METHOD 3 (A, B, E) scs

26b
E. METHOD 5 |/
5\0 70

FIG. 15

US 9,830,157 B2

1
SYSTEM AND METHOD FOR SELECTIVELY
DELAYING EXECUTION OF AN
OPERATION BASED ON A SEARCH FOR
UNCOMPLETED PREDICATE OPERATIONS
IN PROCESSOR-ASSOCIATED QUEUES

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with the United States govern-
ment support awarded by the following agencies:

NSF 0702313

The United States government has certain rights to this
invention.

BACKGROUND OF THE INVENTION

The present invention relates to the implementation and
execution of programs for multi-processor computers and in
particular to a software system providing parallelization of
programs.

Improvements in software performance have been real-
ized primarily through the use of improved processor
designs. Such performance improvements have the advan-
tage of being completely transparent to the program gen-
erator (for example, a human programmer, compiler, or
other program translator). However, achieving these benefits
depends on the continuing availability of improved proces-
SOIS.

Parallelization offers another avenue for software perfor-
mance improvement by dividing the execution of a software
program into multiple components that can run simultane-
ously on a multi-processor computer. As more performance
is required, more processors may be added to the system,
ideally resulting in attendant performance improvement.
However, generating parallel software is very difficult and
costly. Accordingly, parallelization has traditionally been
relegated to niche markets that can justify its costs.

Recently, technological forces have limited further per-
formance improvements that can be efficiently realized for
individual processors. For this reason, computer manufac-
turers have turned to designing processors composed of
multiple cores, each core comprising circuitry (e.g., a CPU)
necessary to independently perform arithmetic and logical
operations. In many cases, the cores also support multiple
execution contexts, allowing more than one program to run
simultaneously on a single core (these cores are often
referred to as multi-threaded cores and should not be con-
fused with the software programming technique of multi-
threading). A core is typically associated with a cache and an
interconnection network allowing the sharing of common
memory among the cores; however, other “shared memory”
architectures may be used, for example those providing
exclusive memories for each processor with a communica-
tion structure. These multi-core processors often implement
a multi-processor on a single chip. Due to the shift toward
multi-core processors, parallelization is supplanting
improved single processor performance as the primary
method for improving software performance.

Improved execution speed of a program using a multi-
processor computer depends on the ability to divide a
program into portions that may be executed in parallel on the
different processors. Parallel execution in this context
requires identifying portions of the program that are inde-
pendent such that they do not simultaneously operate on the
same data. Of principal concern are portions of the program
that may write to the same data, “write-write” dependency,

20

25

30

35

40

45

50

55

60

65

2

and portions of the program that may implement a reading
of data subsequent to a writing of that data, “read-write”
dependency, or a writing of data subsequent to a reading of
the data, “write-read” dependency. Errors can result if any of
these reads and writes change in order as a result of parallel
execution. While parallel applications are already common
for certain domains, such as servers and scientific compu-
tation, the advent of multi-core processors increases the need
for many more types of software to implement parallel
execution to realize increased performance.

Many current programs are written using a sequential
programming model, expressed as a series of steps operating
on data. This model provides a simple, intuitive program-
ming interface because, at each step, the generator of the
program (for example, the programmer, compiler, and/or
some other form of translator) can assume the previous steps
have been completed and the results are available for use.
However, the implicit dependence between each step
obscures possible independence among instructions needed
for parallel execution. To statically parallelize a program
written using the sequential programming model, a compiler
must analyze all possible inputs to different portions of the
program to establish their independence. Such automatic
static parallelization works for programs which operate on
regularly structured data, but has proven difficult for general
programs. In addition, such static analysis cannot identify
opportunities for parallelization that can be determined only
at the time of execution when the data being read from or
written to can be positively identified.

U.S. patent application Ser. No. 12/543,354 filed Aug. 18,
2009 (the “Serialization “patent) now issued as U.S. Pat. No.
8,417,919 and assigned to the same assignee as the, present
invention and hereby incorporated by reference, describes a
system for parallelizing programs. written using a sequential
program model, during an execution of that program. In this
invention, “serializers” are associated with groups of
instructions (“computational operations™) to be executed
before execution of their associated computational opera-
tions. The serializers may thus positively identify the data
accessed by the computational operation to assign the com-
putational operation to a particular processing queue. Com-
putational operations operating on the same data are
assigned to the same queue to preserve their serial execution
order. Computational operations operating on disjoint data
may be assigned to different queues for parallel execution.
By performing the parallelization during execution of the
program, many additional opportunities for parallelization
may be exploited beyond those which may be identified
statically.

