

US009279103B2

(12) United States Patent

Chen et al.

(54) SIMPLIFIED BASIC MEDIA FOR HUMAN PLURIPOTENT CELL CULTURE

- (75) Inventors: Guokai Chen, Rockville, MD (US); James A. Thomson, Madison, WI (US)
- (73) Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION, Madison, WI (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal disclaimer.

- (21) Appl. No.: 13/204,354
- (22) Filed: Aug. 5, 2011

(65) **Prior Publication Data**

US 2012/0202291 A1 Aug. 9, 2012

(51) Int. Cl.

(2006.01)
(2010.01)
(2010.01)

- (58) Field of Classification Search CPC C12N 5/0606; C12N 5/0696 See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

7,439,064	B2	10/2008	Thomson	
7,449,334	B2	11/2008	Thomson	
2010/0221829	A1*	9/2010	Amit et al.	 435/366

FOREIGN PATENT DOCUMENTS

WO	2007113587	A2	10/2007
WO	2009135206	A1	11/2009
WO	2010048567	A1	4/2010
WO	2011058558	A2	5/2011

OTHER PUBLICATIONS

Beattie et al. Stem Cells 23:489-495, 2005.*

Yao Shuyuan et al., "Long-term renewal and directed differentiation of human embryonic stem cells in chemically defined conditions", Proc. Natl. Acad. Sci., 2006, vol. 103, No. 18, pp. 6907-6912. Ludwig, T.E. et al., "Derivation of human embryonic stem cells in

defined conditions", Nature Biotechnology, 2006, vol. 24, No. 2, pp. 185-187.

(10) Patent No.: US 9,279,103 B2 (45) Date of Patent: *Mar. 8, 2016

Wells, N. et al., "The geometric control of E14 and R1 mouse embryonic stem cell pluripotency by plasma polymer surface chemical gradients", Biomaterials, 2009, vol. 30, No. 6, pp. 1066-1070.

Johansson, B.M. et al., "Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development", Molecular and Cellular Biology, 1995, vol. 15, No. 1, pp. 141-151.

Peiffer, I. et al., "Optimization of physiological xenofree molecularly defined media and matrices to maintain human embryonic stem cell pluripotency", 5, Methods in Molecular Biology, Human Embryonic Stem Cell Protocols, 2009, Springer Protocols, Clifton, N.J.

Ludwig, T.E. et al, "Feeder-independent culture of human embryonic stem cells", Nature Methods, 2006, vol. 3, pp. 637-646.

Thomson, J.A. et al., "Embryonic Stem Cell Lines Derived from Human Blastocysts", Science, 1998, vol. 282, pp. 1145-1147.

Yu, J. et al., "Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells", Science, 2007, vol. 318., No. 5858, pp. 1917-1920.

Garcia-Gonzalo et al., Alburnin-Assoclated Lipids Regulate Human Embnionic Stem Cell Self-Renewal, PLOS One, 2008, Issue 1, e1384, pp. 1-10.

Rajala et al. "Testing of nine different xeno-free culture media for human embryonic stem cell cultures" Human Reproduction vol. 22, No. 5, pp. 1231-1238, 2007.

Lei et al. "Xeno-free derivation and culture of human embryonic stem cells: current status, problems and challenges" Cell Research (2007) 17:682-688.

L5146 Sigma, Lipid Mixture (Undefined).

Chung et al., "Human embryonic stem cell lines generated without embryo destruction", Cell Stem Cell 2.2 (2008): 113-117.

Ebert et al., "Induced pluripotent stem cells from a spinal muscular atrophy patient", Nature 457.7227 (2009): 277-280.

Harb et al., "The Rho-Rock-Myosin sionaling axis determines cellcell integrity of self-renewing pluripotent stem cells", PLoS One 3, No. 8 (2008): e3001.

Yu et al., "Human induced pluripotent stem cells free of vector and transgene sequences", Science 324.5928 (2009): 797-801.

Zhi-Xing et al., "Establishment of feeder layer- and serum-free culture system of human embryonic stem cells", CRTER, 2009, 13(45): 8889-8894.

Zhao et al. "Effect of Hypoxia on the Proliferation of Embryonic Stem Cells." (2004). [English abstract only].

Mali, Prashant, et al. "Butyrate Greatly Enhances Derivation of Human Induced Pluripotent Stem Cells by Promoting Epigenetic Remodeling and the Expression of Pluripotency—Associated Genes." Stem cells 28.4 (2010): 713-720.

Chinese Patent Office, Notice for a Reason of Rejection, Application No. 201180038596.9, Feb. 16, 2015, 24 pages. [English translation included].

Japanese Patent Office, Notice for a Reason of Rejection, Application No. 2013-523366, Aug. 19, 2015, 8 pages. [English translation included].

* cited by examiner

Primary Examiner — Marcia S Noble

(74) Attorney, Agent, or Firm - Quarles & Brady LLP

(57) ABSTRACT

Fully defined media that support pluripotent cell viability, proliferation, cloning, and derivation, as well as methods and compositions including these media are described. Methods for deriving iPS cells from adult individuals under defined, xeno-free conditions are also described.

19 Claims, 16 Drawing Sheets

FIG. 1C

Figure 2 (cont.)

Figure 2 (cont.)

Figure 3 (cont.)

FIG. 3B

FIG. 3A

8

FIG. 4A

FIG. 4C

Figure 4 (cont.) Fibroblast IPS Cells (E8) Foreskin **IPS Cells** (Feeder) ES Cells Human CLONS CXADR DXXT38 OPPA2 877A4 8XID2 80081 L1791 1.1828 1.8881 XANOG P00583 ****** PTPXI1 SALLZ SALLA SOX2 TDGF1 78871 27842 2105 \$SCANIC CNINI COLIAI OCN DXX1 DP10 EXP1 GBP3 GRENI 11.131 lox Lux XXP1 XXXX ***** XXX1 ******* PRRII PSGS **** SXA12 0.0 1.0 2.0

FIG. 4D

FIG. 4E

FIG. 4F

Figure 5

Figure 5 (cont.)

FIG. 5C

Figure 6

FIG. 6A

Electroporation	Incubation	incubation
Day 1	Day 1 to Day 5-10	Day 510 to day 2530
Reprogramming OriP plasmids and EBNA mRNA	E8 (TGFβ) with hydrocortisone	E8 without TGFp

Figure 7

FIG. 7A

FIG. 7B

Figure 7 (cont.)

FIG. 7C

10

SIMPLIFIED BASIC MEDIA FOR HUMAN PLURIPOTENT CELL CULTURE

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under ES017166 awarded by the National Institutes of Health. The government has certain rights in the invention.

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/371,128 filed on Aug. 5, 2010.

BACKGROUND

Pluripotent cells, such as embryonic stem (ES) cells and induced pluripotent stem (iPS) cells, have the potential to differentiate into cells of all three primary germ layers (Thomson, et al., Science 282, 1145-1147 (1998)). The remarkable developmental potential of pluripotent cells has proven useful for basic research and clinical application. Many basic 25 methods for human pluripotent cell culture, such as growth media, plate coating, and other conditions, have been developed and refined (Ludwig et al., Nat. Biotechnol 24, 185-187 (2006); Ludwig et al., Nat. Methods 3, 637-646 (2006)). For example, while human ES cells were initially cultured in fetal 30 bovine serum (FBS)-containing media on murine embryonic fibroblast (MEF) feeder cells, fully defined media as well as defined protein matrices are now available (Ludwig et al., Nat. Biotechnol 24, 185-187 (2006)). 35

Over the past ten years, pluripotent cell culture methods ³⁵ have evolved considerably. Several growth media were developed that provide basic nutrients and growth factors for survival and expansion of pluripotent cells and directly determine how cells grow and differentiate. TeSRTM was one of the first defined media that supports pluripotent cell maintenance in an undifferentiated state in the absence of feeder cells or conditioned medium through multiple culture passages (Ludwig et al., Nat. Methods 3, 637-646 (2006); U.S. Pat. No. 7,449,334, each of which is incorporated herein by reference 45 as if set forth in its entirety). TeSRTM contains 18 components in addition to the basal medium DMEM/F12 that itself has 52 components (Table 1).

The variety of different growth media available for pluripotent cell culture contributes to inconsistencies in research 50 findings. The media that are presently used for pluripotent cell derivation and growth, including fully defined media, contain components that can influence pluripotent cells in various ways. Prior to the invention described herein, it was not known how each media component, alone or in combina-55 tion with other components, affects various pluripotent cell functions such as viability, pluripotency, or differentiation in cell culture.

For example, albumin, the most abundant protein component present in most media, is a lipid carrier and, as such, can 60 affect differentiation or maintenance of pluripotency via its associated lipids. The qualities of albumin and of its associated lipids determine whether it can be used for human pluripotent cell culture. However, albumin quality varies greatly depending on its source, even when produced from a recom-65 binant genetic material, contributing to variations between experiments conducted under otherwise equivalent condi-

tions. Also, while cloned human serum albumin is available, it is seldom used for routine experimentation due to its comparatively high cost.

Efforts to eliminate albumin from the medium have proved unsuccessful. Omission of albumin, or any other growth factor present in TeSR, led to a dramatic decline in human ESC culture performance, such as decreased cell viability, proliferation, and pluripotency (Ludwig et al., Nat. Biotechnol 24, 185-187 (2006)).

¹⁰ To fully exploit the potential of pluripotent cells for drug discovery, testing, and transplantation therapy, derivation and growth of these cells under fully-defined and, ideally, xeno-free, conditions is desirable. There is, thus an unmet need in the art for media free of components that introduce inconsistencies to maintain control over pluripotent cell culture conditions. Specifically, there is a need in the art for pluripotent cell culture media containing only those components that support pluripotent cell functions important for a specific 20 culture objective.

BRIEF SUMMARY

The invention relates generally to media, compositions, and methods for deriving and culturing pluripotent cells, and more particularly, to fully-defined media for pluripotent cells.

In a first aspect, the present invention is summarized as albumin-free media that support viability, growth, and pluripotency of pluripotent cells.

In some embodiments of the first aspect, the medium contains selenium.

In some embodiments of the first aspect, the medium contains NODAL.

In some embodiments of the first aspect, the medium contains transferrin.

In some embodiments of the first aspect, the medium contains transforming growth factor beta (TGF- β).

In some embodiments of the first aspect, the medium contains only water, salts, amino acids, vitamins, a carbon source, insulin, and a fibroblast growth factor (FGF), each in amounts sufficient to support pluripotent stem cell viability.

In some embodiments of the first aspect, the medium contains only water, salts, amino acids, vitamins, a carbon source, insulin, an FGF, selenium, transferrin, and one of TGF- β and NODAL, each in an amount sufficient to support pluripotent stem cell proliferation.

In some embodiments of the first aspect, the medium supports survival after passaging, freezing, proliferation, pluripotency, derivation, and cloning of pluripotent cells.

In some embodiments of the first aspect, the medium is xeno-free.

In a second aspect, the present invention is summarized as a method for culturing pluripotent stem cells in a defined medium. In some embodiments of the second aspect, the medium used to culture pluripotent cells contains only water, salts, amino acids, vitamins, a carbon source, insulin, and an FGF, each in amounts sufficient to support pluripotent cell viability. In some embodiments of the second aspect, the medium used to culture pluripotent cells contains only water, salts, amino acids, vitamins, a carbon source, insulin, an FGF, selenium, transferrin, and one of TGF-ß and NODAL, each in an amount sufficient to support pluripotent stem cell proliferation. In some embodiments of the second aspect, the medium contains defined factors that support extended growth, pluripotency, cloning, freezing, or derivation of pluripotent cells. In some embodiments of the second aspect, the medium used to culture pluripotent cells is xeno-free.

55

In a third aspect, the present invention is directed to an in vitro cell culture composition of pluripotent cells in a medium that is substantially free of β -mercaptoethanol and albumin. In some embodiments of the third aspect, the culture composition is free of fibroblast feeder cells, conditioned medium, 5 and xeno-contamination.

In a fourth aspect, the present invention is summarized as a method for deriving iPS cells from an adult individual under completely defined conditions. The method includes the steps of culturing a somatic cell from an adult individual in a 10 medium containing water, salts, amino acids, vitamins, a carbon source, insulin, and an FGF, all in sufficient amount to maintain viability, and reprogramming the cell in defined conditions such as to derive iPS cells.

In some embodiments of the fourth aspect, the medium 15 contains TGF- β during parts or all of the reprogramming process.

In some embodiments of the fourth aspect, the medium contains butyrate.

In some embodiments of the fourth aspect, the medium 20 contains hydrocortisone.

In some embodiments of the fourth aspect, the medium is xeno-free.

In a fifth aspect, the present invention is summarized as a method for cloning a pluripotent stem cell in an albumin-free 25 medium. The method includes the step of plating pluripotent stem cells at cloning density in an albumin-free medium that supports pluripotent stem cell cloning.

In some embodiments of the fifth aspect, the medium contains a ROCK inhibitor.

In some embodiments of the fifth aspect, the medium contains blebbistatin.

In some embodiments of the fifth aspect, the medium contains only water, salts, amino acids, vitamins, a carbon source, insulin, an FGF, selenium, transferrin, and one of TGF- β and 35 NODAL, each in an amount sufficient to support pluripotent stem cell cloning.

In a sixth aspect, the present invention is summarized as a method of cryopreserving pluripotent stem cells in an albumin-free medium. The method includes the step of freezing 40 pluripotent stem cells in an albumin-free medium.

In some embodiments of the sixth aspect, the medium contains only water, salts, amino acids, vitamins, a carbon source, insulin, an FGF, selenium, transferrin, one of TGF-β and NODAL, and dimethyl sulfoxide (DMSO).

In a seventh aspect, the invention is summarized as an iPS cell derived under albumin-free conditions. iPS cells derived in the absence of albumin are free of endogenous albumin contaminations.

The methods and compositions described herein are useful 50 in a variety of applications for deriving, culturing, and using pluripotent cells. It is an object of the present invention to define short term and long term culture conditions for pluripotent cells limited to factors that support the intended culture objective.

It is another object of the present invention to provide culture conditions for pluripotent cells that maximize percentage of cultured cells in an undifferentiated state.

It is another object of the present invention to provide media that can serve as the platform necessary to examine 60 how various conditions affect pluripotent cells and to compare experiments previously reported in different media backgrounds.

These and other features, objects, and advantages of the present invention will become better understood from the description that follows. In the description, reference is made to the accompanying drawings, which form a part hereof and

in which there is shown by way of illustration, not limitation, embodiments of the invention. The description of preferred embodiments is not intended to limit the invention to cover all modifications, equivalents and alternatives. Reference should therefore be made to the claims recited herein for interpreting the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be better understood and features, aspects and advantages other than those set forth above will become apparent when consideration is given to the following detailed description thereof. Such detailed description makes reference to the following drawings, wherein:

FIG. 1A-E illustrate media elements for human ES cell survival and self-renewal in culture. FIG. 1A illustrates 24 hour survival indices for individualized cells plated in the various media. Media abbreviations are as listed in Table 1. The presence of insulin and fibroblast growth factor (IF), bovine serum albumin (BSA), beta-mecaptoethanol (BME) is indicated by "+" and absence is indicated by "-." FIG. 1B illustrates 24 hour or 96 hour survival indices for individualized cells plated in the various media. The addition of insulin and fibroblast growth factor (FGF) is indicated by "+" and removal is indicated by "-." FIG. 1C illustrates 24 hour or 129 hour survival indices for individualized cells cultured in TeSRTM medium with Vitamin C (TeSR), TeSRTM medium without Vitamin C (TeSR™-LAA), or DF5 medium. FIG. 1D illustrates cell proliferation after each of three passages in DF5, DF5 with added Selenium (DF5+Selenium), DF12, or DF12 from which Selenium had been removed (DF12-Selenium). FIG. 1E illustrates a comparative analysis of twelve different base media.

FIG. 2A-Fillustrate optimization of human ES cell and iPS cell culture conditions with DF5S. FIG. 2A shows survival indices for individualized cells that were seeded at low density (~1,500 cells/cm²) in either DF5S (bottom) or TeSR[™] (top) and cultured at different O2 and CO2 concentrations (O15C5: 15% O₂ and 5% CO₂; O15C10: 15% O₂ and 10% CO₂; 05C10: 5% O₂ and 10% CO₂). Cell survival was examined at 24 hours and 124 hours. FIG. 2B shows the cloning efficiency of H1 cells cultured in various media in the presence (+HA100) or absence of the small molecule HA100 (CM100: conditioned media with 100 ng/ml FGF). FIG. 2C shows the cloning efficiency of H1 cells and iPS cells derived from foreskin fibroblasts in various media. FIG. 2D shows the cloning efficiency of iPS cells derived from foreskin fibroblasts in various media. DF5S trFe indicates DF5S media to which holotransferrin was added. FIG. 2E illustrates the cloning efficiency of H1 cells cultured in various media in the presence of HA100 (10 µM, 24 hours), blebbistatin (10 µM, 4 hours), or Y27632 (10 µM, 24 hours), compared to cloning efficiency in the absence of these factors (control). Asterisks indicate p<0.05. FIG. 2F illustrates cloning efficiency of H1 cells in conditioned medium (CM), CM with ROCK inhibitor (HA100), TeSR with ROCK inhibitor, and E8 with ROCK inhibitor in normoxic (dark gray bars) or hypoxic (light gray bars) conditions. Error bars indicate the standard error of the mean; asterisks indicate p<0.05.

FIG. 3 A-B illustrate pluripotent cell growth and gene expression in DMEM/F12 supplemented with insulin, transferrin, selenium, L-ascorbic acid, FGF2, and TGF- β or NODAL (referred to herein as "E8 (TGF-β)" and "E8 (NODAL)," respectively). FIG. 3A illustrates fold expansion of H1 ES cells (top) and iPS cells (bottom) maintained in TeSRTM (dark gray lines) or E8 (TGF- β) (light gray lines). FIG. 3B illustrates global gene expression of H1 ES cells

grown in E8 (TGF- β) and H1 ES cells grown in TeSRTM. RNA of H1 cells maintained in either TeSR or E8 (TGF- β) medium for 3 passages was analyzed by RNA-seq with Illumina Genome Analyzer GAIIX (global gene expression correlation R=0.954 (Spearman Correlation)).

FIG. 4A-F illustrate iPS cell derivation under defined conditions. FIG. 4A shows proliferation of foreskin fibroblasts in DF5SFe-based media to which various fibroblast growth factors (FGF) were added, compared to proliferation in FBScontaining media. FIG. 4B shows fibroblast growth in various media supplemented with hydrocortisone. FIG. 4C shows expression of the pluripotency markers OCT4 (left) and SSEA4 (right). FIG. 4D illustrates expression of selected genes by foreskin fibroblasts, hES cells, iPS cells derived on feeder cells (iPS Cells (Feeder)), and iPS cells derived in E8 medium (iPS Cells (E8)). All cells were maintained in E8 (TGF- β) medium prior to RNA analysis, except for fibroblasts, which were maintained in E8 with hydrocortisone. FIG. 4E illustrates global gene expression of human ES and 20 iPS cells derived in E8 (TGF- β) media (R=0.955). FIG. 4F global gene expression of iPS cells derived on MEF and iPS cells derived in E8 (TGF- β) media.

FIG. 5A-C illustrate media improvement for iPS cell derivation. FIG. 5A shows proliferation of foreskin (dark grey 25 bars) and PRPF8-2 adult fibroblasts (light grey bars) in DF5SFe media supplemented with TGF- β , hydrocortisone, TGF- β and hydrocortisone, or TGF- β and hydrocortisone without FGF. FIG. **5**B illustrates the effect of TGF- β and butyrate on reprogramming of foreskin fibroblasts. Four to 30 five weeks after initial reprogramming transfection, colony numbers for transformed cells and true iPS cells were scored and the ratio of iPS colonies to non-iPS cell colonies was calculated.

FIG. 6A-B illustrate derivation of iPS cells from adult 35 fibroblasts under fully-defined conditions without secondary passage. FIG. 6A illustrates an example of a reprogramming protocol. FIG. 6B illustrates expression of the pluripotency markers OCT4 and SSEA4, as determined by flow cytometric analysis of iPSC lines maintained in DMEM/F12 supple- 40 mented with insulin, transferrin, selenium, L-ascorbic acid, FGF2, and TGF-β or NODAL ("E8") for 20 passages. Shaded peak: staining with antibodies specific to OCT4 (left) and SSEA4 (right); unshaded peak: mouse IgG control antibody.

FIG. 7A-C illustrate reprogramming efficiency of human 45 fibroblasts in various media. FIG. 7A illustrates the number of iPS cell colonies per 80,000 fibroblasts subjected to reprogramming with mouse fibroblast feeder cells (MEF) or in E8-based medium. To improve efficiency, 100 µM sodium butyrate was added to both conditions. FIG. 7B illustrates the 50 number of iPS cell colonies per 80,000 fibroblasts subjected to reprogramming in TeSR[™] or in E8-based medium. FIG. 7C illustrates the effects of TGF- β and butyrate exposure time on reprogramming efficiency of foreskin fibroblasts under fully-defined conditions. Fibroblasts were reprogrammed in 55 DMEM/F12 supplemented with insulin, transferrin, selenium, L-ascorbic acid, and FGF2 (E8 without TGF- β) or in E8, in the presence or absence of 100 µM butyrate. Reprogramming efficiency for all conditions was analyzed after 30 days after reprogramming. Asterisks indicate p<0.05.

While the present invention is susceptible to various modifications and alternative forms, exemplary embodiments thereof are shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description of exemplary embodiments is not 65 intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modi-

fications, equivalents and alternatives falling within the spirit and scope of the invention as defined by the appended claims.

DESCRIPTION OF EXEMPLARY **EMBODIMENTS**

The present invention relates to the inventors' observation that certain media components once thought to be essential to culturing pluripotent cells can be omitted from pluripotent cell culture media formulated to achieve certain culture objectives.

As used herein, the term "pluripotent cell" means a cell capable of differentiating into cells of all three germ layers. Examples of pluripotent cells include embryonic stem cells and induced pluripotent stem (iPS) cells. As used herein, "iPS cells" refer to cells that are substantially genetically identical to their respective differentiated somatic cell of origin and display characteristics similar to higher potency cells, such as ES cells, as described herein. The cells can be obtained by reprogramming non-pluripotent (e.g. multipotent or somatic) cells.

The invention relates to new media free of factors not essential for a particular culture objective. Examples of culture objectives include, but are not limited to, cell survival, passaging, proliferation, pluripotency, cloning, and iPS cell derivation. Specifically, the invention relates to albumin-free media.

As a point of clarification, "passaging" and "cloning" are distinct methods. "Passaging" describes the process of dividing cells that have been cultivated in a culture vessel up to a certain density into aggregates, which are then placed into new culture vessels. These aggregates can contain any number of cells, typically between 100 to 1,000 cells, which readily initiate growth in culture. In contrast, "cloning" refers to initiating clonal colonies by growing human ES cell colonies from single individual ES cells. As used herein, "cloning efficiency" means the number of individualized cells that form new cell colonies divided by the number of individualized cells plated in culture. Cloning efficiency varies considerably depending on culture conditions. For example, the cloning efficiency of human ES cells under defined and xenofree conditions on MATRIGEL® is very low (i.e., less than about 0.1%), while cloning efficiency of these cells cultured with fibroblast-conditioned medium, while still low (i.e., less than about 2%), is high enough to initiate clonal ES cell colonies.

Certain media components presently used can be damaging to the cultured cells or induce differentiation. For example, β -mercaptoethanol can damage and even kill cultured pluripotent cells. Serum media additives, such as bovine serum albumin (BSA) or fetal calf serum (FCS), can induce differentiation of cultured pluripotent cells. Also, commercially available serum components can differ significantly in their composition, even when supplied from the same source, introducing unpredictable culture variability. The media described herein are substantially free of damaging, differentiating, and undefined factors present in most conventional pluripotent cell culture media. The disclosed media have been successfully used for various culture objectives, such as sup-60 porting short term pluripotent cells viability, e.g., 24 hrs, short term proliferation, e.g., 4-5 days, maintaining pluripotent cells for extended culture periods, e.g., more than 25 passages in 3 months, and to derive iPS cells from both fetal and adult fibroblasts with lentiviral and episomal vectors.

New minimal media specifically tailored for certain cell culture objectives were developed. Various media components, such as salts, vitamins, glucose sources, minerals, and amino acids were tested, alone or in combination, to determine their individual effect on viability, proliferation, or pluripotency. A new survival assay was developed and used to determine which components are essential for pluripotent cell survival after dissociation. New media were tested for their 5 ability to support proliferation and sustain pluripotency. These media were also used in cloning assays to determine how each medium affects single cells and their cloning efficiency. A complete list of ingredients for each new medium described herein is set forth in Table 1 (light and dark shaded 10 fields indicate presence of a component in the medium, checkered fields indicate interchangeable components, clear fields indicate absence of a component in the medium).

	_	
h	೧	
	x	
ŝ	v	

appreciates the advantageous efficiency of using a basal media as starting material to prepare the disclosed new media. The term "basal medium" as used herein means a medium that supports growth of certain single-celled organisms and cells that do not require special media additives. Typical basal medium components are known in the art and include salts, amino acids, vitamins, and a carbon source (e.g., glucose). Other components that do not change the basic characteristic of the medium but are otherwise desirable can also be included, such as the pH indicator phenol red. For example, Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F12) is a basal medium commonly used to make

	Media compositions.										
								DF5S +	DF5S +		
Components	GF	NM	DF5	DF5S	DF5SFe	DF12	TeSR	TGF-β	NODAL	HCort	E8
DMEM/F12											
NaHCO3											
L-Ascorbic Acid											
Selenium											
Transferrin											
Glutathione											
L-Glutamine											
Defined lipids											
Thiamine											
Trace elements B											
Trace elements C											
BME											
BSA											
Insulin											
FGF2											
TGF-β											
Pipecolic acid											
LiCl											
GABA											
H2O											

The various media described herein can be prepared from the basic ingredients. Alternatively, one of skill in the art

Nodal Hydrocortisone

> suitable growth media for mammalian cell culture. A complete list of ingredients of DMEM/F12 is set forth in Table 2.

TABLE 2

	MEM: F-12 Medium Formul	ation (ATCC Catalog No. 30-2	2006).
Inorganic Salts (g/liter)	Amino Acids (g/liter)	Vitamins (g/liter)	Other (g/liter)
CaCl2 (anhydrous) 0.11665 CuSO4 (anhydrous) 0.000008 Fe(NO3)3•9H2O 0.00005 FeSO4•7H2O 0.000417 MgSO4 (anhydrous) 0.08495 KCl 0.3118 NaHCO3 1.20000 NaCl 7.00000 Na2HPO4 (anhydrous) 0.07100 NaH2PO4•H2O 0.06250 ZnSO4•7H2O 0.000432	L-Alanine 0.00445 L-Arginine HCl 0.14750 L-Asparagine H2O 0.00750 L-Aspartic Acid 0.00665 L-Cystine HCl •H2O 0.01756 L-Cystine •HCl •H2O 0.01756 L-Glutamic Acid 0.00735 L-Glutamic Acid 0.00735 L-Glutamine 0.36510 Glycine 0.01875 L-Histidine •HCl •H2O 0.03148 L-Isoleucine 0.05437 L-Leucine 0.05895 L-Lysine •HCl 0.09135 L-Methionine 0.01724 L-Phenylalanine 0.03548 L-Proline 0.01725	D-Biotin 0.0000365 Choline Chloride 0.00898 Folic Acid 0.00265 myo-Inositol 0.01261 Niacinamide 0.00202 D-Pantothenic Acid 0.00224 Pyridoxine•HCl 0.00203 Riboflavin 0.00022 Thiamine•HCl 0.00217 Vitamin B-12 0.00068	D-Glucose 3.15100 HEPES 3.57480 Hypoxanthine 0.00239 Linoleic Acid 0.000044 Phenol Red, Sodium Salt 0.00810 Putrescine•2HCl 0.00008 Pyruvic Acid•Na 0.05500 DL-Thioctic Acid 0.000105 Thymidine 0.000365

TABLE 1

50

65

	TABLE 2-continued						
	DMEM: F-12 Medium Formulation (ATCC Catalog No. 30-2006).						
Inorganic Salts (g/liter)	Amino Acids (g/liter)	Vitamins (g/liter)	Other (g/liter)				
	L-Serine 0.02625 L-Threonine 0.05355 L-Tryptophan 0.00902 L-Tyrosine•2Na•2H2O 0.05582 L-Valine 0.05285						

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention ¹⁵ pertains. Although any methods and materials similar to or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are described herein. 20

9

In describing the embodiments and claiming the invention. the following terminology will be used in accordance with the definitions set out below.

As used herein, "about" means within 5% of a stated concentration range or within 5% of a stated time frame.

As used herein, "essentially serum-free" means that a medium does not contain serum or serum replacement, or that it contains essentially no serum or serum replacement. For example, an essentially serum-free medium can contain less than about 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2% or 1% 30 into each well of 12-well plates prior to the addition of cells. serum, wherein the culturing capacity of the medium is still observed.

The term "defined culture medium" or "defined medium," as used herein, means that the identity and quantity of each medium ingredient is known.

As used herein, "a medium consisting essentially of" means a medium that contains the specified ingredients and, optionally, other ingredients that do not materially affect its basic characteristics.

As used herein, "effective amount" means an amount of an 40 agent sufficient to evoke a specified cellular effect according to the present invention.

As used herein, "viability" means the state of being viable. Pluripotent cells that are viable attach to the cell plate surface and do not stain with the dye propidium iodide absent mem- 45 brane disruption. Short term viability relates to the first 24 hours after plating the cells in culture. Typically, the cells do not proliferate in that time.

As used herein, "short term growth" means cell proliferation for 4-5 days in culture.

As used herein, "extended growth" means growth for at least five passages. Typically, media are tested for their ability to support pluripotent cell growth for more than twenty passages (approximately 2-3 months).

As used herein, "long-term culture" means more than 15 55 passages (approximately two months in culture).

As used herein, "pluripotency" means a cell's ability to differentiate into cells of all three germ layers.

As used herein, "cloning" means a process of initiating a cell culture from a starting culture, ideally, from a single 60 pluripotent cell or at least from very few cells. Culture conditions that permit clonal culture of undifferentiated pluripotent cells may be the most demanding conditions of all of those required in normal pluripotent cell culture and proliferation.

As used herein, "iPS cell derivation" means reprogramming a cell that is not pluripotent to become pluripotent.

As used herein, "xeno-free" means cell culture conditions free of any cell or cell product of species other than that of the cultured cell.

As used herein, "normoxic condition" means conditions with about 20% oxygen.

As used herein, "hypoxic condition" means conditions with less than about 20% oxygen, e.g., about 5% oxygen.

The invention will be more fully understood upon consideration of the following non-limiting Examples.

EXAMPLES

Example 1

Pluripotent Cell Survival Assay

Five-hundred micro liter of various test media was loaded Adherent pluripotent cells were dissociated with TrypLE (Invitrogen) for 5 minutes or until fully detached from the culture plates. TrypLE was neutralized by adding an equal volume of media to the culture. The cells were counted, washed, and resuspended in fresh media at a concentration of 300,000 to 1,000,000 cells/ml. Approximately 100 µl of this cell solution was added into each well of the 12-well plates and the cells were incubated at 37° C. with 5% O₂ and 10% CO₂. Cells were again dissociated at various time points using 0.4 ml TrypLE, which was subsequently neutralized with equal volumes of 10% FBS in DMEM. The cells were counted by flow cytometry. 5000 count bright beads were added to each sample as internal control (approximately 200 beads were counted for each sample). All experiments were performed in triplicates.