This serialization method may also be used where the data
sets of computational operations are not completely disjoint
through the use of a “call” instruction which collapses
parallel execution when a data dependency may exist, caus-
ing the program to revert to conventional serial execution.
This approach slows executions of concurrent parallel
instruction groups and limits the discovery of potential
parallelism downstream from the “call” instruction while the
“call” is in force.

SUMMARY OF THE INVENTION

The present invention provides an improvement to the
above referenced serialization patent permitting the serial-
izer to also use identified data dependencies among compu-
tational operations to enforce serial processing only for the
possibly dependent computational operations and without
limiting the discovery and exploitation of parallelism in

US 9,830,157 B2

3

other and later computational operations. In one embodi-
ment, this is accomplished by enqueuing “synchronizing
operations” into the queues normally holding computational
operations (“predicate computational operations”) on which
later computational operations are dependent. The later,
dependent computational operations wait until the synchro-
nizing operations are executed before beginning their execu-
tion. In this way focused serialization may be implemented
without loss of broader parallelization.

One embodiment of the present invention provides a
method of parallel execution of a program having a serial
execution order on a multi-processor computer having
memory. The method includes the steps of identifying in the
program a plurality of computational operations potentially
writing to data in memory read by other predicate compu-
tational operations, or potentially reading data in memory
written by other predicate computational operations such as
would create data dependencies between computational
operations, and providing a set of execution queues holding
computational operations for ordered execution by associ-
ated processors. A given computational operation is assigned
to a given execution queue based on identification of a data
set accessed by the given computational operation at a point
of the given computational operation in the serial execution
order. A search is conducted for at least one uncompleted
predicate computational operations of the given computa-
tional operation. When the search does not find at least one
uncompleted predicate computational operation, the given
computational operation is assigned for execution on a
processor, but when the interrogation does find at least one
uncompleted predicate computational operation, execution
on a processor is delayed until completion of execution of
the predicate computational operations found in the search.

It is thus a feature of at least one embodiment of the
invention to handle potential dependencies between com-
putational operations in a way that permits delay only of
computational operations subject to such dependency.

The process of delaying a computational operation may
enroll a synchronizing operation in other execution queues
possibly holding a predicate computational operation. The
execution of the given computational operation may be
delayed until the synchronizing operations have been
executed by the processors associated with the execution
queues holding the synchronizing operations.

It is thus a feature of at least one embodiment of the
invention to delay execution of given computational opera-
tions until the completion of earlier computational opera-
tions writing values used by the given computational opera-
tions to thereby respect “read-write” dependencies.

It is thus a feature of at least one embodiment of the
invention to provide a simple method of delaying compu-
tational operations where the method can be performed by
the executing processors themselves with minimal overhead.

The synchronizing operations may toll a counter as they
are executed, the counter providing an indication to syn-
chronizing operations when its number of tollings equals a
number of other execution queues identified so that the
synchronizing operations may assign the given execution
queue to a processor upon the indication.

It is thus a feature of at least one embodiment of the
invention to provide a decentralized method of coordinating
the execution of dependent computational operations where
there are multiple dependencies.

The method may further delay execution of later compu-
tational operations positioned after the synchronizing opera-
tions in queue order in the other execution queues until
completion of the given computational operation.

20

25

30

35

40

45

50

55

60

65

4

It is thus a feature of at least one embodiment of the
invention to prevent the execution of computational opera-
tions positioned after the synchronization operations in
execution queues until the completion of the current opera-
tion to honor the “write-read” dependency.

It is thus a feature of at least one embodiment of the
invention to prevent the execution of later operations on the
same data of the predicate operation under the assumption
that these later computational operations are “write-read”
dependent on the given computational operation.

Synchronizing operations placed in any execution queues
holding at least one predicate computational operation,
when executed, may remove the queue of the later compu-
tational operations in those execution queues until comple-
tion of the given computational operation.

It is thus a feature of at least one embodiment of the
invention to permit the mechanism of synchronizing opera-
tions to handle the de-queuing of dependent computational
operations, again, permitting decentralized control of the
parallelizing process.

The computational operations may be selected from the
group consisting of: program functions and program object
methods.

It is thus a feature of at least one embodiment of the
invention to provide a parallelizing method that takes advan-
tage of the structure of common functions and instantiable
objects to find parallelization.

When the given computational operation is an instantiated
software object, the given computational operation may be
assigned to a given execution queue based on an instantia-
tion number.

It is thus a feature of at least one embodiment of the
invention to exploit the well defined scope of data in
software objects to permit parallel execution.

The method of the invention may be performed only if at
least one processor that can be assigned an execution queue
is not executing computational operations.

It is thus a feature of at least one embodiment of the
invention to eliminate parallelization overhead if all proces-
sors are effectively allocated.

These particular features and advantages may apply to
only some embodiments falling within the claims and thus
do not define the scope of the invention. The following
description and figures illustrate a preferred embodiment of
the invention. Such an embodiment does not necessarily
represent the full scope of the invention, however. Further-
more, some embodiments may include only parts of a
preferred embodiment. Therefore, reference must be made
to the claims for interpreting the scope of the invention.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a simplified representation of the physical
architecture of a multi-processor system having four pro-
cessors and being one type of multiprocessor system suitable
for implementation of the present application;

FIG. 2 is a simplified representation of the software
elements of the present invention including a modified
sequential model program, associated libraries and queue
structures;

FIG. 3 is a logical diagram of the sequential model
program of FIG. 2 showing computational operations com-
prised of groups of instructions labeled by the program
generator (a human or possibly a software pre-processor) for
use in serialization and the allocation of the computational
operations to different queues in a queue order for execution
on different processors;

US 9,830,157 B2

5

FIG. 4 is an example of a placeholder operation repre-
senting a given computational operation in a queue, for
example from the library of FIG. 2, of the type used for
computational operations without data dependencies with
other computational operations;

FIG. 5 is a diagram showing a state of processors and
queues for a set of computational operations;

FIG. 6 is a figure similar to that of FIG. 4 showing an
example placeholder operation for computational operations
with read-write data dependencies with other computational
operations;

FIG. 7 is a figure similar to FIG. 5 showing queues with
synchronization operations inserted therein and a de-queu-
ing of a dependent computational operation;

FIG. 8 is a figure similar to that of FIGS. 4 and 6 showing
an example synchronization operation placed in a queue
when there is a data dependency between pending compu-
tational operations;

FIG. 9 is a figure similar to that of FIG. 7 showing
continued execution of non-dependent computational opera-
tion while the dependent computational operation waits;

FIG. 10 is a figure similar to that of FIG. 9 showing the
queues upon partial completion of predicate computational
operations;

FIG. 11 is a figure similar to that of FIG. 10 showing the
a de-queuing of post-predicate computational operations
after a completed predicate computational operation;

FIG. 12 is a figure similar to that of FIG. 11 showing a
re-queuing of the dependent computational operation upon
completion of the predicate computational operations;

FIG. 13 is a figure similar to that of FIG. 12 showing a
re-queuing of the de-queued post-predicate computational
operations upon completion of the dependent computational
operation;

FIG. 14 is a figure similar to that of FIG. 12 showing a
computational operation exhibiting a write-read dependency
with a queued computational operation that is not currently
dependent on other computational operations; and

FIG. 15 is a figure similar to that of FIG. 14 showing the
insertion of a synchronizing operation and a de-queuing of
the dependent computational operation.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now to FIG. 1, a multi-processor system 10 may
include, for example, four processors 12a-12d each associ-
ated with a local memory 14 and communicating on an
interconnection network structure 16 with shared memory
18. It will be understood that the present application applies
to cases where the local memory 14 and shared memory 18
are managed automatically by hardware (i.e., local memory
14 is a cache), as well as cases where software must
explicitly perform transfers among shared memory 18 and
local memories 14. It will be further understood that shared
memory 18 may in turn communicate with additional exter-
nal memory (not shown) or in fact may be comprised totally
of local memories 14 through communication protocols.
Each of the processors 12 may also communicate with
common control circuitry 24 providing coordination of the
processors 12 as is understood in the art.

Although the present application is described with respect
to a multi-processor implemented as separate processors
communicating with shared memory, it will be understood
that the term multi-processor includes any type of computer
system providing multiple execution contexts, including, but
not limited to, systems composed of multi-threaded proces-

20

25

30

35

40

45

50

55

60

65

6

sors, multi-core processors, heterogeneous computational
units, or any combination thereof.