Example 2

Growth Factors for Survival and Short Term Growth

TeSR medium contains six growth factors, in addition to those present in the basal medium, fibroblast growth factor (FGF), transforming growth factor beta (TGF- β), γ -aminobutyric acid (GABA), pipecolic acid, lithium chloride (LiCl), and insulin (Table 1). A basic nutrient medium (NM) was created containing all TeSR™ components with the exception of these six growth factors. About 2×10^5 H1 ES cells were dissociated and plated on Matrigel. The survival index was determined after 24 h. NM alone could not support cell survival after dissociation. The addition of insulin to NM resulted in cell survival similar to that observed with TeSR™, but did not support cell growth (FIG. 1A). The addition of both insulin (20 ug/ml) and FGF2 (100 ng/ml) supported cell survival and additionally led to cell growth in 96 h that was comparable to that observed using TeSR[™] medium (FIG. 1B). Thus, NM supplemented with FGF and Insulin supports human ES cell culture. Twelve different basal nutrient media

supplemented as described above were able to support cell survival and growth (FIG. 1E).

Example 3

L-Ascorbic Acid Supports Short-Term Proliferation

NM contains 11 nutritional components, i.e., DMEM/F12, trace elements B, trace elements C, L-ascorbic acid, thiamine, selenium, L-glutamine, BSA, BME, sodium bicarbonate 10 (NaHCO₃), and transferrin (Table 1). DMEM/F12 serves as basal medium and NaHCO₃ is used to modify the pH. To determine which other nutritional components were essential when insulin and FGF were present, each factor was added individually to DMEM/F12, NaHCO3, insulin, and FGF. 15 None of the nutritional factors were essential for survival after passaging, but L-ascorbic acid (64 mg/L) was necessary for cell proliferation after passaging (FIG. 1C). L-ascorbic acid, known as Vitamin C, is a major antioxidant and cofactor of several enzymes. Hydroxyproline could partially substitute 20 for L-ascorbic acid. Human ES cells plated in DMEM/F12, NaHCO3, L-ascorbic acid, insulin, and FGF (Defined Factors 5, "DF5," Table 1) maintained similar morphology as human ES cells plated into TeSR.

Example 4

Media Components for Extended Passage

DF5 supported cell growth for only one passage. After the ³⁰ second passage, cells attached poorly and eventually died (FIG. 1C). Cells could be passaged in NM+Insulin+FGF (data not shown) and DF12 (FIG. 1D, Table 1), suggesting that one or more factor present in NM+Insulin+FGF and DF12 is important for extended passage. Each nutritional ³⁵ factor present in NM was added individually to DF5 to determine its ability to support cell expansion after multiple passages. Addition of selenium alone was sufficient to support cell proliferation through multiple passages (FIG. 1D, DF5+ Selenium, "DF5S," Table 1). 40

DF5S was used to expand H1 cells. Cells grown in DF5S were more prone to differentiate than cells grown in TeSRTM. However, H1 cells could be grown for several weeks (more than 15 passages), during which the cells maintained human ES cell morphology and high levels of OCT4 expression 45 (FIG. 1E, FIG. 1F). H1 cells grown in DF5S to which either NODAL (100 ng/ml) or TGF- β (2 ng/ml) was added expressed significantly higher levels of NANOG mRNA, compared to H1 cells cultured in DF5S. DF5S+NODAL also supported pluripotency of the two tested human iPS cell lines, ⁵⁰ as determined by high expression of the pluripotency marker OCT4. All cells (hES cells and iPS cells) grown in DF5S with either NODAL or TGF- β maintained a normal karyotype after long-term passage.

Example 5

Hypoxia Improves Cell Growth and Cloning

H1 cells grew faster in the DF5S medium compared to cells 60 grown in TeSRTM (FIGS. 1C and 2A). To optimize pluripotent cell growth conditions, cells were grown in DF5S with varying osmolarity, pH, oxygen level, and CO_2 level. To increase assay sensitivity only 5,000 cells were seeded in each well and analyzed for survival (24 h) and proliferation (124 h). The 65 greatest improvements were noted when O_2 and CO_2 levels were varied. Ordinary culture conditions use oxygen at ~15%

and CO₂ at 5% (O15C5). Higher CO₂ often led to slightly higher survival after 24 hours. Lower oxygen levels increased cell growth in both DF5S and TeSRTM. Oxygen at 15% with CO₂ at 10% (O15C10), and oxygen at 5% with CO₂ at 10% (O5C10) increased cell survival (FIG. **2**A). Cells failed to thrive at higher O₂ levels (O15C5 and O15C10), while they proliferated at lower oxygen levels (O5C10) (FIG. **2**A). Cells in DF5S grew faster than those grown in TeSRTM, and grew fastest at 5% O₂ and 10% CO₂ (FIG. **2**A). Further decreases in oxygen level to 2% reduced cell growth compared to 5% O₂.

To determine cloning efficiency at various oxygen and CO_2 concentrations, 500 cells were seeded into each well. Even at low oxygen, cloning efficiency was too low (<2%) to determine effects of various conditions on cloning. HA100, a ROCK inhibitor known to increase cloning efficiency, was used to increase cloning efficiency for testing oxygen and CO_2 concentrations. Conditioned medium (CM), known to be the best medium for cloning, was used as control. The addition of HA100 significantly improved cloning efficiency in CM at both O5C10 and O15C5 and cloning efficiency was higher at the O5C10 than O15C5 (FIG. **2**B). Cloning efficiency of cells in DF5S was comparable to that of cells in CM under both conditions (FIG. **2**B).

Because of the positive impact of hypoxia on cell survival, ²⁵ some of the subsequent examples employ hypoxic conditions when cells were maintained at low density. However, when cells were not cultured at low cell density, experiments were conducted under both normoxic and hypoxic conditions (FIG. **2**B).

Example 6

Improved iPS Cell Cloning Efficiency

To determine how DF5S affects cloning efficiency, two iPS cell lines were grown in DF5S and plated at cloning density (approximately 500 cells per 12-well plate well) in the presence of HA100. The cloning efficiency of iPS cells grown in DF5S was lower than that of iPS cells grown in either TeSRTM or CM (FIG. **2**C), suggesting that a factor that enhances cloning efficiency is present in TeSRTM medium, but absent from DF5S. To identify such factor, individual TeSRTM components were added individually to DF5S and tested for effect on cloning efficiency. The addition of holo-transferrin to DF5S (DF5SFe) resulted in cloning efficiency comparable to that using TeSRTM (FIG. **2**D). Transferrin also lead to notice-able improvement of cloning efficiency of H1 cells in DF5S medium.

The ROCK inhibitors HA100 and Y27632, and blebbista-50 tin in DMEM/F12 supplemented with insulin, trasferrin, selenium, L-ascorbic acid, FGFs, and TGF- β (or NODAL; "E8"), increased cloning efficiency of H1 cells (FIG. 2E), which was further increased by the addition of transferrin and by culture under hypoxic conditions (FIG. 2F)). The cells maintained a 55 normal karyotype after more than 25 passages.

Example 7

NODAL and TGF-β Support Long-Term Maintenance of H1 and iPS Cell Pluripotency in Albumin-Free Media

As described in Example 3, human pluripotent cells, such as H1, H9, and iPS cells, could be grown and passaged over 15 times in DF5S but were prone to differentiate, such that extra care is needed to sustain pluripotency in DF5S. Because pluripotency could be maintained more easily in TeSRTM,

growth factors present in TeSRTM were added individually to DF5SFe used to grow H1 cells that were previously cultured in DF5S without differentiating to identify factors supporting long-term pluripotency. Cells were passaged approximately one day after reaching confluency, facilitating cell differentiation, and Oct4 expression, assessed by flow cytometry, was used as indicator of pluripotency.

Human pluripotent cells grown in DF5SFe elongated and lined up along each other, resembling a "spindle" shape just prior to differentiation. This phenotype is often observed at 10 the onset of neural differentiation that is usually suppressed by the TGF- β /BMP pathway. Thus, recombinant proteins of the TGF- β pathway were tested for their ability to support long-term pluripotency. DF5SFe supplemented with NODAL ("E8 (NODAL)") used at TeSRTM concentration 15 sustained high Oct4 expression. DF5SFe supplemented with TGF- β ("E8 (TGF- β)") used at TeSRTM concentration (0.6 ng/ml) supported low levels of Oct4 expression but was able to maintain high Oct4 expression when used at higher concentration (1 ng/ml).

Human ES cell lines, such as H1 and H9 have a culture history that includes exposure to various complex culture components, such as FBS, feeder cells, and knockout serum replacer. Exposure to these components could conceivably create dependency on these components and, consequently, 25 alter cellular response to simplified media. Culture history might play a lesser role for iPS cells, derived from reprogrammed somatic cells, as derivation conditions are less complex. Therefore, different factors were tested with two original lentiviral iPS cell lines (Yu, et al., Science 318:1917 30 (2007)) grown in DF5SFe. Cells were transferred from MEF plates directly into DF5SFe medium for one passage and then passaged into various growth factor conditions. The addition of either TGF- β (2 ng/ml) or NODAL (100 ng/ml) to DF5SFe ("E8 (TGF- β)" and "E8 (NODAL)," respectively) supported ³⁵ long-term pluripotency of iPS cells. Pluripotency surface markers SSEA4, SSEA3, Tra-1-60, and Tra-1-81 were also expressed. Cells with normal karyotypes were continuously maintained for more than 20 passages. The cells were capable of forming teratomas 5-7 weeks after injection into severe 40 combined immunodeficient (SCID) mice.

E8 (TGF- β) and E8 (NODAL) supported pluripotency of every pluripotent cell line tested, i.e., two human ES cell lines (H1 and H9) and five iPSC lines for more than 25 passages (approximately 3 months) with no sign of differentiation 45 (FIG. 3). H1 ES cells grown in E8 media have a similar gene expression profile compared to H1 ES cells grown in TeSR™ (FIG. 3B).

Example 8

Derivation of iPS Cells in Albumin-Free Media

Available reprogramming protocols include incubation of the cells in PBS in the first several days after viral transduc- 55 tion or electroporation, prior to switching the cells to UM100 (U.S. Pat. No. 7,439,064, incorporated herein as if set forth in its entirety) or CM. The simplified media described in previous Examples were tested for their ability to support reprogramming. ES-derived somatic cells could be reprogrammed 60 efficiently in DF5S medium using lentivirus or episomal vectors with or without an initial 2 day culture in FBS-containing media. However, DF5S did not support reprogramming of primary foreskin cells using Nanog, Oct4, Sox2 and Lin28. DF5SFe supported reprogramming of foreskin and adult cells 65 on Matrigel or MEFs using improved lentivirus (Ebert et al., Nature 457(7227):277-280 (2009), incorporated herein by

reference as if set forth in its entirety) when the cells were initially incubated in FBS-containing medium. While DF5SFe was as effective as CM in supporting reprogramming, initial exposure to FBS appeared important for reprogramming.

Foreskin cells grow significantly slower in DF5SFe than in FBS media. To determine growth factors that can help primary foreskin cell growth, individual growth factors contained in FBS were tested. The FGF family of growth factors has several members, one or more of which is commonly used for fibroblast culture. DF5SFe contains 100 ng/ml zebrafish recombinant FGF2. Each FGF family member was tested for its ability to support foreskin cell growth. Foreskin cells were aliquoted into the well of culture plates and incubated for 24 hours in DF5SFe minus FGF. Individual FGF types were added at 100 ng/ml for 96 h. FGF1, zFGF2, FGF4, FGF6, and FGF9 supported foreskin cell growth most effectively, but none supported cell growth as well as FBS-containing media (FIG. 4A). To identify if a non-FGF family member growth factor could promote foreskin cell growth comparable to that seen with FBS, several known fibroblast growth-promoting factors were tested. Hydrocortisone (FIG. 4B), its derivatives, and dexamethasone added to DF5SFe to replace FBS improved cell growth significantly. DF5SFe+hydrocortisone ("DF5SFeC") also improved iPS cell cloning efficiency.

To determine if DF5S-based media can be used for viralfree iPS cell derivation, foreskin cells were reprogrammed using a viral-free episomal vector, as described in Yu et al., Science 324:797 (2009), incorporated herein by reference as if set forth in its entirety, at hypoxic conditions (O5C10). Plasmid combinations #4 (pEP4EP2SCK2MEN2L and pEP4EO2SET2K, Table 3), #6 (pEP4EO2SEN2L, pEP4EO2SET2K and pEP4EO2SEM2K, Table 3), and #19 (pEP4EO2SEN2K, pEP4EO2SET2K, and pCEP4-M2L, Table 3) were used, and 2 clones were isolated from 10^6 cells after secondary passage.

TABLE 3

40	Reprogramming vector components and vector combinations						
	Component	Abbr.	Source	SEQ ID NO	Accession # or sequence		
	OCT4	0	hESC	1	NM_002701		
45	SOX2	S	hESC	2	NM_003106		
	NANOG	Ν	hESC	3	NM_024865		
	LIN28	L	hESC	4	NM_024674		
	c-Myc	М	hESC	5	NM_002467		
	KLF4	Κ	hESC	6	NM_004235		
	SV40 T	Т	pBABE-puro SV40 LT p	7	EF579667		
50	TERT	TERT	pBABE-hygro-hTERT	8	NM_198253		
	IRES2	2	pIRES2EGFP	9	_		
	CMV	С		10	_		
	$EF1\alpha$	Е		11	_		
			Vector Combinations				

Combination Number	Plasmids	Components
4	pEP4EP2SC K2MEN2L	pEP4-EF1α-OCT4-IRES2-SOX2- CMV-KLF4-IRES2-c-Myc- EF1α-NANOG-IRES2-LN28
	pEP4EO2SE T2K	pEP4-EF1α-OCT4-IRES2-SOX2- EF1α-SV40T-IRES2-KLF4
6	pEP4EO2SE N2L pEP4EO2SE T2K pEP4EO2SE M2K	pEP4-EF1α-OCT4-IRES2-SOX2- EF1α-NANOG-IRES2-LN28 pEP4-EF1α-OCT4-IRES2-SOX2- EF1α-SV40T-IRES2-KLF4 pEP4-EF1α-OCT4-IRES2-SOX2- EF1α-c-Myc-IRES2-KLF4

55

TABLE 3-continue

Reprogr	amming vector cor	nponents and vector combinations
19	pEP4EO2SE N2K pEP4EO2SE T2K pCEP4-M2L	pEP4-EF1a-OCT4-IRES2-SOX2- EF1a-NANOG-IRES2-KLF4 pEP4-EF1a-OCT4-IRES2-SOX2- EF1a-SV40T-IRES2-KLF4 pCEP4-CMV-c-Myc-IRES2-LN28

Plasmid combinations #6 and #19 were used for the reprogramming. In order to enhance the plasmid entry into the nucleus, ENBA mRNA was electroporated along with plasmid DNA. Around one million cells were transferred onto two 6-well plates in DF5SFeC for 5 days. Medium was then switched to DF5SFe for another 18-25 days. Cells of some of 15 the wells were passaged for a second time using a 1:6 ratio at different time points. Plasmid combination #19 generated more colonies than plasmid combination #6, but most of them did not resemble typical human ES cell morphology. After approximately 25 days, human ES cell-like colonies 20 appeared on the primary plate for both plasmid combinations, with an estimated 24 reprogrammed cells per million foreskin cells using plasmid combination #19 and 8 reprogrammed cells per million foreskin cells using plasmid combination #6. The number of human ES cell-like colonies significantly 25 increased after the secondary passage plates, with an estimated >500/million foreskin cells for each plasmid combination. The increase in the iPS cell colonies on secondary passage plates are likely due to the split of iPS cells on the primary plates. In some instances, primary plates did not have 30 any colonies resembling typical human ES cell morphology, but many iPS cells appeared after secondary passage, suggesting that some iPS cells could not be identified, possibly because they were mixed with somatic cells.