Referring now to FIG. 2, the shared memory 18 may hold
a sequential model program 20, modified according to the
present invention as will be described, and program data 22
accessed via the program 20 during execution. Shared
memory 18 may further include runtime library 25 possibly
providing class specifications (i.e., object prototypes), pre-
defined serializers, generators for ordered communication
structures (e.g., queues), and code to implement the runtime
operations of delegate threads, described in further detail
herein below. The shared memory 18 may also include
actual queues 26 as will be described below, and an oper-
ating system 28 providing execution context for the above as
will generally be understood in the art.

Referring now to FIG. 3, the sequential model program 20
may comprise multiple computer executable instructions 30
collected in computational operations 32 designated in the
figure as “methods”. The sequential model program 20 thus
represents a program prepared using standard languages to
logically execute serially on a single processor. The “meth-
ods” may be, for example, program functions operating on
particular data or software objects that may be instantiated
with an instance number to execute on data associated with
that object and instance number. As depicted, each method
is designated with a prefix letter which in the case of objects
indicates a unique object template or class and a suffix
number indicating an instantiation of that object. Thus, the
designation “A.method 1” may represent a first instantiation
of an object A, an equivalent function, or the like.

The computational operations 32 of the serial model
program 20, if executed on a single processor, will follow a
serial execution order 34. The serial execution order 34 is
generally resolved only during execution of the serial model
program 20 after flow control instructions in the serial model
program 20 are resolved using actual data. For this reason
the serial execution order 34 will generally differ from the
program order, for example, expressed in the source code of
the serial model program 20. More generally, the serial
execution order 34 is the order in which the serial model
program 20 would execute without the parallelization of the
present invention and the order in which all dependencies
between instructions are properly resolved by the order of
instruction execution.

The present invention associates each computational
operation 32 with a serializer 36 shown here as placed
in-line in the serial model program 20 but in practice only
being logically so positioned. Generally, before execution of
the computational operations 32 (and in one embodiment at
the logically, immediately preceding instruction) according
to the serial execution order 34, a serializer will determine
a serialization set to which the computational operation 32
belongs, most simply by examining the data read or written
to by the computational operation 32. The serialization set is
selected to ensure that computational operations 32 assigned
to different serialization sets write to different data. In this
way, computational operations 32 associated with different
serialization sets may be independently executed in parallel
without data dependency problems. One simple serialization
technique looks at the instance number of the object and uses
that as a serialization set identifier. Other serialization set
approaches are described in the above referenced serializa-
tion patent application.

The serializer 36 may be assisted in the serialization
process by a label or call to the serializer 36 that identifies
the potential parallelization of a computational operation 32
and exposes its data dependencies. For example, the serial-

US 9,830,157 B2

7

izer for the line C.method 3 (A,B) in FIG. 3 may be in the
form of a single line, C.dep_delegate(A, B, method 3) that
calls library function dep_delegate to perform the serializa-
tion process, and where data A and B are accessed by
C.method 3. This information is similar to the designation of
input parameters in conventional programming languages
and imposes no significant additional burden.

Each computational operation 32 assigned to a serializa-
tion set number may be enrolled in one of the queues 26
which may be associated with a given processor 12 (as in the
case of queues 26a-26¢) or may be unassociated (de-queued)
(as in the case of queue 264). For example, a first compu-
tational operation 32 of A. method 1 may be assigned to
queue 26a associated with processor 0. A.subsequent second
occurrence of computational operation 32 of A.method 2 is
also assigned to queue 26aalso associated with processor 0
because the second occurrence of computational operation
32 of A.method 2 operates on the same data not disjoint with
the data of the previous execution.

In contrast, subsequent execution of computational opera-
tion 32 of B.method 1 may be assigned to queue 264
associated with processor 1 because this different object is
associated with a different set of data in its instantiation.

The assignment of the computational operation 32 to a
queue 26 enrolls a placeholder operation 38 associated with
the computational operation 32 into the queue 26. Referring
to FIG. 4, a simple placeholder operation 38 will generally
include instructions that implement queuing functions 39 as
will be described below, a pointer 40 to the particular
method implemented by the computational operation 32
(most simply a pointer to the computational operation 32 or
its class structure and instantiation data), a pointer 42 to the
write set being the data written to by the computational
operation 32 and hence driving its serialization set identifi-
cation, and a queue number and any parameters 44 necessary
for execution of the computational operation. Parameters are
data that may not be subject to sharing between computa-
tional operations 32, for example, as may be evident stati-
cally before running of the program.