Cells of the iPS cell colonies derived in DF5SFe started to ³⁵ differentiate after only two passages. Six iPS cell colonies were picked from the primary plate and transferred directly into Nodal-containing DF5SFeN (E8 (NODAL)). These cells could be maintained in E8 (Nodal) for more than 15 passages, maintaining their ES cell-like morphology similar to that ⁴⁰ observed using TeSRTM. The cells had normal karyotypes, expressed Oct4 and SSEA4 (FIG. 4C), and formed teratomas in SCID mice 5-7 weeks after injection.

Foreskin fibroblasts were also reprogrammed in E8 medium. Global gene expression of iPS cells derived in E8 ⁴⁵ medium was similar to that of H1 cells (FIGS. **4**D and E) or iPS cells derived on feeder cells (FIGS. **4**D and F). Pluripotency markers were highly expressed in both ES and iPS cells, while fibroblast specific marker genes were not expressed (FIG. **4**D). Also, iPS cell could be derived in E8 media using ⁵⁰ various strategies, e.g., using lentiviral or episomal vectors.

Example 9

Derivation of iPS Cells from Patient Cell Lines in Albumin-Free Media

To determine if cells from adult donors could be reprogrammed using viral-free episomal vectors in the simplified media, two million cells of the patient cell lines OAT or 60 PRPT8 were electroporated with plasmid combinations #4 or #6, along with EBNA mRNA, and transferred onto two 10 cm plates. To maximize reprogramming, FBS-containing media was used for the first 6 days. Cells were kept at O15C5 to match regular adult cell maintenance conditions. Medium 65 was then switched to DF5SFe for another 14-21 days. The cells of one plate were passaged at a 1:2 ratio at different time

points. Plasmid combination #6 generated more colonies (approximately 5 per one million cells) than #4, but most of the cells did not resemble typical human ES cell morphology. After approximately 22 days, human ES cell-like colonies appeared on the primary plate for plasmid combination #4. Many more human ES cell-like colonies appeared on the secondary passage plates when plasmid combination #6 was used, with an estimate of approximately 40 colonies per million cells. No iPS cells were produced when using plasmid combination #4. The iPS cell colonies emerged in the middle of other densely-populated cells on the primary plate and could not grow beyond their boundary. However, colonies on the secondary plates expanded to large sizes suitable for colony isolation. Colonies were picked and directly transferred into TeSRTM, and 32 picked colonies survived and displayed ES-cell morphology. Genetic analysis confirmed that these colonies were derived from the OAT cell line and exhibited a normal karyotype.

To improve adult cell reprogramming efficiency, TGF- β was added to the reprogramming media. iPS clones were not increased significantly, however, the total number of colonies increased significantly. When TGF- β was removed from the media at the time of hydrocortisone removal, the number of iPS cell colonies increased significantly, suggesting that TGF- β supports reprogramming in the first few days of the process.

Many seemingly non-iPS clones can generate iPS clones after secondary passage, suggesting that iPS cell derivation might be inhibited by surrounding cells. Several reagents were tested for their ability to overcome this effect. Butyrate improved reprogramming efficiency. An approximately 10-fold increase in reprogramming efficiency of foreskin cells was observed when both TGF- β and butyrate were added to the media (FIG. **5**B). TGF- β appeared to exhibit its positive effects during early stages of reprogramming, while butyrate had a positive role in the later stage. TGF- β addition led to increased numbers of colonies during reprogramming, but the number of true iPS cell colonies remained low. Butyrate did not increase the number of colonies, but improved the ratio of true iPS cell to non-iPS cell colonies significantly (FIG. **5**C).

Using TGF- β and butyrate enabled successful reprogramming of somatic cells from an adult individual under completely defined conditions using the episomal vector system. iPS cells were derived from three independent adult somatic cell lines (OAT, GRC M1-29, and PRPF8-2) at an efficiency of 1-100 out of 1×10⁶ PRPF8-2 cells and 1 out of 100,000 cells (GRC1-29).

Example 10

Derivation of iPS Cells from an Adult Individual in Completely Defined Conditions

A biopsy was taken from the skin of a male adult donor, washed several times with Hank's Buffered Salt Solution (HBSS) containing antibiotics and antimycotic agents, and incubated in 2 ml of 0.25% trypsin/EDTA (Table 4) or TrypLE select at 4°C. overnight. The sample was rinsed three times, using trypsin inhibitor (Table 4) after the second rinse. The dermis and epidermis were separated using sterile forceps. The dermis was cut into small pieces and incubated in 0.75 ml enzyme solution (Table 4) with defined enzymes at room temperature (12-well or 24-well plate) for 3 hours. After approximately 35 minutes, tissue structures started to break down. An equal volume of medium with 10 µg/ml polyvinylpyrrolidone (PVP) was added and the tissue was mechani-

15

20

35

cally dissociated by pipetting up and down about 10 times. The sample was centrifuged at 400 g for 10 minutes at room temperature and washed twice with fresh media/PVP. The supernatant was discarded, the pellet resuspended in 3 ml of complete medium, and 1 ml of the cell suspension was transferred into wells of 6-well plates coated with 3 μ g/well vitronectin. The plates were incubated with 5% CO₂ at 37° C. and the medium was changed every day. Fibroblasts adhered to the plates while nonadherent cells and debris were removed when the medium was changed.

TABLE 4

Reagents	and procedures for specime	n digestion.
Trypsin/EDTA	Enzyme solution	Trypsin inhibitor
TrypZean 1x (Sigma) TrypLE animal free 0.05%~0.25% (Invitrogen)	HEPES containing RPMI supplemented with 1 mM sodium pyruvate, 1.0 mg/ml Collagenase, 150 units/ml Hyaluronidase, and 140 units/ml DNase I (Roche)	

After 20 days, reprogramming plasmids were introduced into the fibroblasts using electroporation. Within the next 25 days, multiple iPS colonies emerged and were picked for further analysis. Reprogramming efficiency was about 10 out of 1 million electroporated fibroblasts, without secondary passaging. iPS cells were further passaged to isolate vectorfree cell lines.

Example 11

Derivation of iPS Cells from an Adult Individual in Albumin-Free Media Without Secondary Passage

Adult fibroblasts were reprogrammed in E8 (DMEM/F12 supplemented with insulin, transferrin, selenium, L-ascorbic

18

acid, FGF2, and TGF- β (or NODAL)) following the general protocol illustrated in FIG. **6**A. Reprogrammed iPS cell lines maintained in E8 for more than 20 passages continued to express pluripotency markers OCT4 and SSEA4 (FIG. **6**B).

E8 medium significantly enhanced reprogramming efficiency compared to reprogramming efficiencies using mouse fibroblast feeder cells (MEF) (FIG. 7A) or TeSRTM (FIG. 7B). Butyrate (100 μ M) further enhanced reprogramming efficiency in the presence of TGF- β (E8) or in the absence of TGF- β (E8 without of TGF- β , i.e., DF5SFe) (FIG. 7C).

Example 12

Cryopreservation of Pluripotent Stem Cells in an Albumin-Free Media

Pluripotent cells were cultured in 6-well plates in E8 medium, essentially as described above. The culture medium was aspirated from each well and the cells were washed twice with 1.0 mL EDTA/PBS (0.5 mM EDTA in PBS, osmalority 340). The cells were then incubated at 37° C. in EDTA/PBS for 5 minutes. The PBS/EDTA was removed, and the cells were rinsed swiftly with 1 ml of E8 medium. The cells were then resuspended in an equal volume of 20% dimethyl sulfoxide (DMSO) and E8 medium (final concentration: 10% DMSO in E8 medium), aliquoted into cryogenic vials, and frozen at -80° C. using a CRYOBOXTM. The cells were subsequently moved into a liquid nitrogen tank.

The invention has been described in connection with what are presently considered to be the most practical and preferred embodiments. However, the present invention has been presented by way of illustration and is not intended to be limited to the disclosed embodiments. Accordingly, those skilled in the art will realize that the invention is intended to encompass all modifications and alternative arrangements within the spirit and scope of the invention as set forth in the appended claims.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 11 <210> SEQ ID NO 1 <211> LENGTH: 1411 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 1 ccttcgcaag ccctcatttc accaggcccc cggcttgggg cgccttcctt ccccatggcg 60 qqacacctqq cttcqqattt cqccttctcq ccccctccaq qtqqtqqaqq tqatqqqcca 120 gggggggccgg agccgggctg ggttgatcct cggacctggc taagcttcca aggccctcct 180 ggagggccag gaatcgggcc gggggttggg ccaggctctg aggtgtgggg gattccccca 240 tgececeege egtatgagtt etgtgggggg atggegtaet gtgggeeeea ggttggagtg 300 gggctagtgc cccaaggcgg cttggagacc tctcagcctg agggcgaagc aggagtcggg 360 gtggagagca acteegatgg ggeeteeeeg gageeetgea eegteaceee tggtgeegtg 420 aagctggaga aggagaagct ggagcaaaac ccggaggagt cccaggacat caaagctctg 480 caqaaaqaac tcqaqcaatt tqccaaqctc ctqaaqcaqa aqaqqatcac cctqqqatat 540 acacaggeeg atgtgggget caccetgggg gttetatttg ggaaggtatt cageeaaacg 600 accatctgcc gctttgaggc tctgcagctt agcttcaaga acatgtgtaa gctgcggccc 660

19

-continued

ttgctgcaga agtgggtgga ggaagctgac aacaatgaaa atcttcagga gatatgcaaa	720
gcagaaaccc tcgtgcaggc ccgaaagaga aagcgaacca gtatcgagaa ccgagtgaga	780
ggcaacctgg agaatttgtt cctgcagtgc ccgaaaccca cactgcagca gatcagccac	840
atcgcccagc agcttgggct cgagaaggat gtggtccgag tgtggttctg taaccggcgc	900
cagaagggca agcgatcaag cagcgactat gcacaacgag aggattttga ggctgctggg	960
teteettet cagggggace agtgteettt eetetggeee cagggeeeea ttttggtace	1020
ccaggetatg ggageeetca etteactgea etgtaeteet eggteeett eeetgagggg	1080
gaageettte ceeetgtete egteaceaet etgggetete ceatgeatte aaaetgaggt	1140
gcctgccctt ctaggaatgg gggacagggg gaggggagga gctagggaaa gaaaacctgg	1200
agtttgtgcc agggtttttg ggattaagtt cttcattcac taaggaagga attgggaaca	1260
caaagggtgg gggcagggga gtttggggca actggttgga gggaaggtga agttcaatga	1320
tgctcttgat tttaatccca catcatgtat cacttttttc ttaaataaag aagcctggga	1380
cacagtagat agacacactt aaaaaaaaaa a	1411
<210> SEQ ID NO 2 <211> LENGTH: 2518 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 2	
ctattaactt gttcaaaaaa gtatcaggag ttgtcaaggc agagaagaga	60
ctattaactt gttcaaaaaa gtatcaggag ttgtcaaggc agagaagaga	60 120
aagggggaaa gtagtttgct gcctctttaa gactaggact gagagaaaga agaggagaga	120
aagggggaaa gtagtttgct gcctctttaa gactaggact gagagaaaga agaggagaga gaaagaaagg gagagaagtt tgagccccag gcttaagcct ttccaaaaaa taataataac	120 180
aagggggaaa gtagtttgct gcctctttaa gactaggact gagagaaaga agaggagaga gaaagaaagg gagagaagtt tgagccccag gcttaagcct ttccaaaaaa taataataac aatcatcggc ggcggcagga tcggccagag gaggagggaa gcgcttttt tgatcctgat	120 180 240
aagggggaaa gtagtttget geetetttaa gaetaggaet gagagaaaga agaggagaga gaaagaaagg gagagaagtt tgageeecag gettaageet tteeaaaaaa taataataac aateategge ggeggeagga teggeeagag gaggagggaa gegettttt tgateetgat teeagtttge etetetett tttteeeca aattattett egeetgattt teetegegga	120 180 240 300
aagggggaaa gtagtttget geetettaa gaetaggaet gagagaaaga agaggagaga gaaagaaagg gagagaagtt tgageeeeag gettaageet tteeaaaaaa taataataac aateategge ggeggeagga teggeeagag gaggagggaa gegettttt tgateetgat teeagtttge etetetett tttteeeeea aattattett egeetgatt teetegegga geeetgeget eeegacaeee eegeeegeet eeeteetee teteeeeeeg eeegegggee	120 180 240 300 360
aagggggaaa gtagtttget geetettaa gaetaggaet gagagaaaga agaggagaga gaaagaaagg gagagaagtt tgageeeeag gettaageet tteeaaaaaa taataataac aateategge ggeggeagga teggeeagag gaggagggaa gegettttt tgateetgat teeagtttge etetetett tttteeeeea aattattett egeetgatt teetegegga geeetgeget eeegaeaeee eegeeegeet eeeeteee teteeeeeeg eeegggee eeeeaaagte eeggeeggge egagggtegg eggeegeegg egggeeggge	120 180 240 300 360 420
aagggggaaa gtagtttget geetettaa gaetaggaet gagagaaaga agaggagaga gaaagaaagg gagagaagtt tgageeeeag gettaageet tteeaaaaaa taataataac aateategge ggeggeagga teggeeagag gaggagggaa gegettttt tgateetgat teeagtttge etetettt tttteeeeea aattattett egeetgatt teetegegga geeetgeget eeegaeaeee eegeeegeet eeeteetee teteeeeeg eeegeggeee eeeeaaagte eeggeeggge egagggtegg eggeegeegg egggeeggge	120 180 240 300 360 420 480
aagggggaaa gtagtttget geetettaa gaetaggaet gagagaaaga agaggagaga gaaagaaagg gagagaagtt tgageeeeag gettaageet tteeaaaaaa taataataac aateategge ggeggeagga teggeeagag gaggagggaa gegettttt tgateetgat teeagtttge etetetett tttteeeeea aattattett egeetgatt teetegegga geeetgeget eeegacaeee eegeeegeet eeeeteee teteeeeeeg eeegeggeee eeeeaagte eeggeegge egagggtegg eggeegeegg egggeeegge eegeggaaaette gggggggegge ggeggeaaet eeaeegge ggeggeegge ggeaaceaga aaaacageee	120 180 240 300 360 420 480 540
aagggggaaa gtagtttget geetetttaa gaetaggaet gagagaaaga agaggagaga gaaagaaagg gagagagtt tgageeeag gettaageet tteeaaaaa taataataac aateategge ggeggeagga teggeeagag gaggagggaa gegettttt tgateetgat teeagtttge etetettt ttteeeeea aattattett egeetgatt teetegegga geeetgeget eeegaeaeee eegeegge eggeegeegg eggeeegge eeegeggee eeeeaagte eeggeegge eggaggtegg eggeegeegg eggeeegge eegeegaaaette gggggggeegg ggeggeaaet eeaeegge ggeggeegge ggeaaceaga aaaaeageee ggaeegget aageggeeea tgaatgeett eatggtgtgg teeegeggge ageggeegaa	120 180 240 300 420 480 540 600
aagggggaaa gtagtttget geetetttaa gaetaggaet gagagaaaga agaggagaa gaaagaaagg gagagagtt tgageeeeag gettaageet tteeaaaaa taataataac aateategge ggeggeagga teggeeagag gaggagggaa gegettttt tgateetgat teeagtttge etetettt tttteeeeea aattattett egeetgatt teetegegga geeetgeget eeegacaeee eegeeege egegeeeeg eggeeegeeg egggeeegge eegegggee eeeeaaagte eeggeeggge egagggtegg eggeegeegg egggeeegge eegegeaaa eggeeegaag taeaacatga tggagaegga getgaageeg egggeeege ageaaaette gggggggegge ggeggeaaet eeaeeegge ggeggeegge ggeaaeeaga aaaacageee ggacegegte aageggeeea tgaatgeett eatggtgtg teeegegge ageggeegaa gatggeeeag gagaaeeeea agatgeaeaa eteggagate ageaagege tgggegeega	120 180 240 300 420 480 540 600 660
aagggggaaa gtagtttget geetetttaa gaetaggaet gagagaaaga agaggagaag gaaagaaagg gagagaagtt tgageeeeag gettaageet tteeaaaaaa taataataac aateategge ggeggeagga teggeeagga gaggagggaa gegettttt tgateetgat teeagtttge etetettt ttteeeeea aattattett egeetgatt teetegegga geeetgeget eeegaeaeee eegaeggeegge eggeegeegg eggeeegge eeegaeaee eeeeaaagte eeggeegge egagggtegg eggeegeegg eggeeegge eegegeeaaa gggggggegge ggeggeaaet eeaeegge ggeggeegge ggeaaeeaga aaaaeageee ggaeegegte aageggeeea tgaatgeett eatggtgtgg teeegeggge eggegeegaa gatggeeeag gagaaeeeea agatgeaaaa eteggagate ageaageeg tgggegeegg gtggaaaett ttgteggaga eggagaageg geegtteate gaegaggeta ageggeegge	120 180 240 300 420 480 540 600 660 720
aagggggaaa gtagtttget geetetttaa gaetaggaet gagagaaaga agaggagaag gaaagaaagg gagagagtt tgageeeeag gettaageet tteeaaaaa taataataac aateategge ggeggeagga teggeeagag gaggagggaa gegettttt tgateetgat teeagtttge etetettt ttteeeeea aattattett egeetgatt teetegegga geeetgeget eeeggeegge egagggtegg eggeegeegg egggeeggge	120 180 240 300 420 480 540 600 660 720 780
aagggggaaa gtagtttget geetetttaa gaetaggaet gagagaaaga agaggagaga gaaagaaagg gagagaagtt tgageeeeag gettaageet tteeaaaaaa taataataac aateategge ggeggeagga teggeeagga gaggagggaa gegettttt tgateetgat teeagtttge etetetett ttteeeeea aattattett egeetgatt teetegegga geeetgeget eeegaeaeee eegeegge eggeegeegg eggeeegge eeegeggee eeeeaagte eeggeegge eggaggaegga getgaageeg eeggeeegge	120 180 240 300 420 480 540 600 660 720 780 840

ccgctacgac gtgagcgccc tgcagtacaa ctccatgacc agctcgcaga cctacatgaa

cggctcgccc acctacagca tgtcctactc gcagcagggc acccctggca tggctcttgg

ctccatgggt tcggtggtca agtccgaggc cagctccagc ccccctgtgg ttacctcttc

ctcccactcc agggcgccct gccaggccgg ggacctccgg gacatgatca gcatgtatct

ccccggcgcc gaggtgccgg aacccgccgc ccccagcaga cttcacatgt cccagcacta

1080

1140

1200

1260

21

-continued

ccagagcggc c	cggtgcccg	gcacggccat	taacggcaca	ctgcccctct	cacacatgtg	1380
agggccggac ag	gcgaactgg	agggggggaga	aattttcaaa	gaaaaacgag	ggaaatggga	1440
ggggtgcaaa ag	gaggagagt	aagaaacagc	atggagaaaa	cccggtacgc	tcaaaaagaa	1500
aaaggaaaaa a	aaaaatccc	atcacccaca	gcaaatgaca	gctgcaaaag	agaacaccaa	1560
tcccatccac a	ctcacgcaa	aaaccgcgat	gccgacaaga	aaacttttat	gagagagatc	1620
ctggacttct t	tttggggga	ctatttttgt	acagagaaaa	cctggggagg	gtggggaggg	1680
cgggggaatg ga	accttgtat	agatctggag	gaaagaaagc	tacgaaaaac	tttttaaaag	1740
ttctagtggt a	cggtaggag	ctttgcagga	agtttgcaaa	agtctttacc	aataatattt	1800
agagctagtc to	ccaagcgac	gaaaaaaatg	ttttaatatt	tgcaagcaac	ttttgtacag	1860
tatttatcga ga	ataaacatg	gcaatcaaaa	tgtccattgt	ttataagctg	agaatttgcc	1920
aatatttttc aa	aggagaggc	ttcttgctga	attttgattc	tgcagctgaa	atttaggaca	1980
gttgcaaacg t	gaaaagaag	aaaattattc	aaatttggac	attttaattg	tttaaaaatt	2040
gtacaaaagg aa	aaaaattag	aataagtact	ggcgaaccat	ctctgtggtc	ttgtttaaaa	2100
agggcaaaag t	tttagactg	tactaaattt	tataacttac	tgttaaaagc	aaaaatggcc	2160
atgcaggttg a	caccgttgg	taatttataa	tagcttttgt	tcgatcccaa	ctttccattt	2220
tgttcagata a	aaaaaacca	tgaaattact	gtgtttgaaa	tattttctta	tggtttgtaa	2280
tatttctgta aa	atttattgt	gatattttaa	ggttttcccc	cctttatttt	ccgtagttgt	2340
attttaaaag a	ttcggctct	gtattatttg	aatcagtctg	ccgagaatcc	atgtatatat	2400
ttgaactaat a	tcatcctta	taacaggtac	attttcaact	taagttttta	ctccattatg	2460
cacagtttga ga	ataaataaa	tttttgaaat	atggacactg	aaaaaaaaaa	aaaaaaa	2518
<210> SEQ ID <211> LENGTH <212> TYPE: 1 <213> ORGANI: <400> SEQUENG	: 2098 DNA SM: Homo s	sapiens				
<211> LENGTH <212> TYPE: 1 <213> ORGANI:	: 2098 DNA SM: Homo s CE: 3	-	cgttctgctg	gactgagctg	gttgcctcat	60
<211> LENGTH <212> TYPE: 1 <213> ORGANI: <400> SEQUEN	: 2098 DNA SM: Homo s CE: 3 agagactcc	aggattttaa				60 120
<211> LENGTH <212> TYPE: 1 <213> ORGANI: <400> SEQUEN attataaatc ta	: 2098 DNA SM: Homo s CE: 3 agagactcc ggcaactca	aggattttaa ctttatccca	atttcttgat	acttttcctt	ctggaggtcc	
<211> LENGTH <212> TYPE: 1 <213> ORGANI: <400> SEQUENG attataaatc ta gttattatgc ag	: 2098 DNA SM: Homo s CE: 3 agagactcc ggcaactca catcttcca	aggattttaa ctttatccca gaaaagtctt	atttcttgat aaagctgcct	acttttcctt taaccttttt	ctggaggtcc tccagtccac	120
<211> LENGTH <212> TYPE: 1 <213> ORGANI <400> SEQUEN attataaatc ta gttattatgc ag tatttctcta ag	: 2098 DNA SM: Homo f CE: 3 agagactcc ggcaactca catcttcca tttcctcct	aggattttaa ctttatccca gaaaagtctt cttcctctat	atttettgat aaagetgeet aetaacatga	acttttcctt taaccttttt gtgtggatcc	ctggaggtcc tccagtccac agcttgtccc	120 180
<211> LENGTH <212> TYPE: 1 <213> ORGANI: <400> SEQUENG attataaatc ta gttattatgc ag tatttctcta ag ctcttaaatt ta	: 2098 DNA SM: Homo s CE: 3 agagactcc ggcaactca catcttcca tttcctcct ttgctttga	aggattttaa ctttatccca gaaaagtctt cttcctctat agcatccgac	atttettgat aaagetgeet aetaacatga tgtaaagaat	acttttcctt taaccttttt gtgtggatcc cttcacctat	ctggaggtcc tccagtccac agcttgtccc gcctgtgatt	120 180 240
<pre><211> LENGTH <212> TYPE: 1 <213> ORGANI: <400> SEQUENG attataaatc t; gttattatgc ag tatttctcta ag ctcttaaatt t; caaagcttgc cf</pre>	: 2098 DNA SM: Homo s CE: 3 agagactcc ggcaactca catcttcca tttcctcct ttgctttga agaaaacta	aggattttaa ctttatccca gaaaagtctt cttcctctat agcatccgac tccatccttg	atttettgat aaagetgeet aetaacatga tgtaaagaat caaatgtett	acttttcctt taaccttttt gtgtggatcc cttcacctat ctgctgagat	ctggaggtcc tccagtccac agcttgtccc gcctgtgatt gcctcacacg	120 180 240 300
<pre><211> LENGTH <212> TYPE: 1 <213> ORGANI: <400> SEQUENG attataaatc ta gttattatgc ag tatttctcta ag ctcttaaatt ta caaagcttgc cd tgtgggcctg ag </pre>	: 2098 DNA SM: Homo s CE: 3 agagactcc ggcaactca catcttcca tttcctcct ttgctttga agaaaacta tcctcttcc	aggattttaa ctttatccca gaaaagtctt cttcctctat agcatccgac tccatccttg ttcctccatg	atttettgat aaagetgeet actaacatga tgtaaagaat caaatgtett gatetgetta	acttttcctt taaccttttt gtgtggatcc cttcacctat ctgctgagat ttcaggacag	ctggaggtcc tccagtccac agcttgtccc gcctgtgatt gcctcacacg ccctgattct	120 180 240 300 360
<pre><211> LENGTH <212> TYPE: 1 <213> ORGANI: <400> SEQUENG attataaatc ta gttattatgc ag tatttctcta ag ctcttaaatt tf caaagcttgc cf tgtggggcctg ag gagactgtct cf</pre>	: 2098 DNA SM: Homo s CE: 3 agagactcc ggcaactca catcttcca tttcctcct ttgctttga agaaaacta tcctcttcc caaaggcaa	aggattttaa ctttatccca gaaaagtctt cttcctctat agcatccgac tccatccttg ttcctccatg acaacccact	atttettgat aaagetgeet actaacatga tgtaaagaat caaatgtett gatetgetta tetgeagaga	acttttcctt taaccttttt gtgtggatcc cttcacctat ctgctgagat ttcaggacag agagtgtcgc	ctggaggtcc tccagtccac agcttgtccc gcctgtgatt gcctcacacg ccctgattct aaaaaaggaa	120 180 240 300 360 420
<pre><211> LENGTH <212> TYPE: 1 <213> ORGANI: <400> SEQUENG attataaatc ta gttattatgc ag tatttctcta ag ctcttaaatt ta caaagcttgc cd tgtgggcctg ag gagactgtct cd tccaccagtc cd </pre>	: 2098 DNA SM: Homo s CE: 3 agagactcc ggcaactca catcttcca tttcctcct ttgctttga agaaaacta tcctcttcc caaaggcaa ggtcaagaa	aggattttaa ctttatccca gaaaagtctt cttcctctat agcatccgac tccatccttg ttcctccatg acaacccact acagaagacc	atttettgat aaagetgeet actaacatga tgtaaagaat caaatgtett gatetgetta tetgeagaga agaaetgtgt	acttttcctt taaccttttt gtgtggatcc cttcacctat ctgctgagat ttcaggacag agagtgtcgc tctcttccac	ctggaggtcc tccagtccac agcttgtccc gcctgtgatt gcctcacacg ccctgattct aaaaaaggaa ccagctgtgt	120 180 240 300 360 420 480
<pre><211> LENGTH <212> TYPE: 1 <213> ORGANIS <400> SEQUEN attataaatt to gttattatgc ag tatttctcta ad ctcttaaatt to caaagcttgc co tgtgggcctg ad gagactgtct co tccaccagtc co gacaaggtcc co gtactcaatg ad</pre>	: 2098 DNA SM: Homo s CE: 3 agagactcc ggcaactca catcttcca tttcctctt ttgctttga agaaaacta tcctcttcc caaaggcaa ggtcaagaa tagatttca	aggattttaa ctttatccca gaaaagtctt cttcctctat agcatccgac tccatccttg ttcctccatg acaacccact acagaagacc gagacagaaa	atttettgat aaagetgeet actaacatga tgtaaagaat caaatgtett gatetgetta tetgeagaga agaaetgtgt taceteagee	acttttcctt taaccttttt gtgtggatcc cttcacctat ctgctgagat ttcaggacag agagtgtcgc tctcttccac tccagcagat	ctggaggtcc tccagtccac agcttgtccc gcctgtgatt gcctcacacg ccctgattct aaaaaaggaa ccagctgtgt gcaagaactc	120 180 240 300 360 420 480 540
<pre><211> LENGTH <212> TYPE: 1 <213> ORGANI: <400> SEQUENG attataaatc ta gttattatgc ag tatttctcta ag ctcttaaatt th caaagcttgc ch tgtggggcctg ag gagactgtct ch tccaccagtc ca gacaaggtcc ca gtactcaatg ag tccaacatc tg</pre>	: 2098 DNA SM: Homo s CE: 3 agagactcc ggcaactca catcttcca tttcctcct ttgctttga agaaaacta tcctcttcc caaaggcaa ggtcaagaa tagattca gaacctcag	aggattttaa ctttatccca gaaaagtctt cttcctctat agcatccgac tccatccttg ttcctccatg acaacccact acagaagacc gagacagaaa ctacaaacag	atttcttgat aaagctgcct actaacatga tgtaaagaat caaatgtctt gatctgctta tctgcagaga agaactgtgt tacctcagcc gtgaagacct	acttttcctt taaccttttt gtgtggatcc cttcacctat ctgctgagat ttcaggacag agagtgtcgc tctcttccac tccagcagat ggttccagaa	ctggaggtcc tccagtccac agcttgtccc gcctgtgatt gcctcacacg ccctgattct aaaaaaggaa ccagctgtgt gcaagaactc ccagagaatg	120 180 240 300 420 480 540 600
<pre><211> LENGTH <212> TYPE: 1 <213> ORGANIS <400> SEQUENG attataaatt ta gttattatgc ag tatttctcta ad ctcttaaatt ta caaagettgc ca tgtggggeetg ad gagactgtct ca tccaccagtc ca gacaaggtcc ca gtactcaatg ad tccaacatcc ta aaatctaaga ga</pre>	: 2098 DNA SM: Homo s CE: 3 agagactcc ggcaactca catcttcca tttcctctc ttgctttga agaaaacta tcctcttcc caaaggcaa ggtcaagaa tagattca gaacctcag gtggcagaa	aggattttaa ctttatccca gaaaagtctt cttcctctat agcatccgac tccatccttg ttcctccatg acaacccact acagaagacc gagacagaaa ctacaaacag aaacaactgg	atttettgat aaagetgeet actaacatga tgtaaagaat caaatgtett gatetgetta tetgeagaga agaaetgtgt taeeteagee gtgaagaeet ecgaagaata	acttttcctt taaccttttt gtgtggatcc cttcacctat ctgctgagat ttcaggacag agagtgtcgc tctcttccac tccagcagat ggttccagaa gcaatggtgt	ctggaggtcc tccagtccac agcttgtccc gcctgtgatt gcctcacacg ccctgattct aaaaaaggaa ccagctgtgt gcaagaactc ccagagaatg gacgcagaag	120 180 240 300 420 480 540 600 660 720
<pre><211> LENGTH <212> TYPE: 1 <213> ORGANIS <400> SEQUENG attataaatt to gttattatgc ag tatttctcta ad ctcttaaatt to caaagcttgc co tgtggggcctg ad gagactgtct co tccaccagtc co gacaaggtcc co gtactcaatg ag tccaacatcc to aaatctaaga gg gcctcagcac co gcctcagcac co gcctcagcagcac co gcctcagcac co gcctcagcac co gcctcagc</pre>	: 2098 DNA SM: Homo s CE: 3 agagactcc ggcaactca catcttcca tttcctctc ttgctttga agaaaacta tcctcttcc caaaggcaa ggtcaagaa tagattca gaacctcag gtggcagaa tacctaccc	aggattttaa ctttatccca gaaaagtctt cttcctctat agcatccgac tccatccttg ttcctccatg acaacaccact gagacagaaa ctacaaacag aaacaactgg cagcctttac	atttettgat aaagetgeet actaacatga tgtaaagaat caaatgtett gatetgetta tetgeagaga agaaetgtgt taeeteagee gtgaagaeet ecegaagaata tetteetaee	acttttcctt taaccttttt gtgtggatcc cttcacctat ctgctgagat ttcaggacag agagtgtcgc tctcttccac tccagcagat ggttccagaa gcaatggtgt	ctggaggtcc tccagtccac agcttgtccc gcctgtgatt gcctcacacg ccctgattct aaaaaaggaa ccagctgtgt gcaagaactc ccagagaatg gacgcagaag cctggtgaac	120 180 240 300 420 480 540 600 660 720 780
<pre><211> LENGTH <212> TYPE: 1 <213> ORGANI: <400> SEQUENG attataaatt ta gttattatgc ag tatttctcta ad ctcttaaatt ta caaagcttgc cd tgtggggcctg ad gagactgtct cd tccaacagtc cd gacaaggtcc cg gtactcaatg ag tccaacatcc tg aaatctaaga gg gcctcagcac cd ccgactggga ad</pre>	: 2098 DNA SM: Homo s CE: 3 agagactcc ggcaactca catcttcca tttcctcct ttgctttga agaaaacta tcctcttcc caaaggcaaa ggtcaagaa tagatttca gaacctcag gtggcagaa tacctaccc ccttccaat	aggattttaa ctttatccca gaaaagtctt cttcctctat agcatccgac tccatccttg ttcctccatg acaacccact acagaagacc gagacagaaa ctacaaacag aaacaactgg cagcctttac gtggagcaac	atttettgat aaagetgeet actaacatga tgtaaagaat caaatgtett gatetgetta tetgeagaga agaaetgtgt taeeteagee gtgaagaeet cegaagaata tetteetaee cagaeetgga	acttttcctt taaccttttt gtgtggatcc cttcacctat ctgctgagat ttcaggacag agagtgtcgc tctcttccac tccagcagat ggttccagaa gcaatggtgt accagggatg acaattcaac	ctggaggtcc tccagtccac agcttgtccc gcctgtgatt gcctcacacg ccctgattct aaaaaaggaa ccagctgtgt gcaagaactc ccagagaatg gacgcagaag cctggtgaac ctggtgaac	120 180 240 300 420 480 540 600 660 720 780 840
<pre><211> LENGTH <212> TYPE: 1 <213> ORGANIS <400> SEQUENG attataaatt to gttattatgc ag tatttctcta ad ctcttaaatt to caaagcttgc co tgtggggcctg ad gagactgtct co tccaccagtc co gacaaggtcc co gtactcaatg ag tccaacatcc to aaatctaaga gg gcctcagcac co gcctcagcac co gcctcagcagcac co gcctcagcac co gcctcagcac co gcctcagc</pre>	: 2098 DNA SM: Homo s CE: 3 agagactcc ggcaactca catcttcca tttcctctc ttgctttga agaaaacta tcctcttcc caaaggcaaa ggtcaagaa tagattca gaacctcag gtggcagaa tacctaccc ccttccaat catccagtc	aggattttaa ctttatccca gaaaagtctt cttcctctat agcatccgac tccatccttg ttcctccatg acaacaccact gagacagaaa ctacaaacag aaacaactgg cagcctttac gtggagcaac ctggagcaac	atttettgat aaagetgeet actaacatga tgtaaagaat caaatgtett gatetgetta tetgeagaga agaaetgtgt taeeteagee gtgaagaeet eegaagaata tetteetaee cagaeetgga caeteetgga	acttttcctt taaccttttt gtgtggatcc cttcacctat ctgctgagat ttcaggacag agagtgtcgc tctcttccac tccagcagat ggttccagaa gcaatggtgt accaggatg acaattcaac acactcagac	ctggaggtcc tccagtccac agcttgtccc gcctgtgatt gcctcacacg ccctgattct aaaaaaggaa ccagctgtgt gcaagaactc ccagagaatg gacgcagaag cctggtgaac ctggtgcacc	120 180 240 300 420 480 540 600 660 720 780