The queuing functions 39 are relatively simple for the
basic placeholder operation 38 used with computational
operation 32 that is disjoint in its data access with other
computational operations 32. These queuing functions 39
transfer control to the underlying computational operation
32 when the placeholder operation 38 is executed (per
process block 46) and delete the placeholder operation 38
from the queue (per process block 48) after it has been
executed.

Referring now to FIG. 5, a given computational operation
32 may be designated by the program generator or serializer
36 to indicate not only the data associated with the object
(for example to the instantiation number of the object) but
also other “predicate” computational operations 32 that may
write data on which the current “dependent” computational
operation is dependent. In this example, computational
operation 32 of C.method 3(A B) identifies a data depen-
dency on objects A and B. Generally this data dependency
is expressed broadly during program generation, for
example, in terms of objects rather than object instances, and
thus will be overbroad to fully include any possible data
dependency that may occur during run-time. Final decisions
about executing computation operations in parallel are made
as the program executes.

Referring to FIGS. 5 and 6, computational operation 32 of
C.method 3(A B) may also be serialized based on its new
object class (suggesting that its accessed data is disjoint with
objects from classes A and B) and thus assigned to queue 26¢

20

25

30

35

40

45

50

55

60

65

8

for parallel execution. Coincidentally, at this time, processor
124 may have fully executed computational operation 32 of
A.method 1 and the placeholder operation 38 for this method
is removed from the queue 26aq.

The placeholder operations 50 generated for the compu-
tational operation 32 of C.method 3(A B) which exhibits
dependency with other objects differ somewhat from the
computational placeholder operations 38 for computational
operations 32 as previously described which exhibit no such
dependency. Like placeholder operation 38, placeholder
operation 50 provides a pointer 40 to the method of the
computational operation 32 and a pointer 42 to the write set
(being the data space, for example, of the object C.method
3) and a list of parameters 44. In addition, however, place-
holder operation 50 provides a list 52 of the other predicate
computational operations on which this particular compu-
tational operation 32 C.method 3 is dependent (in this case,
objects A and B).

The placeholder operation 50 also includes queuing func-
tions 54 which when executed identify any queues 26
holding placeholder operations 38 for the predicate compu-
tational operations (e.g. A and B) per process block 56. This
identification of queues 26 checks at least some other queues
26 (both those associated with a processor 12 and those
unassociated with a processor 12). If at the time of execution
of the computational operation 32 of C.method 3(A B) (e.g.
the time of execution of the placeholder operation 50) there
are no other queues 26 holding predicate placeholder opera-
tions 38, then per decision block 58, computational opera-
tion 32 of C.method 3(A B) may be executed per process
block 65.

In this present example, however, as illustrated in FIG. 7,
placeholder operations 38 for both predicate computational
operations A and B are in active queues 26 and accordingly,
per process block 62 of the queuing functions 54, synchro-
nization operations (SC;) 60 are inserted in the queues 26a
and 265 associated with the predicate computational opera-
tions A and B. At process block 64, the computational
operation 32 of C.method 3(A B) is de-queued, effectively
removing it and all other subsequent operations in its queue
26¢ from execution by processor 12¢. Note that “de-queu-
ing” as described above does not in fact remove placeholder
operations 38 and 50 from the queue but simply disconnects
the queue 26 from execution by its associated processor 12.

The above example describes the discovery of predicate
computational operations that represent “read-write” depen-
dencies. As will be described further below, process block
56, may also identify queues 26 for predicate computational
operations that represent “write-read” dependencies. In both
cases, per process block 58 and 62, synchronizing operations
will be inserted into the identified queues 26 and the
dependent computational operation de-queued.

Referring still to FIGS. 6 and 7, at the time of insertion of
the synchronization operations 60 into the queues 26 at
process block 62, a counter 70 is defined and linked to the
placeholder operation 50 by counter identification 72. The
counter 70 is initialized to hold the number of predicate
computational operations 38 identified in decision block 58,
in this case: two.