23

-continued

cagtcctgca	tgcagttcca	gccaaattct	cctgccagtg	acttggaggc	tgccttggaa	1020
gctgctgggg	aaggccttaa	tgtaatacag	cagaccacta	ggtattttag	tactccacaa	1080
accatggatt	tattcctaaa	ctactccatg	aacatgcaac	ctgaagacgt	gtgaagatga	1140
gtgaaactga	tattactcaa	tttcagtctg	gacactggct	gaatccttcc	tctcccctcc	1200
tcccatccct	cataggattt	ttcttgtttg	gaaaccacgt	gttctggttt	ccatgatgcc	1260
catccagtca	atctcatgga	gggtggagta	tggttggagc	ctaatcagcg	aggtttcttt	1320
tttttttt	ttcctattgg	atcttcctgg	agaaaatact	tttttttt	tttttttga	1380
aacggagtct	tgctctgtcg	cccaggctgg	agtgcagtgg	cgcggtcttg	gctcactgca	1440
agctccgtct	cccgggttca	cgccattctc	ctgcctcagc	ctcccgagca	gctgggacta	1500
caggcgcccg	ccacctcgcc	cggctaatat	tttgtatttt	tagtagagac	ggggtttcac	1560
tgtgttagcc	aggatggtct	cgatctcctg	accttgtgat	ccacccgcct	cggcctccct	1620
aacagctggg	atttacaggc	gtgagccacc	gcgccctgcc	tagaaaagac	attttaataa	1680
ccttggctgc	cgtctctggc	tatagataag	tagatctaat	actagtttgg	atatctttag	1740
ggtttagaat	ctaacctcaa	gaataagaaa	tacaagtaca	aattggtgat	gaagatgtat	1800
tcgtattgtt	tgggattggg	aggctttgct	tatttttaa	aaactattga	ggtaaagggt	1860
taagctgtaa	catacttaat	tgatttctta	ccgtttttgg	ctctgttttg	ctatatcccc	1920
taatttgttg	gttgtgctaa	tctttgtaga	aagaggtctc	gtatttgctg	catcgtaatg	1980
acatgagtac	tgctttagtt	ggtttaagtt	caaatgaatg	aaacaactat	ttttccttta	2040
gttgatttta	ccctgatttc	accgagtgtt	tcaatgagta	aatatacagc	ttaaacat	2098
<210> SEQ : <211> LENG' <212> TYPE <213> ORGAI <400> SEQUI	TH: 4014 : DNA NISM: Homo :	sapiens				
	agatgtagca	gcttcttctc	cqaaccaacc	ctttqccttc	qqacttctcc	60
	gccgcccgac					120
	accagcagtt					180
gaggegeegg	aggacgcggc	ccgggcggcg	gacgagcete	agetgetgea	cggtgcgggc	240
atctgtaagt	ggttcaacgt	gcgcatgggg	tteggettee	tgtccatgac	cgcccgcgcc	300
ggggtegege	tcgacccccc	agtggatgtc	tttgtgcacc	agagtaagct	gcacatggaa	360
	gcttgaagga					420
	ccatccgtgt					480
	gaaagagcat					540
ggaggtetag	atcatcatgc	caaggaatgc	aagctgccac	cccagcccaa	gaagtgccac	600
-	-	-	-			

ttctgccaga gcatcagcca tatggtagcc tcatgtccgc tgaaggccca gcagggccct

agtgcacagg gaaagccaac ctactttcga gaggaagaag aagaaatcca cagccctacc ctgctcccgg aggcacagaa ttgagccaca atgggtgggg gctattcttt tgctatcagg

aagttttgag gagcaggcag agtggagaaa gtgggaatag ggtgcattgg ggctagttgg

cactgecatg tatetcagge ttgggttcac accateacce tttetteect ctaggtgggg

ggaaagggtg agtcaaagga actccaacca tgctctgtcc aaatgcaagt gagggttctg

660 720

780

840

900

-continued

				-contir	lued	
ggggcaacca	ggagggggga	atcaccctac	aacctgcata	ctttgagtct	ccatccccag	1020
aatttccagc	ttttgaaagt	ggcctggata	gggaagttgt	tttcctttta	aagaaggata	1080
tataataatt	cccatgccag	agtgaaatga	ttaagtataa	gaccagattc	atggagccaa	1140
gccactacat	tctgtggaag	gagatetete	aggagtaagc	attgtttttt	tttcacatct	1200
tgtatcctca	tacccacttt	tgggataggg	tgctggcagc	tgtcccaagc	aatgggtaat	1260
gatgatggca	aaaagggtgt	ttgggggaac	agctgcagac	ctgctgctct	atgeteacee	1320
ccgccccatt	ctgggccaat	gtgattttat	ttatttgctc	ccttggatac	tgcaccttgg	1380
gtcccacttt	ctccaggatg	ccaactgcac	tagctgtgtg	cgaatgacgt	atcttgtgca	1440
ttttaacttt	ttttccttaa	tataaatatt	ctggttttgt	atttttgtat	attttaatct	1500
aaggccctca	tttcctgcac	tgtgttctca	ggtacatgag	caatctcagg	gatagccagc	1560
agcagctcca	ggtctgcgca	gcaggaatta	ctttttgttg	ttttgccac	cgtggagagc	1620
aactatttgg	agtgcacagc	ctattgaact	acctcatttt	tgccaataag	agctggcttt	1680
tctgccatag	tgtcctcttg	aaaccccctc	tgccttgaaa	atgttttatg	ggagactagg	1740
ttttaactgg	gtggccccat	gacttgattg	ccttctactg	gaagattggg	aattagtcta	1800
aacaggaaat	ggtggtacac	agaggctagg	agaggctggg	cccggtgaaa	aggccagaga	1860
gcaagccaag	attaggtgag	ggttgtctaa	tcctatggca	caggacgtgc	tttacatctc	1920
cagatctgtt	cttcaccaga	ttaggttagg	cctaccatgt	gccacagggt	gtgtgtgtgt	1980
ttgtaaaact	agagttgcta	aggataagtt	taaagaccaa	tacccctgta	cttaatcctg	2040
tgctgtcgag	ggatggatat	atgaagtaag	gtgagatcct	taacctttca	aaattttcgg	2100
gttccaggga	gacacacaag	cgagggtttt	gtggtgcctg	gagcctgtgt	cctgccctgc	2160
tacagtagtg	attaatagtg	tcatggtagc	taaaggagaa	aaaggggggtt	tcgtttacac	2220
gctgtgagat	caccgcaaac	ctaccttact	gtgttgaaac	gggacaaatg	caatagaacg	2280
cattgggtgg	tgtgtgtctg	atcctgggtt	cttgtctccc	ctaaatgctg	ccccccaagt	2340
tactgtattt	gtetgggett	tgtaggactt	cactacgttg	attgctaggt	ggcctagttt	2400
gtgtaaatat	aatgtattgg	tettteteeg	tgttctttgg	gggttttgtt	tacaaacttc	2460
tttttgtatt	gagagaaaaa	tagccaaagc	atctttgaca	gaaggttctg	caccaggcaa	2520
aaagatctga	aacattagtt	tgggggggccc	tcttcttaaa	gtggggatct	tgaaccatcc	2580
tttcttttgt	attccccttc	ccctattacc	tattagacca	gatettetgt	cctaaaaact	2640
tgtcttctac	cctgccctct	tttctgttca	cccccaaaag	aaaacttaca	cacccacaca	2700
catacacatt	tcatgcttgg	agtgtctcca	caactcttaa	atgatgtatg	caaaaatact	2760
gaagctagga	aaaccctcca	tcccttgttc	ccaacctcct	aagtcaagac	cattaccatt	2820
tctttctttc	tttttttt	tttttaaaa	tggagtctca	ctgtgtcacc	caggctggag	2880
tgcagtggca	tgatcggctc	actgcagcct	ctgcctcttg	ggttcaagtg	attctcctgc	2940
ctcagcctcc	tgagtagctg	ggatttcagg	cacccgccac	actcagctaa	tttttgtatt	3000
tttagtagag	acggggtttc	accatgttgt	ccaggctggt	ctggaactcc	tgacctcagg	3060
tgatctgccc	accttggctt	cccaaagtgc	tgggattaca	ggcatgagcc	accatgctgg	3120
gccaaccatt	tcttggtgta	ttcatgccaa	acacttaaga	cactgctgta	gcccaggcgc	3180
ggtggctcac	acctgtaatc	ccagcacttt	ggaaggctga	ggcgggcgga	tcacaaggtc	3240
	aactatcctg					3300
	gtgtggtggt					3360
	7-9-99-995	J===9000000				

27

-continued

ggaatcgctt	gaacccgaga	ggcagaggtt	gcagtgagct	gagatcgcac	cactgcactc	3420
cagcctggtt	acagagcaag	actctgtctc	aaacaaaaca	aaacaaaaca	aaaacacact	3480
actgtatttt	ggatggatca	aacctcctta	attttaattt	ctaatcctaa	agtaaagaga	3540
tgcaattggg	ggccttccat	gtagaaagtg	gggtcaggag	gccaagaaag	ggaatatgaa	3600
tgtatatcca	agtcactcag	gaacttttat	gcaggtgcta	gaaactttat	gtcaaagtgg	3660
ccacaagatt	gtttaatagg	agacgaacga	atgtaactcc	atgtttactg	ctaaaaacca	3720
aagctttgtg	taaaatcttg	aatttatggg	gcgggagggt	aggaaagcct	gtacctgtct	3780
gttttttcc	tgatcctttt	ccctcattcc	tgaactgcag	gagactgagc	ccctttgggc	3840
tttggtgacc	ccatcactgg	ggtgtgttta	tttgatggtt	gattttgctg	tactgggtac	3900
ttcctttccc	attttctaat	catttttaa	cacaagctga	ctcttccctt	cccttctcct	3960
ttccctggga	aaatacaatg	aataaataaa	gacttattgg	tacgcaaact	gtca	4014

<210> SEQ ID NO 5 <211> LENGTH: 2377 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 5

acccccgage tgtgetgete geggeegeea eegeegggee eeggeegtee etggeteeee 60 120 teetqeeteq aqaaqqqeaq qqetteteaq aqqettqqeq qqaaaaaqaa eqqaqqqaqq gategegetg agtataaaag eeggtttteg gggetttate taactegetg tagtaattee 180 agegagagge agagggageg agegggegge eggetagggt ggaagageeg ggegageaga 240 gctgcgctgc gggcgtcctg ggaaggggaga tccggagcga ataggggggct tcgcctctgg 300 cccagccctc ccgctgatcc cccagccagc ggtccgcaac ccttgccgca tccacgaaac 360 tttgcccata gcagcgggcg ggcactttgc actggaactt acaacacccg agcaaggacg 420 cgacteteec gaegegggga ggetattetg eccatttggg gaeaetteec egeegetgee 480 aggacccgct tctctgaaag gctctccttg cagctgctta gacgctggat ttttttcggg 540 tagtggaaaa ccagcagcct cccgcgacga tgcccctcaa cgttagcttc accaacagga 600 actatgacct cgactacgac tcggtgcagc cgtatttcta ctgcgacgag gaggagaact 660 720 totaccagca gcagcagcag agcgagotgo agcoccoggo goccagogag gatatotgga agaaattega getgetgeee acceegeeee tgteeeetag eegeegetee gggetetget 780 cgccctccta cgttgcggtc acacccttct cccttcgggg agacaacgac ggcggtggcg 840 ggagettete caeggeegae cagetggaga tggtgaeega getgetggga ggagaeatgg 900 960 tqaaccaqaq tttcatctqc qacccqqacq acqaqacctt catcaaaaac atcatcatcc aggactgtat gtggagcggc ttctcggccg ccgccaagct cgtctcagag aagctggcct 1020 1080 cctaccagge tgegegeaaa gacageggea geeegaacee egeeegegge cacagegtet getecaecte cagettgtae etgeaggate tgagegeege egeeteagag tgeategaee 1140 cctcggtggt cttcccctac cctctcaacg acagcagctc gcccaagtcc tgcgcctcgc 1200 aagactccag cgccttctct ccgtcctcgg attctctgct ctcctcgacg gagtcctccc 1260 cgcagggcag ccccgagccc ctggtgctcc atgaggagac accgcccacc accagcagcg 1320 actctgagga ggaacaagaa gatgaggaag aaatcgatgt tgtttctgtg gaaaagaggc 1380 1440 aggeteetgg caaaaggtea gagtetggat cacettetge tggaggeeae ageaaacete