Referring now to FIG. 8, the synchronization operations
60 will also generally provide for queuing functions 74, as
will be described, in addition to pointers 76 to the dependent
method (in this case the computational operation 32 of
C.method 3(A B)), for example, as identified by its pointer
40. The synchronizing operations 60 also provide a counter
identification 77 identifying one or more counters 70 of
dependent computational operations (in this case the counter

US 9,830,157 B2

9

70 of computational operation 32 of C.method 3(A B)).
Thus, the computational operation 32 of C.method 3(A B) is
effectively stalled waiting for completion of the predicate
computational operations 32 on which it relies for data.

Referring momentarily to FIG. 9, despite the stalling of
computational operation 32 of C.method 3(A B), other
independent operations subsequent to computational opera-
tion 32 of C.method 3(A B) and other concurrent operations
not part of this dependency may continue to execute in
parallel. For example, a succeeding computational operation
D.method 2 may be enrolled in queue 264 and associated
with processor 12¢ for parallel execution and succeeding
copies of computational operation A.method 4 serialized
into queue 26a with similarly grouped pending computa-
tional operations (e.g. A.method 2). Thus, parallelization
does not cease with the occurrence of this dependency.

The latter grouping of the computational operations
A.method 2 and A.method 4 honors the write-write depen-
dency between these operations.

Referring now to FIG. 10, at some future time, one, of the
synchronization operations 60 (SC.sub.3) associated with
program queue 26a (corresponding to the predicate compu-
tational operation A) arrives at the head of the queue 264 to
be executed by processor 12a. Referring also to FIG. 8, this
execution causes the synchronization operation 60 to dec-
rement the counter 70 using counter identification 77. as
indicated by process block 78, to now show that there is only
one pending predicate computational operation 32. The
synchronization operation 60 of SC.sub.3 then checks to see
if the counter 70 has decremented to zero at decision block
80 and, if not, it de-queues itself and the rest of queue 264
from processor 12a as shown in FIG. 11 and as indicated by
process block 82. This de-queuing removes not only syn-
chronization operation 60 but also with other placeholder
operations 38 in its queue 26a including A.method 4. It will
be understood that it is implicit that the de-queuing only
removes operations if there are operations in the queue. This
de-queuing of all subsequent placeholder operations 38 or,
50 (post-predicate computational operations) reflects an
inherent write-read dependency presented by these compu-
tational operations in a given queue 26, for example, the
write-read dependency of A.method 4 on C.method 3(A B).

Referring now to FIG. 8 and FIG. 11, after the time
represented by FIG. 10, synchronization operation 60 asso-
ciated with program queue 265 also arrives at the head of
queue 265, and decrements the counter 70 using counter
identification 77. In this case, at decision block 80 of the
synchronization operation 60, the counter is at zero indicat-
ing that all predicate computational operations have been
complete and so the synchronization operation 60 proceeds
to process block 84 and re-queues the dependent computa-
tional operation of C.method 3(A B) using the pointer 76 as
shown in FIG. 12. Referring still to FIG. 12. the placeholder
operation 50 for computational operation 32 of C.method
3(A B) then resumes execution at process block 90. When
computational operation 32 of C.method B) has completed
execution of its method, it re-queues the queues 264 and 26b
of predicate computational operations process block 92 and
per Fig. 13. It will be understood that it is implicit that
process block 92 executes only if there are predicate com-
putational operations that were previously de-queued that
thus can be re-queued. The computational operation 32 of
A.method 4 may thus execute only after any read by
computational operation 32 of C.method 3(A, B) is com-
plete, thus honoring the write-read dependency of A.method
4 on C.method 3(A, B).

20

25

30

35

40

45

50

55

60

65

10

Referring now to FIG. 14, unlike the case described above
with respect to Fig, 11, a write-read dependency may occur
with respect to a pending computational operation that in
itself is not dependent on other predicate operations. Thus,
for example a new computational operation 32 of E.method
5 may be received that exhibits a write-read dependency
with respect to pending computational operation 32 of
C.method 3 (A, B, E). In this case, the placeholder operation
50 of E.method 5 executes the process box 56, 58 and 62 as
described above with respect to FIG. 6, and de-queues a
synchronization operation 60 of SC; into the queue 26e¢ and
de-queues itself into queue 26¢. Counter 70 is incremented
to indicate the number of predicate operations (1) on which
this de-queued computational operation depends as
described above. The processing of the computational
operation 32 of C.method 3 (A, B, E) then proceeds until the
synchronization operation 60 of SCs is executed. At this
time, process box 78, 80, 84, and 82 (per FIG. 8) are
executed allowing re-queuing of the placeholder operation
50 of E.method 5 and a decrementing of the counter 70 back
to zero. Note that this process will typically not require the
de-queuing of operations in queue 26¢ and subsequent to
SC; per process block 82 of FIG. 8.