29

-continued

ctcacagccc	actggtcctc	aagaggtgcc	acgtctccac	acatcagcac	aactacgcag	1500	
cgcctccctc	cactcggaag	gactatcctg	ctgccaagag	ggtcaagttg	gacagtgtca	1560	
gagtcctgag	acagatcagc	aacaaccgaa	aatgcaccag	ccccaggtcc	tcggacaccg	1620	
aggagaatgt	caagaggcga	acacacaacg	tcttggagcg	ccagaggagg	aacgagctaa	1680	
aacggagctt	ttttgccctg	cgtgaccaga	tcccggagtt	ggaaaacaat	gaaaaggccc	1740	
ccaaggtagt	tatccttaaa	aaagccacag	catacatcct	gtccgtccaa	gcagaggagc	1800	
aaaagctcat	ttctgaagag	gacttgttgc	ggaaacgacg	agaacagttg	aaacacaaac	1860	
ttgaacagct	acggaactct	tgtgcgtaag	gaaaagtaag	gaaaacgatt	ccttctaaca	1920	
gaaatgtcct	gagcaatcac	ctatgaactt	gtttcaaatg	catgatcaaa	tgcaacctca	1980	
caaccttggc	tgagtettga	gactgaaaga	tttagccata	atgtaaactg	cctcaaattg	2040	
gactttgggc	ataaaagaac	tttttatgc	ttaccatctt	tttttttt	ttaacagatt	2100	
tgtatttaag	aattgttttt	aaaaaatttt	aagatttaca	caatgtttct	ctgtaaatat	2160	
tgccattaaa	tgtaaataac	tttaataaaa	cgtttatagc	agttacacag	aatttcaatc	2220	
ctagtatata	gtacctagta	ttataggtac	tataaaccct	aattttttt	atttaagtac	2280	
attttgcttt	ttaaagttga	ttttttcta	ttgtttttag	aaaaaataaa	ataactggca	2340	
aatatatcat	tgagccaaaa	aaaaaaaaaa	aaaaaaa			2377	
	TH: 2949 : DNA NISM: Homo £	sapiens					
<400> SEQUE	ENCE: 6						
agtttcccga	ccagagagaa	cgaacgtgtc	tgcgggcgcg	cggggagcag	aggcggtggc	60	
gggcggcggc	ggcaccggga	gccgccgagt	gaccetecce	cgcccctctg	gccccccacc	120	
ctcccacccg	cccgtggccc	gcgcccatgg	ccgcgcgcgc	tccacacaac	tcaccggagt	180	
ccgcgccttg	cgccgccgac	cagttcgcag	ctccgcgcca	cggcagccag	tctcacctgg	240	
cggcaccgcc	cgcccaccgc	cccggccaca	gcccctgcgc	ccacggcagc	actcgaggcg	300	
accgcgacag	tggtggggga	cgctgctgag	tggaagagag	cgcagcccgg	ccaccggacc	360	
tacttactcg	ccttgctgat	tgtctatttt	tgcgtttaca	acttttctaa	gaacttttgt	420	
atacaaagga	actttttaaa	aaagacgctt	ccaagttata	tttaatccaa	agaagaagga	480	
tctcggccaa	tttggggttt	tgggttttgg	cttcgtttct	tctcttcgtt	gactttgggg	540	
ttcaggtgcc	ccagctgctt	cgggctgccg	aggaccttct	gggcccccac	attaatgagg	600	
cagccacctg	gcgagtctga	catggctgtc	agcgacgcgc	tgctcccatc	tttctccacg	660	
ttcgcgtctg	gcccggcggg	aagggagaag	acactgcgtc	aagcaggtgc	cccgaataac	720	
cgctggcggg	aggagetete	ccacatgaag	cgacttcccc	cagtgcttcc	cggccgcccc	780	
tatgacctgg	cggcggcgac	cgtggccaca	gacctggaga	gcggcggagc	cggtgcggct	840	
tgcggcggta	gcaacctggc	gcccctacct	cggagagaga	ccgaggagtt	caacgatctc	900	
ctggacctgg	actttattct	ctccaattcg	ctgacccatc	ctccggagtc	agtggccgcc	960	
accgtgtcct	cgtcagcgtc	agceteetet	tcgtcgtcgc	cgtcgagcag	cggccctgcc	1020	
agcgcgccct	ccacctgcag	cttcacctat	ccgatccggg	ccgggaacga	cccgggcgtg	1080	
gcgccgggcg	gcacgggcgg	aggcctcctc	tatggcaggg	agtccgctcc	ccctccgacg	1140	
gctcccttca	acctggcgga	catcaacgac	gtgagcccct	cgggcggctt	cgtggccgag	1200	

ctcctgcggc cagaattgga cccggtgtac attccgccgc agcagccgca gccgccaggt

ggcgggctga tgggcaagtt cgtgctgaag gcgtcgctga gcgcccctgg cagcgagtac

ggcagcccgt cggtcatcag cgtcagcaaa ggcagccctg acggcagcca cccggtggtg

gtggcgccct acaacggcgg gccgccgcgc acgtgcccca agatcaagca ggaggcggtc

tettegtgea eccaettggg egetggaeee eeteteagea atggeeaeeg geeggetgea

cacgacttee ceetggggeg geageteece ageaggacta ceeegaceet gggtettgag gaagtgetga geageaggga etgteaceet geeetgeege tteeteeegg etteeateee

caccoggggc ccaattaccc atcottcotg coogatcaga tgcagcogca agtocogoog

ctccattacc aagagetcat gccacceggt teetgeatge cagaggagee caagecaaag

aggggaagac gatcgtggcc ccggaaaagg accgccaccc acacttgtga ttacgcgggc

tgcggcaaaa cctacacaaa gagttcccat ctcaaggcac acctgcgaac ccacacaggt

gagaaacctt accactgtga ctgggacggc tgtggatgga aattcgcccg ctcagatgaa ctgaccaggc actaccgtaa acacacgggg caccgcccgt tccagtgcca aaaatgcgac

cgagcatttt ccaggtcgga ccacctcgcc ttacacatga agaggcattt ttaaatccca

gacagtggat atgacccaca ctgccagaag agaattcagt atttttact tttcacactg

tetteeegat gagggaagga geeeageeag aaageactae aateatggte aagtteeeaa

ctqaqtcatc ttqtqaqtqq ataatcaqqa aaaatqaqqa atccaaaaqa caaaaatcaa agaacagatg gggtctgtga ctggatcttc tatcattcca attctaaatc cgacttgaat

atteetggae ttacaaaatg ccaagggggt gaetggaagt tgtggatate agggtataaa

ttatatccgt gagttggggg agggaagacc agaattccct tgaattgtgt attgatgcaa

-continued

tataagcata aaagatcacc ttgtattctc tttaccttct aaaagccatt attatgatgt 2460 tagaagaaga ggaagaaatt caggtacaga aaacatgttt aaatagccta aatgatggtg 2520 2580 cttggtgagt cttggttcta aaggtaccaa acaaggaagc caaagttttc aaactgctgc atactttgac aaggaaaatc tatatttgtc ttccgatcaa catttatgac ctaagtcagg 2640 taatatacct ggtttacttc tttagcattt ttatgcagac agtctgttat gcactgtggt 2700 ttcagatgtg caataatttg tacaatggtt tattcccaag tatgccttaa gcagaacaaa 2760 tgtgtttttc tatatagttc cttgccttaa taaatatgta atataaattt aagcaaacgt 2820 ctattttgta tatttgtaaa ctacaaagta aaatgaacat tttgtggagt ttgtattttg 2880 catactcaag gtgagaatta agttttaaat aaacctataa tattttatct gaaaaaaaaa 2940 aaaaaaaaa 2949 <210> SEQ ID NO 7 <211> LENGTH: 2949 <212> TYPE: DNA <213> ORGANISM: Simian virus 40 <400> SEQUENCE: 7 agtttcccga ccagagagaa cgaacgtgtc tgcgggcgcg cgggggggagcag aggcggtggc gggcggcggc ggcaccggga gccgccgagt gaccctcccc cgcccctctg gccccccacc 120 ctcccacccg cccgtggccc gcgcccatgg ccgcgcgcgc tccacacaac tcaccggagt 180 ccgcgccttg cgccgccgac cagttcgcag ctccgcgcca cggcagccag tctcacctgg 240 eggeacegee egeceacege eceggeeaca geceetgege ecaeggeage actegaggeg 300 32

1260

1320

1380

1440

1500 1560

1620

1680

1740

1800

1860 1920

1980

2040

2100

2160 2220

2280

2340

2400

-continued

				-contir	nued		
accgcgacag	tggtggggga	cgctgctgag	tggaagagag	cgcagcccgg	ccaccggacc	360	
tacttactcg	ccttgctgat	tgtctatttt	tgcgtttaca	acttttctaa	gaacttttgt	420	
atacaaagga	actttttaaa	aaagacgctt	ccaagttata	tttaatccaa	agaagaagga	480	
tctcggccaa	tttggggttt	tgggttttgg	cttcgtttct	tctcttcgtt	gactttgggg	540	
ttcaggtgcc	ccagctgctt	cgggctgccg	aggacettet	gggcccccac	attaatgagg	600	
cagccacctg	gcgagtctga	catggctgtc	agcgacgcgc	tgeteecate	tttctccacg	660	
ttcgcgtctg	gcccggcggg	aagggagaag	acactgcgtc	aagcaggtgc	cccgaataac	720	
cgctggcggg	aggagetete	ccacatgaag	cgacttecce	cagtgettee	eggeegeeee	780	
tatgacctgg	cggcggcgac	cgtggccaca	gacctggaga	gcggcggagc	cggtgcggct	840	
tgcggcggta	gcaacctggc	gcccctacct	cggagagaga	ccgaggagtt	caacgatctc	900	
ctggacctgg	actttattct	ctccaattcg	ctgacccatc	ctccggagtc	agtggccgcc	960	
accgtgtcct	cgtcagcgtc	agcctcctct	tcgtcgtcgc	cgtcgagcag	cggccctgcc	1020	
agcgcgccct	ccacctgcag	cttcacctat	ccgatccggg	ccgggaacga	cccgggcgtg	1080	
gcgccgggcg	gcacgggcgg	aggceteete	tatggcaggg	agtccgctcc	ccctccgacg	1140	
gctcccttca	acctggcgga	catcaacgac	gtgagcccct	cgggcggctt	cgtggccgag	1200	
ctcctgcggc	cagaattgga	cccggtgtac	attccgccgc	agcagccgca	gccgccaggt	1260	
ggcgggctga	tgggcaagtt	cgtgctgaag	gcgtcgctga	gcgcccctgg	cagcgagtac	1320	
ggcagcccgt	cggtcatcag	cgtcagcaaa	ggcagccctg	acggcagcca	cccggtggtg	1380	
gtggcgccct	acaacggcgg	gccgccgcgc	acgtgcccca	agatcaagca	ggaggcggtc	1440	
tcttcgtgca	cccacttggg	cgctggaccc	cctctcagca	atggccaccg	gccggctgca	1500	
cacgacttcc	ccctggggcg	gcageteece	agcaggacta	ccccgaccct	gggtcttgag	1560	
gaagtgctga	gcagcaggga	ctgtcaccct	gccctgccgc	tteeteeegg	cttccatccc	1620	
cacccgggggc	ccaattaccc	atccttcctg	cccgatcaga	tgcagccgca	agtcccgccg	1680	
ctccattacc	aagagctcat	gccacccggt	tcctgcatgc	cagaggagcc	caagccaaag	1740	
aggggaagac	gatcgtggcc	ccggaaaagg	accgccaccc	acacttgtga	ttacgcgggc	1800	
tgcggcaaaa	cctacacaaa	gagttcccat	ctcaaggcac	acctgcgaac	ccacacaggt	1860	
gagaaacctt	accactgtga	ctgggacggc	tgtggatgga	aattcgcccg	ctcagatgaa	1920	
ctgaccaggc	actaccgtaa	acacacgggg	caccgcccgt	tccagtgcca	aaaatgcgac	1980	
cgagcatttt	ccaggtcgga	ccacctcgcc	ttacacatga	agaggcattt	ttaaatccca	2040	
gacagtggat	atgacccaca	ctgccagaag	agaattcagt	atttttact	tttcacactg	2100	
tcttcccgat	gagggaagga	gcccagccag	aaagcactac	aatcatggtc	aagttcccaa	2160	
ctgagtcatc	ttgtgagtgg	ataatcagga	aaaatgagga	atccaaaaga	caaaaatcaa	2220	
agaacagatg	gggtctgtga	ctggatcttc	tatcattcca	attctaaatc	cgacttgaat	2280	
atteetggae	ttacaaaatg	ccaaggggggt	gactggaagt	tgtggatatc	agggtataaa	2340	
ttatatccgt	gagttggggg	agggaagacc	agaattccct	tgaattgtgt	attgatgcaa	2400	
tataagcata	aaagatcacc	ttgtattctc	tttaccttct	aaaagccatt	attatgatgt	2460	
tagaagaaga	ggaagaaatt	caggtacaga	aaacatgttt	aaatagccta	aatgatggtg	2520	
cttggtgagt	cttggttcta	aaggtaccaa	acaaggaagc	caaagttttc	aaactgctgc	2580	
atactttgac	aaggaaaatc	tatatttgtc	ttccgatcaa	catttatgac	ctaagtcagg	2640	
taatatacct	ggtttacttc	tttagcattt	ttatgcagac	agtctgttat	gcactgtggt	2700	