It will be appreciated that alternatively two different types
of synchronization operations 60 may be used for read-write
and write-read dependencies if desired, for example, to
eliminate process block 82 in this latter case for efficiency.

As described in the above referenced serialization patent,
the invention may also “instrument” the shared memory 18
to detect violations in any assumptions that computational
operations 32 have disjoint data accesses, this instrumenta-
tion permitting correction or learning of the parallelization
process. In the above description and the claims, “predicate”
and “dependent” are used simply for clarity and do not limit
the computational operations other than to indicate that these
computation operations are executed either earlier or later
than the given computation operation in the serial execution
order and hence there may be a read or write dependency.
The phrase “serial execution order” refers to the order the
parallelized program would execute if not parallelized, and
the term “queue” is intended to cover any order communi-
cation structure including a hardware stack, a linked list, a
set of address sequential data, etc.

It will be understood that additional synchronization
operations 60 may be placed into a queue 26 that already has
synchronization operations 60 in it, and that all continuous
runs of the synchronization operations 60 in a queue 26 may
be executed before de-queuing of the synchronization opera-
tion 60 as long as there are no intervening non-synchroni-
zation or placeholder operations 38 or 50. This allows
multiple reads of an object to proceed concurrently but
forces writes to proceed sequentially.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained
herein and the claims should be understood to include
modified forms of those embodiments including portions of
the embodiments and combinations of elements of different
embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications, are hereby incorporated
herein by reference in their entireties.

What we claim is:

1. A method of parallel execution of a program on a
multi-processor computer having memory, the program hav-
ing a serial execution order, the method comprising the steps
of:

US 9,830,157 B2

11

(a) identifying, in the program, a plurality of computa-
tional operations potentially writing data in memory
read by other predicate computational operations or
potentially reading data in memory written by other
predicate computational operations, where that writing
or reading would create a data dependency;

(b) providing a set of execution queues holding compu-
tational operations for ordered execution by associated
processors, each processor adapted to execute any
computational operation in the program;

(c) assigning a given computational operation to a given
execution queue associated with a given processor
based on an identity of a first data set accessed by the
given computational operation at a point of the given
computational operation in the serial execution order,
wherein the identity of the first data set relates to
addresses of data in the first data set;

(d) searching at least two execution queues other than the
given execution queue to identify an uncompleted
predicate computational operation on which the given
computational operation is data dependent, the identi-
fication of the uncompleted predicate computational
operation being based on an identity of a second data
set accessed by the given computational operation at a
point of execution of the given computational operation
in the serial execution order, where the second data set
is also accessed by the uncompleted predicate compu-
tational operation;

(e) when the searching does not find the uncompleted
predicate computational operation, assigning the given
computational operation for execution on a processor;
and

(f) when the searching does find the uncompleted predi-
cate computational operation, delaying assigning the
given computational operation for execution on a pro-
cessor until completion of execution of the uncom-
pleted predicate computational operation.

2. The method of claim 1 wherein step (d) enrolls syn-
chronizing operations in other execution queues holding an
uncompleted predicate computational operation, and
wherein execution of the given computational operation is
delayed until all of the synchronizing operations in said
other execution queues have been executed by the proces-
sors associated with said other execution queues.

3. The method of claim 2 wherein the synchronizing
operations update a counter as they are executed, the counter
providing an indication when its number of updates equals
a number of uncompleted predicate computational opera-
tions identified in step (d) so that the given computational
operation from the given execution queue may be assigned
to a processor upon the indication.

4. The method of claim 2 further comprising delaying
execution of later predicate computational operations posi-
tioned after a synchronizing operation in queue order, until
completion of the given computational operation.

5. The method of claim 4 wherein a given synchronizing
operation associated with the given computational opera-
tion, when executed, prevents execution of later predicate
computational operations in an execution queue holding the
given synchronizing operation until completion of the given
computational operation.

6. The method of claim 1 wherein the plurality of com-
putational operations are selected from the group consisting
of: program functions and program object methods.

7. The method of claim 1 wherein the given computa-
tional operation is associated with an instantiated software

20

25

30

35

40

45

50

55

60

65

12

object and wherein step (c) assigns the given computational
operation to the given execution queue based on an instan-
tiation number.

8. The method of claim 1 wherein steps (a) (f) are
performed only if at least one processor that can be assigned
an execution queue is not executing computational opera-
tions.

9. The method of claim 1 wherein step (a) identifies, in the
program, a plurality of computational operations writing
data in memory read by other predicate computational
operations.

10. The method of claim 1 wherein step (a) identifies, in
the program, a plurality of computational operations reading
data in memory written by other predicate computational
operations.

11. The method of claim 1 wherein, after step (f), the
given computational operation is assigned for execution
with a different processor than the given processor.

12. The method of claim 1 wherein the first and second
data sets are determined from data dependent on memory
addresses of data in the first and second data sets.

13. A multi-processor computer executing a parallelizing
software program stored in non-transitory computer read-
able memory to process a target program having computa-
tional operations with a serial execution order and execut-
able on the multi-processor computer, each processor
adapted to be able to execute all of the computational
operations in the target program, the parallelizing software
program, when executed on the multi-processor computer,
modifying the target program to:

(a) cause the target program to create a set of execution
queues holding the computational operations and
accessible by the target program during execution of
the target program and assignable to an associated
processor for execution of the computational opera-
tions in a queue order;

(b) incorporate serializing program elements into the

target program to execute before identified computa-
tional operations of the target program in the serial
execution order to:

(1) assign a given computational operation to a given

execution queue associated with a given processor
based on identification of an identity of a first set of
data accessed by the given computational operation at
a point of the given computational operation in the
serial execution order, wherein the identity of the first
data set is dependent on addresses of data in the first
data set;

(i) search at least two execution queues other than the

given execution queue to identify at least one uncom-
pleted predicate computational operation on which the
given computational operation is data dependent based
on an identity of a second data set accessed by the given
computational operation in common with the at least
one uncompleted predicate computational operation at
a point of execution of the given computational opera-
tion in the serial execution order;

(i) when the search does not find the at least one

uncompleted predicate computational operation, assign
the given computational operation for execution on a
processor; and

(iv) when the search does find the at least one uncom-

pleted predicate computational operation, delay assign-
ing the given computational operation for execution on
a processor until completion of execution of the at least
one uncompleted predicate computational operation.

US 9,830,157 B2

13

14. The multi-processor computer of claim 13 wherein,
after step (iv), the given computational operation is assigned
for execution with a different processor than the given
processor.

15. The multi-processor computer of claim 13 wherein the
first and second data sets are determined from data depen-
dent on memory addresses of the first and second data sets.

16. A multi-processor computer executing a parallelizing
software program stored in non-transitory computer read-
able memory for execution of a target program of compu-
tational operations having a serial execution order and
executable on the multi-processor computer, each processor
adapted to be able to execute any of the computational
operation in the target program, the parallelizing software
program comprising:

(a) queue generating instructions to create a set of execu-
tion queues holding the computational operations of the
target program and accessible by the parallelizing soft-
ware program during execution of the target program
and assignable to a given processor for execution of the
computational operations in a queue order; and

(b) serializing instructions executing before identified
computational operations of the target program in the
serial execution order to:

(1) assign a given computational operation to a given
execution queue based on an associated first set of
data accessed by the given computational operation

w

25

14

at a point of the given computational operation in the
serial execution order, wherein an identity of the first
data set is related to addresses of data in the first data
set;

(ii) search at least two execution queues other than the

given execution queue to identify at least one
uncompleted predicate computational operation on
which the given computational operation is data
dependent, the identification of the at least one
uncompleted predicate computational operation
being based on an identity of a second data set
accessed by the given computational operation at a
point of execution of the given computational opera-
tion in the serial execution order, where the second
data set is also accessed by the at least one uncom-
pleted predicate computational operation;

(iii) when the search does not find the at least one

uncompleted predicate computational operation,
assign the given computational operation for execu-
tion on a processor; and

(iv) when the search does find the at least one uncom-

pleted predicate computational operation, delay
assigning the given computational operation for
execution on a processor until completion of execu-
tion of the at least one uncompleted predicate com-
putational operation.

#* #* #* #* #*

	Bibliography
	Abstract
	Drawings
	Description
	Claims