-continued

ttcagatgtg	caataatttg	tacaatggtt	tattcccaag	tatgccttaa	gcagaacaaa	2760	
tgtgttttc	tatatagttc	cttgccttaa	taaatatgta	atataaattt	aagcaaacgt	2820	
ctattttgta	tatttgtaaa	ctacaaagta	aaatgaacat	tttgtggagt	ttgtattttg	2880	
catactcaag	gtgagaatta	agttttaaat	aaacctataa	tattttatct	gaaaaaaaaa	2940	
aaaaaaaaa						2949	
<210> SEQ : <211> LENG' <212> TYPE <213> ORGAI	TH: 4018	sapiens					
<400> SEQU	ENCE: 8						
caggcagcgc	tgcgtcctgc	tgcgcacgtg	ggaagccctg	gccccggcca	cccccgcgat	60	
gccgcgcgct	ccccgctgcc	gagccgtgcg	ctccctgctg	cgcagccact	accgcgaggt	120	
gctgccgctg	gccacgttcg	tgcggcgcct	ggggccccag	ggctggcggc	tggtgcagcg	180	
cggggacccg	gcggctttcc	gcgcgctggt	ggcccagtgc	ctggtgtgcg	tgccctggga	240	
cgcacggccg	ccccccgccg	ccccctcctt	ccgccaggtg	tcctgcctga	aggagctggt	300	
ggcccgagtg	ctgcagaggc	tgtgcgagcg	cggcgcgaag	aacgtgctgg	ccttcggctt	360	
cgcgctgctg	gacgggggccc	gcggggggccc	ccccgaggcc	ttcaccacca	gcgtgcgcag	420	
ctacctgccc	aacacggtga	ccgacgcact	gcgggggagc	ggggcgtggg	ggctgctgct	480	
gcgccgcgtg	ggcgacgacg	tgctggttca	cctgctggca	cgctgcgcgc	tctttgtgct	540	
ggtggctccc	agctgcgcct	accaggtgtg	cgggccgccg	ctgtaccagc	tcggcgctgc	600	
cactcaggcc	cggcccccgc	cacacgctag	tggaccccga	aggcgtctgg	gatgcgaacg	660	
ggcctggaac	catagcgtca	gggaggccgg	ggtccccctg	ggcctgccag	ccccgggtgc	720	
gaggaggcgc	ggggggcagtg	ccagccgaag	tctgccgttg	cccaagaggc	ccaggcgtgg	780	
cgctgcccct	gagccggagc	ggacgcccgt	tgggcagggg	tcctgggccc	acccgggcag	840	
gacgcgtgga	ccgagtgacc	gtggtttctg	tgtggtgtca	cctgccagac	ccgccgaaga	900	
agccacctct	ttggagggtg	cgctctctgg	cacgcgccac	tcccacccat	ccgtgggccg	960	
ccagcaccac	gcgggccccc	catccacatc	gcggccacca	cgtccctggg	acacgccttg	1020	
tcccccggtg	tacgccgaga	ccaagcactt	cctctactcc	tcaggcgaca	aggagcagct	1080	
gcggccctcc	ttcctactca	gctctctgag	gcccagcctg	actggcgctc	ggaggetegt	1140	
ggagaccatc	tttctgggtt	ccaggccctg	gatgccaggg	actccccgca	ggttgccccg	1200	
cctgccccag	cgctactggc	aaatgcggcc	cctgtttctg	gagctgcttg	ggaaccacgc	1260	
gcagtgcccc	tacggggtgc	tcctcaagac	gcactgcccg	ctgcgagctg	cggtcacccc	1320	
agcagccggt	gtctgtgccc	gggagaagcc	ccagggctct	gtggcggccc	ccgaggagga	1380	
ggacacagac	ccccgtcgcc	tggtgcagct	gctccgccag	cacagcagcc	cctggcaggt	1440	
gtacggcttc	gtgcgggcct	gcctgcgccg	gctggtgccc	ccaggcctct	ggggctccag	1500	
gcacaacgaa	cgccgcttcc	tcaggaacac	caagaagttc	atctccctgg	ggaagcatgc	1560	
caageteteg	ctgcaggagc	tgacgtggaa	gatgagcgtg	cgggactgcg	cttggctgcg	1620	
caggagccca	ggggttggct	gtgttccggc	cgcagagcac	cgtctgcgtg	aggagatcct	1680	
ggccaagttc	ctgcactggc	tgatgagtgt	gtacgtcgtc	gagctgctca	ggtctttctt	1740	
ttatgtcacg	gagaccacgt	ttcaaaagaa	caggetettt	ttctaccgga	agagtgtctg	1800	

-continued

				-contir	lued	
gagcaagttg	caaagcattg	gaatcagaca	gcacttgaag	agggtgcagc	tgcgggagct	1860
gtcggaagca	gaggtcaggc	agcatcggga	agccaggccc	gccctgctga	cgtccagact	1920
ccgcttcatc	cccaagcctg	acgggctgcg	gccgattgtg	aacatggact	acgtcgtggg	1980
agccagaacg	ttccgcagag	aaaagagggc	cgagcgtctc	acctcgaggg	tgaaggcact	2040
gttcagcgtg	ctcaactacg	agcgggcgcg	gcgccccggc	ctcctgggcg	cctctgtgct	2100
gggcctggac	gatatccaca	gggcctggcg	caccttcgtg	ctgcgtgtgc	gggcccagga	2160
cccgccgcct	gagctgtact	ttgtcaaggt	ggatgtgacg	ggcgcgtacg	acaccatccc	2220
ccaggacagg	ctcacggagg	tcatcgccag	catcatcaaa	ccccagaaca	cgtactgcgt	2280
gcgtcggtat	gccgtggtcc	agaaggccgc	ccatgggcac	gtccgcaagg	ccttcaagag	2340
ccacgtctct	accttgacag	acctccagcc	gtacatgcga	cagttcgtgg	ctcacctgca	2400
ggagaccagc	ccgctgaggg	atgccgtcgt	catcgagcag	agctcctccc	tgaatgaggc	2460
cagcagtggc	ctcttcgacg	tcttcctacg	cttcatgtgc	caccacgccg	tgcgcatcag	2520
gggcaagtcc	tacgtccagt	gccaggggat	cccgcagggc	tccatcctct	ccacgctgct	2580
ctgcagcctg	tgctacggcg	acatggagaa	caagctgttt	gcggggattc	ggcgggacgg	2640
gctgctcctg	cgtttggtgg	atgatttctt	gttggtgaca	cctcacctca	cccacgcgaa	2700
aaccttcctc	aggaccctgg	tccgaggtgt	ccctgagtat	ggctgcgtgg	tgaacttgcg	2760
gaagacagtg	gtgaacttcc	ctgtagaaga	cgaggccctg	ggtggcacgg	cttttgttca	2820
gatgccggcc	cacggcctat	tcccctggtg	cggcctgctg	ctggataccc	ggaccctgga	2880
ggtgcagagc	gactactcca	gctatgcccg	gacctccatc	agagccagtc	tcaccttcaa	2940
ccgcggcttc	aaggctggga	ggaacatgcg	tcgcaaactc	tttggggtct	tgcggctgaa	3000
gtgtcacagc	ctgtttctgg	atttgcaggt	gaacageete	cagacggtgt	gcaccaacat	3060
ctacaagatc	ctcctgctgc	aggcgtacag	gtttcacgca	tgtgtgctgc	ageteceatt	3120
tcatcagcaa	gtttggaaga	accccacatt	tttcctgcgc	gtcatctctg	acacggcctc	3180
cctctgctac	tccatcctga	aagccaagaa	cgcagggatg	tcgctggggg	ccaagggcgc	3240
cgccggccct	ctgccctccg	aggccgtgca	gtggctgtgc	caccaagcat	tcctgctcaa	3300
gctgactcga	caccgtgtca	cctacgtgcc	actcctgggg	tcactcagga	cagcccagac	3360
gcagctgagt	cggaagctcc	cggggacgac	gctgactgcc	ctggaggccg	cagccaaccc	3420
ggcactgccc	tcagacttca	agaccatcct	ggactgatgg	ccacccgccc	acagccaggc	3480
cgagagcaga	caccagcagc	cctgtcacgc	cgggctctac	gtcccaggga	gggaggggcg	3540
gcccacaccc	aggcccgcac	cgctgggagt	ctgaggcctg	agtgagtgtt	tggccgaggc	3600
ctgcatgtcc	ggctgaaggc	tgagtgtccg	gctgaggcct	gagcgagtgt	ccagccaagg	3660
gctgagtgtc	cagcacacct	gccgtcttca	cttccccaca	ggetggeget	cggctccacc	3720
ccagggccag	cttttcctca	ccaggagccc	ggcttccact	ccccacatag	gaatagtcca	3780
tccccagatt	cgccattgtt	cacccctcgc	cctgccctcc	tttgccttcc	acccccacca	3840
tccaggtgga	gaccctgaga	aggaccctgg	gagetetggg	aatttggagt	gaccaaaggt	3900
gtgccctgta	cacaggcgag	gaccctgcac	ctggatgggg	gtccctgtgg	gtcaaattgg	3960
ggggaggtgc	tgtgggagta	aaatactgaa	tatatgagtt	tttcagtttt	gaaaaaaa	4018

<210> SEQ ID NO 9 <211> LENGTH: 585 <212> TYPE: DNA <213> ORGANISM: Encephalomyocarditis virus

<400> SEQUEN	CE: 9					
gecectetee et	teccecce	cctaacgtta	ctggccgaag	ccgcttggaa	taaggccggt	60
gtgcgtttgt ct	tatatgtta	ttttccacca	tattgccgtc	ttttggcaat	gtgagggccc	120
ggaaacctgg co	cctgtcttc	ttgacgagca	tteetagggg	tctttcccct	ctcgccaaag	180
gaatgcaagg to	ctgttgaat	gtcgtgaagg	aagcagttcc	tctggaagct	tcttgaagac	240
aaacaacgtc to	gtagcgacc	ctttgcaggc	agcggaaccc	cccacctggc	gacaggtgcc	300
tctgcggcca aa	aagccacgt	gtataagata	cacctgcaaa	ggcggcacaa	ccccagtgcc	360
acgttgtgag tt	tggatagtt	gtggaaagag	tcaaatggct	ctcctcaagc	gtattcaaca	420
agggggtgaa gg	gatgcccag	aaggtacccc	attgtatggg	atctgatctg	gggcctcggt	480
gcacatgctt ta	acatgtgtt	tagtcgaggt	taaaaaaacg	tctaggcccc	ccgaaccacg	540
gggacgtggt tt	ttcctttga	aaaacacgat	gataatatgg	ccaca		585
<210> SEQ ID <211> LENGTH <212> TYPE: I <213> ORGANIS	: 589 DNA	cytomegalov	virus			
<400> SEQUEN	CE: 10					
tagttattaa ta	agtaatcaa	ttacgggggtc	attagttcat	agcccatata	tggagttccg	60
cgttacataa ct	ttacggtaa	atggcccgcc	tggctgaccg	cccaacgacc	cccgcccatt	120
gacgtcaata at	tgacgtatg	ttcccatagt	aacgccaata	gggactttcc	attgacgtca	180
atgggtggag ta	atttacggt	aaactgccca	cttggcagta	catcaagtgt	atcatatgcc	240
aagtacgccc co	ctattgacg	tcaatgacgg	taaatggccc	gcctggcatt	atgcccagta	300
catgacctta to	gggactttc	ctacttggca	gtacatctac	gtattagtca	tcgctattac	360
catggtgatg co	ggttttggc	agtacatcaa	tgggcgtgga	tagcggtttg	actcacgggg	420
atttccaagt ct	tccacccca	ttgacgtcaa	tgggagtttg	ttttggcacc	aaaatcaacg	480
ggactttcca aa	aatgtcgta	acaactccgc	cccattgacg	caaatgggcg	gtaggcgtgt	540
acggtgggag gt	tctatataa	gcagagctgg	tttagtgaac	cgtcagatc		589
<210> SEQ ID <211> LENGTH <212> TYPE: I <213> ORGANIS	: 1192 DNA	sapiens				
<400> SEQUENC	CE: 11					
ctagcttcgt ga	aggeteegg	tgcccgtcag	tgggcagagc	gcacatcgcc	cacagteece	60
gagaagttgg gg	gggagggggt	cggcaattga	accggtgcct	agagaaggtg	gcgcgggggta	120
aactgggaaa gt	tgatgtcgt	gtactggctc	cgcctttttc	ccgagggtgg	gggagaaccg	180
tatataagtg ca	agtagtcgc	cgtgaacgtt	ctttttcgca	acgggtttgc	cgccagaaca	240
caggtaagtg co	cgtgtgtgg	ttcccgcggg	cctggcctct	ttacgggtta	tggcccttgc	300
gtgccttgaa tt	tacttccac	ctggctccag	tacgtgattc	ttgatcccga	gctggagcca	360
ggggcgggcc tt	tgcgcttta	ggagcccctt	cgcctcgtgc	ttgagttgag	gcctggcctg	420
ggcgctgggg co	cgccgcgtg	cgaatctggt	ggcaccttcg	cgcctgtctc	gctgctttcg	480
ataagtctct ag	gccatttaa	aatttttgat	gacctgctgc	gacgcttttt	ttctggcaag	540
atagtettgt aa	aatgcgggc	caggatctgc	acactggtat	ttcggttttt	gggcccgcgg	600

-continued

ccggcgacgg	ggcccgtgcg	tcccagcgca	catgttcggc	gaggcgggggc	ctgcgagcgc	660
ggccaccgag	aatcggacgg	gggtagtctc	aagctggccg	gcctgctctg	gtgcctggcc	720
tcgcgccgcc	gtgtatcgcc	ccgccctggg	cggcaaggct	ggcccggtcg	gcaccagttg	780
cgtgagcgga	aagatggccg	cttcccggcc	ctgctccagg	gggctcaaaa	tggaggacgc	840
ggcgctcggg	agagcgggcg	ggtgagtcac	ccacacaaag	gaaaagggcc	tttccgtcct	900
cagccgtcgc	ttcatgtgac	tccacggagt	accgggcgcc	gtccaggcac	ctcgattagt	960
tctggagctt	ttggagtacg	tcgtctttag	gttgggggga	ggggttttat	gcgatggagt	1020
ttccccacac	tgagtgggtg	gagactgaag	ttaggccagc	ttggcacttg	atgtaattct	1080
cgttggaatt	tgccctttt	gagtttggat	cttggttcat	tctcaagcct	cagacagtgg	1140
ttcaaagttt	ttttcttcca	tttcaggtgt	cgtgaacacg	tggtcgcggc	ca	1192

20

25

30

45

The invention claimed is:

1. A defined, albumin-free medium free of any component obtained from a non-human animal, the medium comprising water, salts, amino acids, vitamins, glucose, insulin, an FGF, selenium, transferrin, and one of TGF- β and NODAL, each in an amount sufficient to support human pluripotent stem cell proliferation.

2. A method for culturing human pluripotent stem cells, the method comprising the steps of:

placing pluripotent stem cells on a matrix; and

contacting the cells with a defined, albumin-free medium free of any component obtained from a non-human animal, the medium comprising water, salts, amino acids, vitamins, glucose, insulin, an FGF, selenium, transferrin, and one of TGF- β and NODAL, each in an amount sufficient to support human pluripotent stem cell proliferation.

3. The method of claim 2, wherein the matrix comprises laminin.

4. The method of claim **2**, wherein the matrix comprises $_{40}$ vitronectin.

5. The method of claim 2, wherein the cells are contacted with the medium under hypoxic conditions.

6. The method of claim 2, wherein the pluripotent stem cells are embryonic stem cells.

7. The method of claim 2, wherein the pluripotent stem cells are induced pluripotent stem cells.

8. A method for cloning a human pluripotent stem cell, the method comprising the step of:

plating human pluripotent stem cells at cloning density in a defined albumin-free medium free of any component obtained from a non-human animal, the medium comprising water, salts, amino acids, vitamins, glucose, insulin, an FGF, selenium, transferrin, and one of TGF- β and NODAL, each in an amount sufficient to support human pluripotent stem cell cloning.

9. The method of claim 8, wherein the medium further comprises a ROCK inhibitor.

10. The method of claim **9**, wherein the ROCK inhibitor is selected from the group consisting of HA100 and Y27632.

11. The method of claim 8, wherein the medium further comprises blebbistatin.

12. A method of cryopreserving human pluripotent stem cells, the method comprising the step of:

freezing human pluripotent stem cells in a defined, albumin-free medium free of any component obtained from a non-human animal, the medium comprising water, salts, amino acids, vitamins, glucose, insulin, an FGF, selenium, transferrin, and one of TGF-β and NODAL, each in an amount sufficient to support human pluripotent stem cell proliferation.

13. The defined, albumin-free medium of claim 1, consisting essentially of: water, salts, amino acids, vitamins, glucose, insulin, an FGF, selenium, transferrin, and one of TGF- β and NODAL.

14. The defined, albumin-free medium of claim 1, wherein the medium comprises TGF- β .

15. The defined, albumin-free medium of claim **1**, wherein the medium comprises NODAL.

16. The defined, albumin-free medium of claim **1**, further comprising a ROCK inhibitor.

17. The defined, albumin-free medium of claim **16**, wherein the ROCK inhibitor is selected from the group consisting of HA100 and Y27632.

18. The defined, albumin-free medium of claim **1**, further comprising blebbistatin.

19. The defined, albumin-free medium of claim **1**, consisting of: water, salts, amino acids, vitamins, glucose, insulin, an FGF, selenium, transferrin, and one of TGF- β and NODAL.

* * * * *